Galaxy dusters outskirts: what, why, how

Stefano Ettori (INAF-OA Bologna)

SCIENTIFIC JUSTIFICATION

To characterize the thermodynamic of the X-ray emitting plasma at the virial radius

WHY

✓ To calibrate the masses (gas and dark matter) in local galaxy clusters to use them as cosmological probes

$$M_{tot}(< r) \propto r \times T_{gas}(r) \times (-\alpha_n - \alpha_T)$$

- ✓ When and how is entropy injected into the Inter-galactic medium (IGM)?
- ✓ What is the history of metal enrichment of the IGM?

SCIENTIFIC JUSTIFICATION

To characterize the thermodynamic of the X-ray emitting plasma at the virial radius

HOW

- ✓ Which S_{b,} n_{gas} and T values do we expect at R_{vir}?
- Are simulated X-ray clusters consistent with the observed ones in the outskirts in terms of average values & scatter?

R₂₀₀

What limits the observations at R_{200} ?

Surface brightness in hydro-simulated clusters (from Roncarelli, Ettori et al. 2006)

X-ray total mass: the observables

Bkg: dominant in GCs outskirts

N_H=0.02, T=3, Ab=.15, z=.035, Sb/cgs/amin2=3e-16 Area/amin2=100, texp=1e5, f_cxb=0.25, f_ins=3.0 simspec.pha: WFXT data and folded model

Simulation for 3keV cluster @ R200

Simulations: 4 massive objects [M_{vir} 1.9-3.4e15, T_{vir} 5.4-9.9 keV]

 R_{vir} ... sphere that encloses a mean density of ~100 ρ_c R_{2500} , R_{500} , $R_{200} \approx 0.2$, 0.49, 0.74 R_{vir}

```
Quant.0.2R_{vir}0.5R_{vir}0.7R_{vir}1.0R_{vir}n_{gas}10.127 (0.004)0.051 (0.002)0.018 (0.002)T_{gas}10.735 (0.044)0.613 (0.055)0.491 (0.085)
```

→ Independently from the physics, just gravity

S_b at R₂₀₀: Observed clusters

"Outer regions of the cluster gaseous atmosphere" Vikhlinin et al. (99): β ~0.8 and larger by ~0.05 of the global fit value

Sample of nearby clusters observed with ROSAT/PSPC (Neumann 2005)

$$S_b \sim (1+x^2)^{0.5-3\beta} \sim r^{1-6\beta}$$

 $n_{gas} \sim (1+x^2)^{-3\beta/2} \sim r^{-3\beta}$

S_b at R₂₀₀: Observed clusters

Study of S_b at r > 0.7 R_{200} in a sample of high-z (z > 0.3) objects with CXO

(Ettori & Balestra 09)

Slope of S_b :

at 0.7 R_{200} : -3.9 ± 0.7, at R_{200} : -4.3 ± 0.9

Note: $S_b \sim r^{1-6\beta} \dots \beta = 0.8/0.9$

S_b at R₂₀₀: Perseus cluster

4 exposures with ROSAT PSPC

(Ettori et al. 98)

S_b at R₂₀₀: Perseus cluster

80'~1.78 Mpc~R₂₀₀

S_b at R₂₀₀: Perseus cluster

T_{gas} at R₂₀₀: Observed clusters

A1795 with *Suzaku* by Bautz et al. (arXiv:0906.3515): $T \sim r^{-0.9}$, $M_{500} \sim 20-30\%$ < expected

ICM at R₂₀₀: the scatter

(Vazza, Roncarelli, Ettori, Dolag 2011)

Lx[0.5-2keV]

r/R200

Lx[0.5-2keV]

r/R200

1.5

2.0

ICM at R₂₀₀: the scatter

(Vazza, Roncarelli, Ettori, Dolag 2011)

CONCLUSIONS on the ICM in the outskirts

We know what we'd observe at R_{200} (T_{gas} , S_{b}):

X-ray observations & simulations provide a consistent picture

...but we can have also some surprises (K_{gas}, M_{HE})...

CONCLUSIONS on the ICM in the outskirts

- The entropy profiles is observed to be flatter than predicted (T_e ≠ T_i?); M_{HE} lower/uncertain by 20-30%
- The scatter can provide insight on the physics acting in the outskirts (is the physics in the hydro/grid-based simulations correct? how much the present estimates at R₂₀₀ are representative?)