The XMM Cluster Survey First Data Release

Kathy Romer, Nicola Mehrtens, Ed Lloyd-Davies (University of Sussex)

on behalf of the XCS collaboration

All the images will be available via www.xcs-home.org

XMMXCS J132830.2+470357.2 &	178	0.38	SDSS	4.1	1.4	4.3	
XMMXCS J132958.9+241124.6 ₺	126	0.17	LRG	2.3	1.0	2.1	
XMMXCS J133107.1-015837.4 ₪	162	0.20	LRG	2.5	0.7	1.6	
XMMXCS J133254.8+503153.1 ₺	2596	0.28	Lit	7	0.5	0.5	RBS 1283
XMMXCS J133439.5+504327.1 ₺	280	0.24	SDSS	me			MaxBCG J203.66157+50.72443
XMMXCS J133457.7+375020.3 ₺	690	0.38	Lit	903	5.0	12.2	NSCS J133503+374945
XMMXCS J133505.3+502336.3 ₺	688	0.09	LRG	15.2	0.1	0.1	
XMMXCS J133511.5-232917.2 ₺	669	0.10	NXS	the	0.2	0.3	
XMMXCS J133514.1+374905.8 ₺	294	0.60	Lit	att att	0.7	0.9	MJM98 034
XMMXCS J133559.1+375400.8 ₺	101	0.25	LRG	40	1.6	7.3	
XMMXCS J133605.0+514531.2 ₺	1006	0.53	SDSS	O G	0.2	0.4	
XMMXCS J133909.2+481152.7 ₺	172	0.41	LRG	100	0.2	0.4	
XMMXCS J134124.3-010204.0 ₺	229	0.29	LRG	20	0.6	2.7	MaxBCG J205.35590-01.04186
XMMXCS J134139.3+001733.9 ₺	214	0.44	SDSS	- L	0.5	0.6	BPG2004 J134139.1+001739.3
XMMXCS J134305.1-000056.8 @	1338	0.55	SDSS	45	0.7	0.9	BPG2004 J134304.8-000056.3
XMMXCS J134326.9+554648.3 @	209	0.07	LRG	1 <u></u>	0.3	0.2	400d J1343+5546
XMMXCS J134645.9+264625.7 ₺	259	0.43	LRG	un			
XMMXCS J134825.6+580015.8 ₺	637	0.13	LRG	1 0	0.1	0.3	
XMMXCS J134851.8+600942.5 ₺	188	0.44	SDSS	1.9	0.2	0.4	
XMMXCS J134949.7+270605.3 ₺	145	0.42	LRG	13	0.4	0.8	
XMMXCS J135358.8+335003.1 ₺	553	0.47	LRG	2.5	0.4	0.4	NSCS J135400+335023
XMMXCS J135449.3+691738.6 ₺	549	0.21	Lit	2.7	0.7	0.8	RX J1354.8+6917
XMMXCS J135541.9+182545.4 ₺	236	0.28	SDSS	1.5	0.5	0.7	

All the images will be available via www.xcs-home.org

This page will go live once the paper is on astro-ph.

Overview

- Development of the first data release (DR1)
- Properties of the DR1 sample
- Applications of the DR1 sample and XCS pipelines

There are ~6000 observations in the XMM archive ~400 sq.deg (non-overlapping) for cluster searching

Green dots represent observations in the DES footprint. Regions within red dashed lines are excluded from the cluster sample.

Download the raw data; make images.

Find the sources; figure out which are extended.

Check if the extended sources are clusters using optical data

Summary of optical identifications (505 identified so far)

- Eye-ball programme (similar to *Galaxy-Zoo*) for candidates with imaging from:
 - SDSS-DR7
 - Stripe 82 (SDSS co-add region)
 - The NOAO-XCS Survey (NXS)
- Plus detailed checks of the literature
 - when XCS re-detects known clusters, with published redshifts, outside the areas above

The DR1 Zoo work allows us to reduce the eye-ball element in future.

Zoo work has also shown the importance of deep imaging

Cluster at z=0.52 in SDSS (left) and in NXS (right)

Measure redshifts, temperatures and luminosities

Summary of redshift follow-up of DR1 clusters (463 z's so far)

- Spectroscopic redshifts (139)
 - From our own work
 - From SDSS
 - From the literature
- Photometric (CMR) redshifts (324*)
 - From the NXS
 - From SDSS-DR7
 - From Stripe 82

^{*}many of the 139 clusters with spec-z's also have photometric redshifts

We have pipelines to measure T_x and L_x

In Lloyd-Davies et al. (1010.6195) we showed that we can:

Summary of redshift follow-up of DR1 clusters (463 z's so far)

Blue are new to literature, Green is the full sample

Summary of DR1 temperature fitting (401 T_x so far)

Blue are new to literature, Green is the full sample

Summary of DR1 temperature fitting (401 T_x so far)

Much more could be done outside SDSS region

Overview

- Development of the first data release (DR1)
- Properties of the DR1 sample
- Applications of the DR1 sample and XCS pipelines

Overview

- Development of the first data release (DR1)
- Properties of the DR1 sample
- Applications of the DR1 sample and XCS pipelines
 - Only going to show 2 examples today (a preliminary L-T relation and some work on fossil groups).
 - XCS members are also actively working on optical scaling relations (Mehrtens); Planck overlap (Viana); and cosmology forecasting (Sahlen).

An **initial** *L-T* relation (366 clusters, no selection function applied)

Dotted line shows the Arnaud & Evrard 1999 result

An initial L-T relation (366 clusters, no selection function)

Colour coded by look back time (bins of 2 Gyr)

Automated search for X-ray fossil groups (14 in sample) [Craig Harrison and Chris Miller]

- In this analysis, target clusters were used in addition to the serendipitous XCS clusters.
- This takes advantage of the fact that the post processing pipelines work just as well on axis as off.

Automated search for X-ray fossil groups (14 in sample) [Craig Harrison and Chris Miller]

- The most important discovery:
 - "Fossil group BCGs are the most massive stellar systems in the Universe"
- Which suggests that they:
 - "formed the bulk of their mass at very early epochs and grew via accretion"
- Also that there are "Fossil Clusters" too!

Conclusions

- There are a lot of clusters in the XMM archive.
- The first XCS data release contains 505 XMM clusters (401 with temperatures).
- Science applications so far:
 - X-ray scaling relations;
 - fossil groups;
 - Planck overlap;
 - BCG evolution;
 - optical scaling relations;
 - Cosmology
- We'd love it if you used XCS-DR1 for your cluster science too!

Conclusions

- There are a lot of clusters in the XMM archive.
- The first XCS data release contains 505 XMM clusters (401 with temperatures).
- Science applications so far:
 - X-ray scaling relations;
 - fossil groups;
 - Planck overlap;
 - BCG evolution;
 - optical scaling relations;
 - Cosmology
- We'd love it if you used XCS-DR1 for your cluster science too!

Some Final Notes

- For more detail refer to
 - www.xcs-home.org
 - Lloyd-Davies et al. (1010.6195);
 - Mehrtens et al. (to be sub.)
- If you've liked the data analysis, both lead authors are on the postdoc job market!
- I haven't mentioned selection functions, but those are an integral part of XCS
- RAS Meeting Plug: The Scaling Relations of Galaxy Clusters at JMU (Liverpool) on June 24th

These extra slides were not shown in the talk

Automated search for X-ray fossil groups (14 in sample)

In this analysis, objects that were the intended XMM target are mixed with XCSDR1 (i.e. serendipitous) clusters (Craig Harrison and Chris Miller): the post processing pipelines work just as well on axis too!

That peak at z=0.4 is not a concern.

Measuring 1-colour CMR redshifts is OK

Measuring X-ray redshifts is OK (sometimes!)

Spectroscopic Redshifts for the same clusters

Introduction to XCS

Archive covers a lot of non-overlapping area

Solid is the whole area. Dashed refers to the area suitable for cluster searching