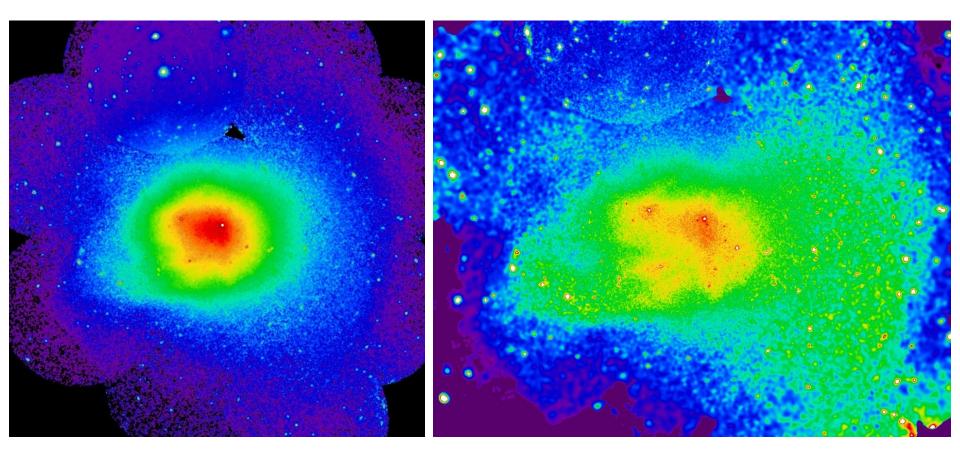
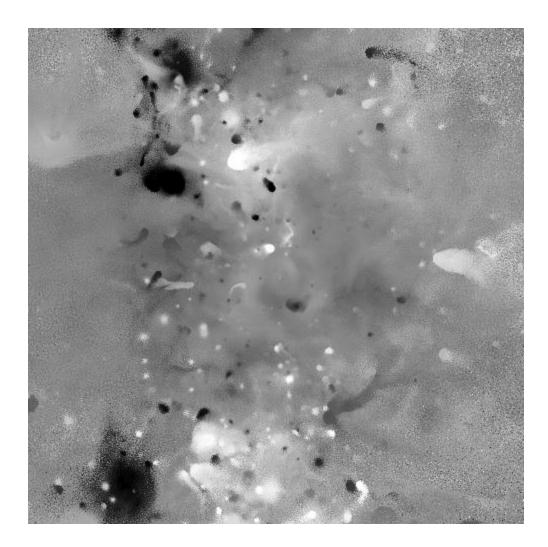
Gas motion in ICM: observational signatures

E.Churazov, I.Zhuravleva, N.Lyskova, P.Arevalo, K.Dolag, A.Vikhlinin, W.Forman, C.Jones, S.Sazonov, R.Sunyaev

Coma X-ray image and residuals from symmetric model



Gas is not at rest!



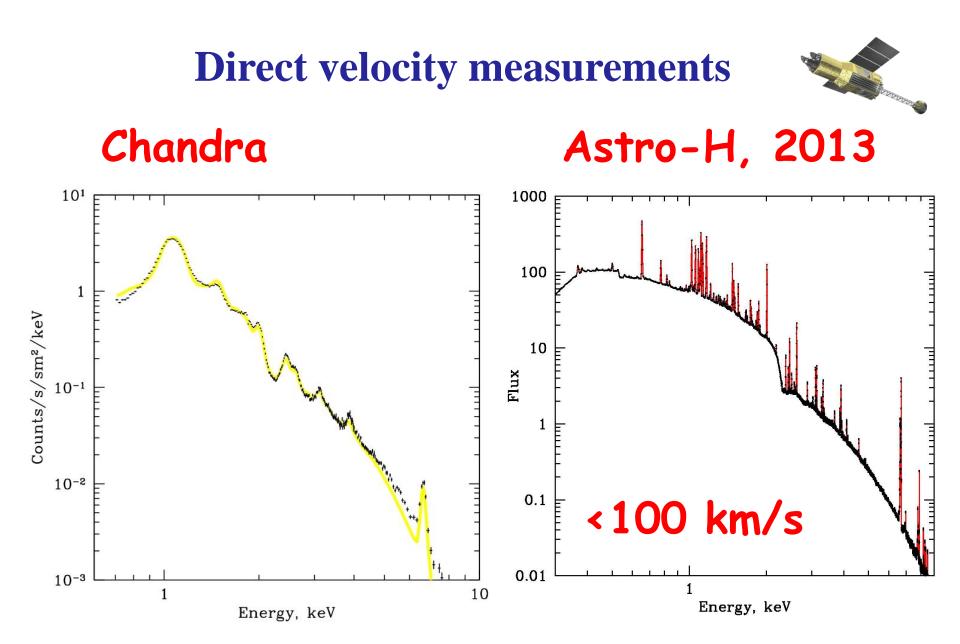
We want to "measure" hot ICM velocity field

How to measure?

How we characterize the velocity field and observables?

Using simulations to calibrate observables

Any differential gas motions Gaussian isotropic random field

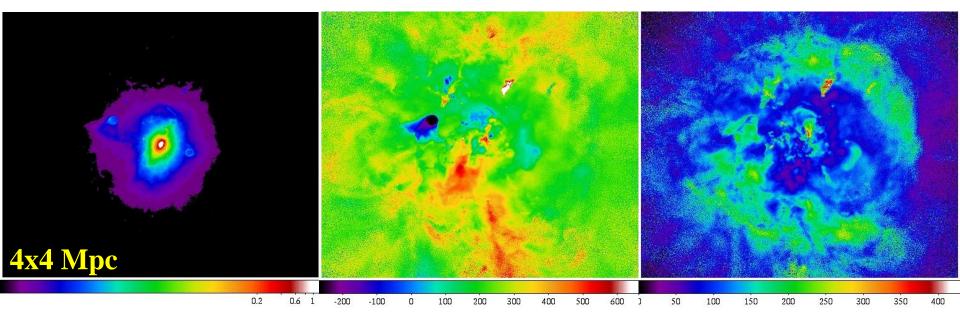


XMM/RGS, broadening < 200 km/s [1D] (Sanders+10,11)

 $\int n_e^2 dl$

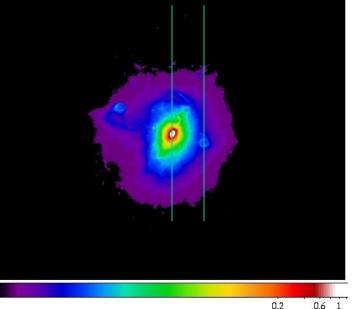
 $\langle V_{z} \rangle_{I}$

 $\sqrt{\left\langle v_z^2 \right\rangle_l} - \left\langle v_z \right\rangle_l^2$

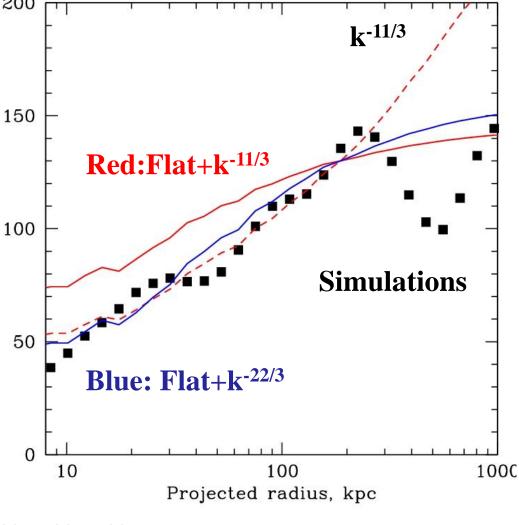


Observables: n_e , emission measure weighted v_z , σ $v_{2D} = \int v_{3D} n_e^2(z) dz$ $P_{2D}(k) = \int P_{3D} \sqrt{k^2 + k_z^2} W^2(k_z) dk_z$

Projected velocity dispersion \approx Structure Function $S(\Delta x) = \left\langle \P(x + \Delta x) - V(x)\right\rangle^{2} \right\rangle$ $\sum_{k=11/3}^{200} \left[\frac{1}{100} + \frac{1}{100}$



At a given projected radius R an interval ~R contributes to σ $\sigma^2 \approx$ structure function



$$\sigma^2 = \int P_{3D} \left[-W^2(k_z) dk_z dk_x dk_y \right]$$

Projected σ, km/s

Zhuravleva, 2011

Less direct ways of measuring ICM velocities.

Kinetic SZ effect	<v>, ΔV</v>	Benson+03 Osborne+11
Resonant scattering	ΔV, PS(V)	Werner+09, Hayshi+09, Zhuravleva+11
Polarization due to resonant scattering	ν, Δν	Zhuravleva+10
Faraday Rotation	PS(B)->V	Vogt+03, Bonafede+10
H_{a} filaments	V	Fabian+03
Pressure fluctuations	PS(P)->V	Schuecker+04
SB fluctuations	PS(n _e)	

Polarization of 6.7 keV Iron line Rayleigh phase function + Quadrupole = Polarization 20 13 -500 500 1001

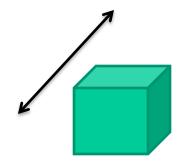
100% polarizedCenter: 0%Outskirts: 10%

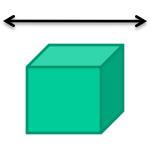
Sazonov+ 2002; Zhuravleva+ 2010

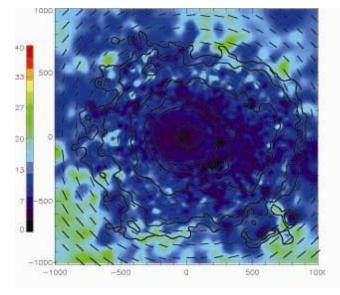
Transverse ICM velocities and polarization

Quadrupole component can be induced by gas motions!

Motion along l.o.s. Motion transverse l.o.s.







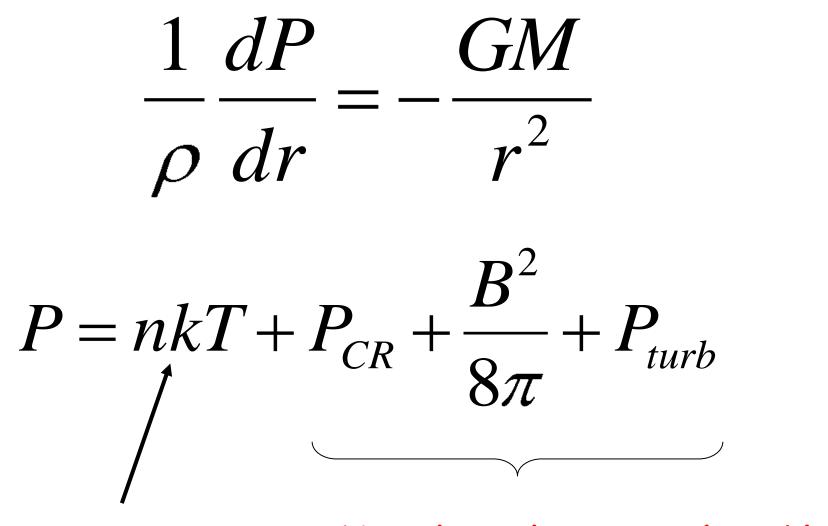
Doppler shift No polarization No Doppler shift Polarization

On average gas motions reduce optical depth
But can cause polarization in the cluster core

Very indirect ways of measuring ICM velocities.

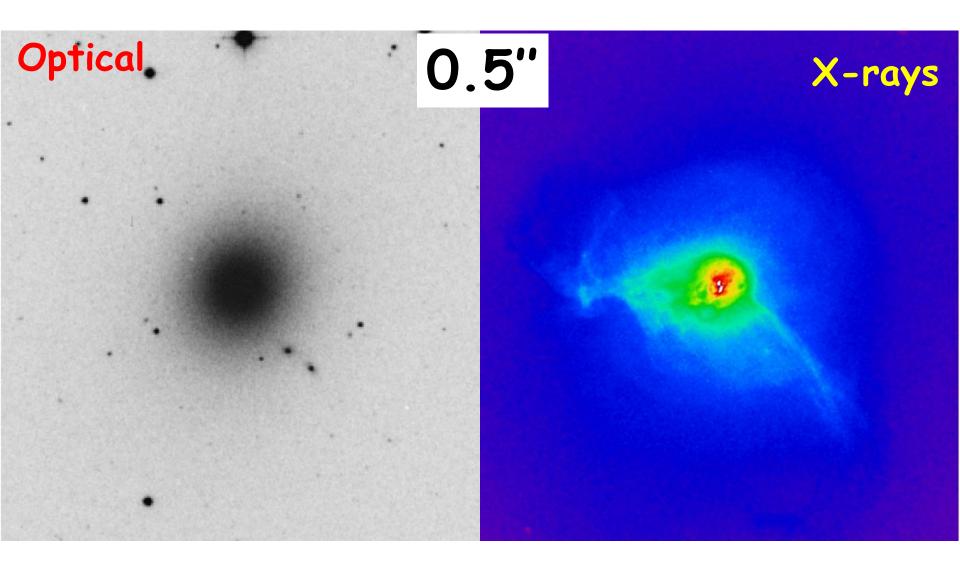
Turbulent Diffusion of metals	D~VL	Rebusco+05
Cool Cores: Heating=Cooling	Heating~V ³ /L	
Correction to mass from hydrostatic equilibrium	V ²	EC+08,10
Many more		

Combinations provide both V, L



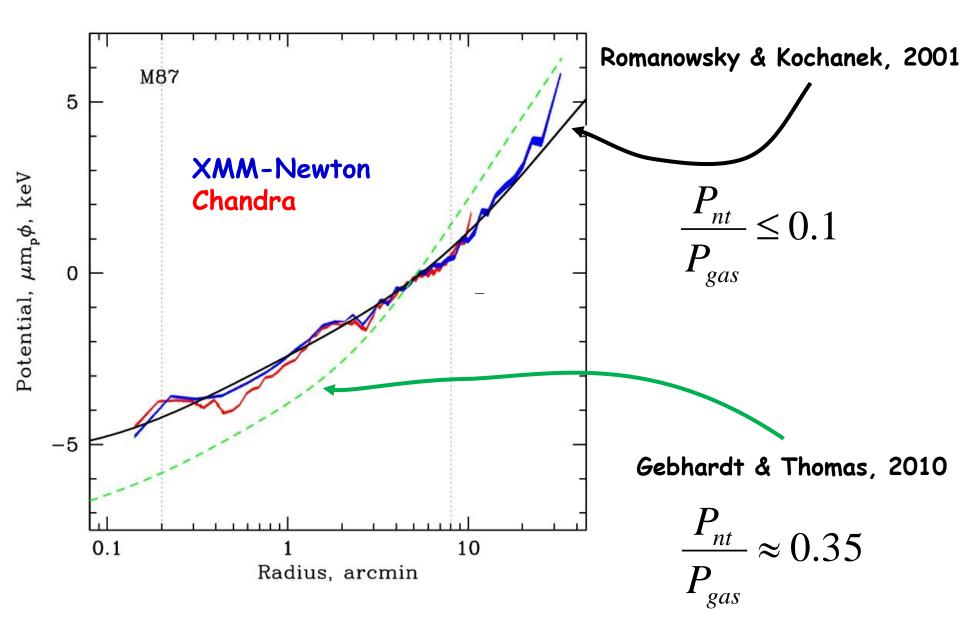
Thermal pressure (easy to measure) Non-thermal pressure (invisible)

M87



Stars: gravity only (anisotropy) Gas: gravity, magnetic fields, cosmic rays, turbulent motions, non-stationarity

M87: X-rays + stellar kinematics



V~few 100 km/s -> Power Spectra

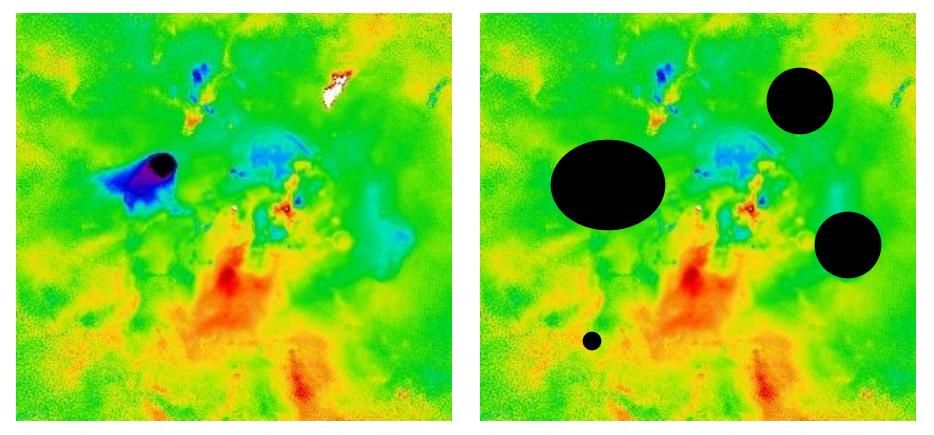
Characterizing ICM velocity field (3D simulations, RM maps, etc)

Calculating Power Density Spectra for featureless continuum

Calculating characteristic amplitude associated with a given spatial scale

Calculating Power Density Spectrum for the data with holes (making Fourier transform of the velocity map)

- 1. Non-periodic
- 2. Missing data (points sources, gaps between CCDs,...)



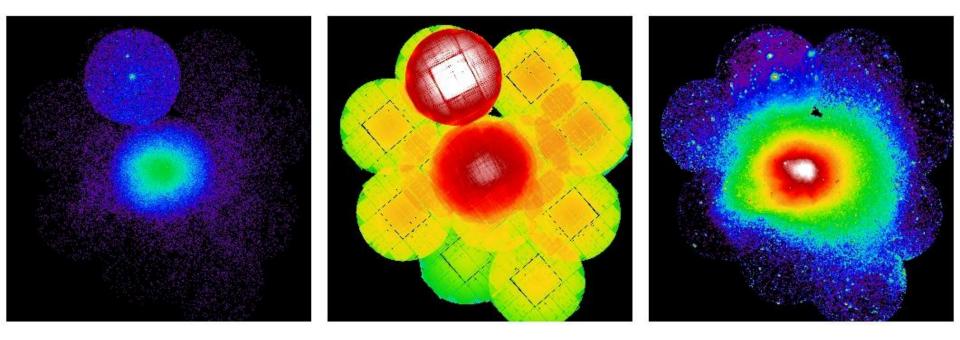
Fourier is tuned for periodic arrays without gaps

Smoothing of X-ray images

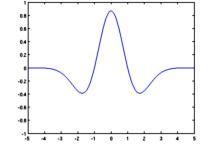
Raw image

Exposure map

S(Images)/S(E_map)



 $G_{\sigma_1} \circ I = \frac{G_{\sigma_1} \circ I}{G_{\sigma_1} \circ M}$

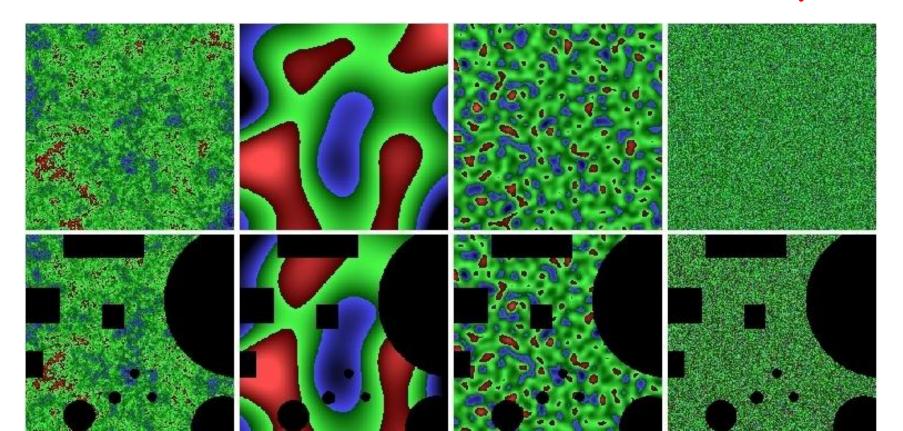


 $G_{\sigma_1} \circ I - G_{\sigma_2} \circ I =$ Mexican Hat Filter

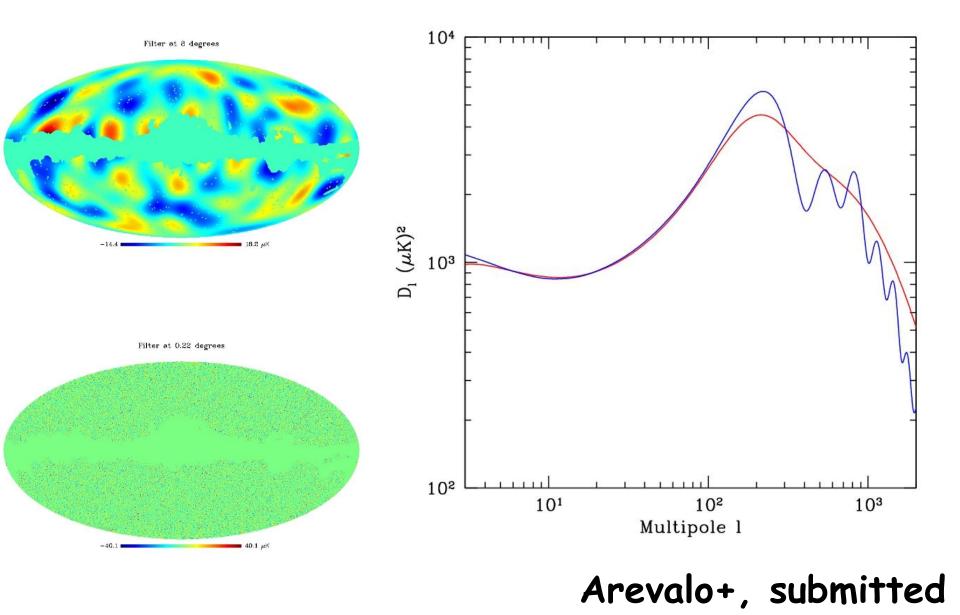
Modified Mexican Hat Filter for data with gaps

$$\widetilde{F} \circ I = \frac{G_{\sigma_1} \circ I}{G_{\sigma_1} \circ M} - \frac{G_{\sigma_2} \circ I}{G_{\sigma_2} \circ M}$$

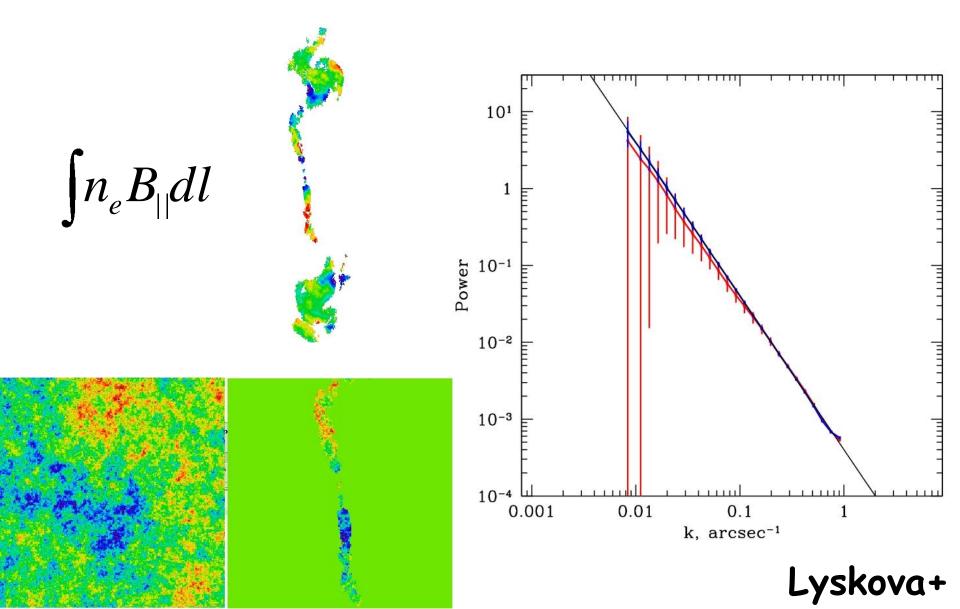
(Arevalo et al, submitted, see also Ossenkopf+08)

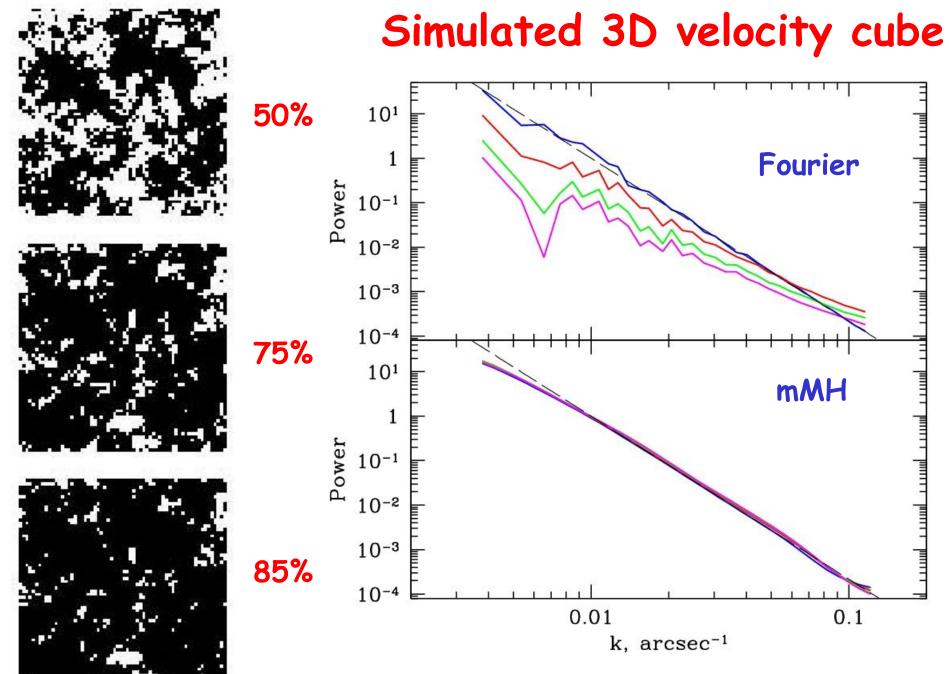


CMB: Works fine for low resolution PS



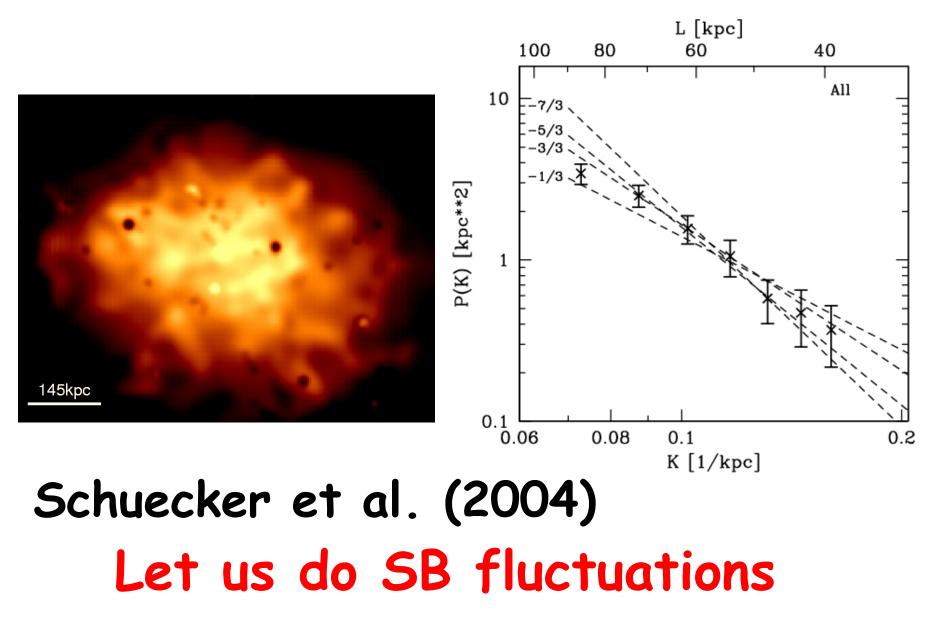
Faraday Rotation Measure

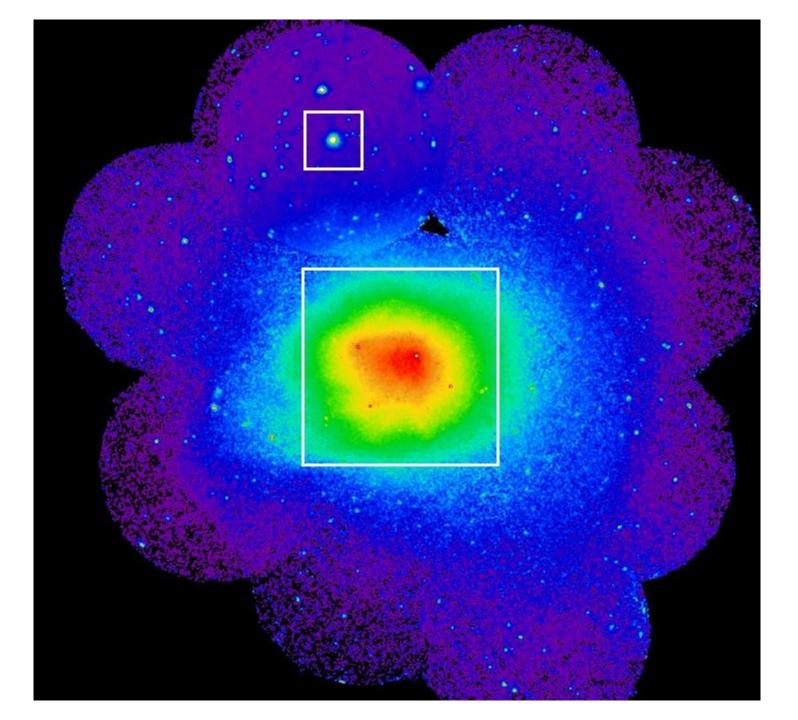




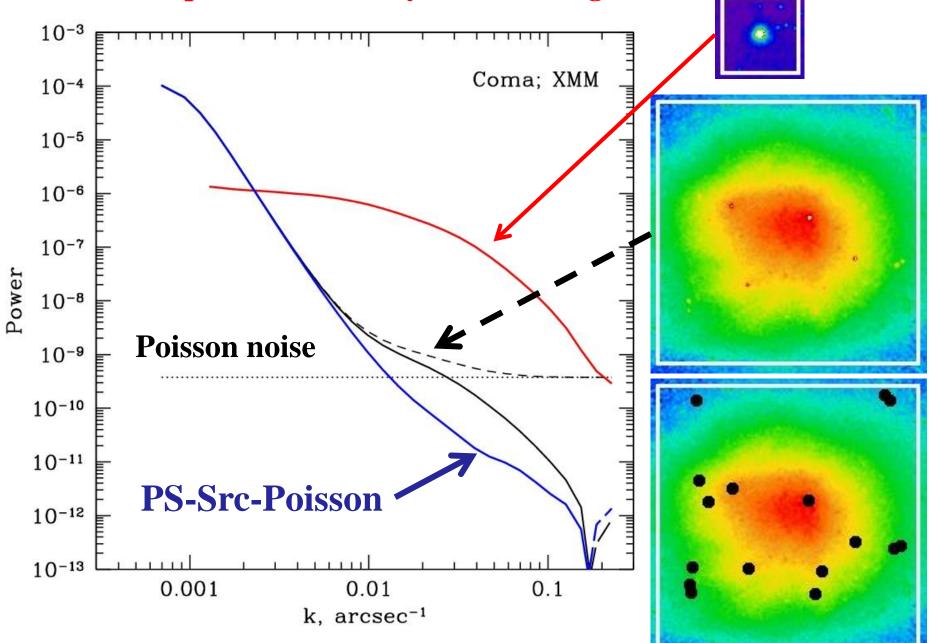
Zhuravleva+

Pressure fluctuations in Coma

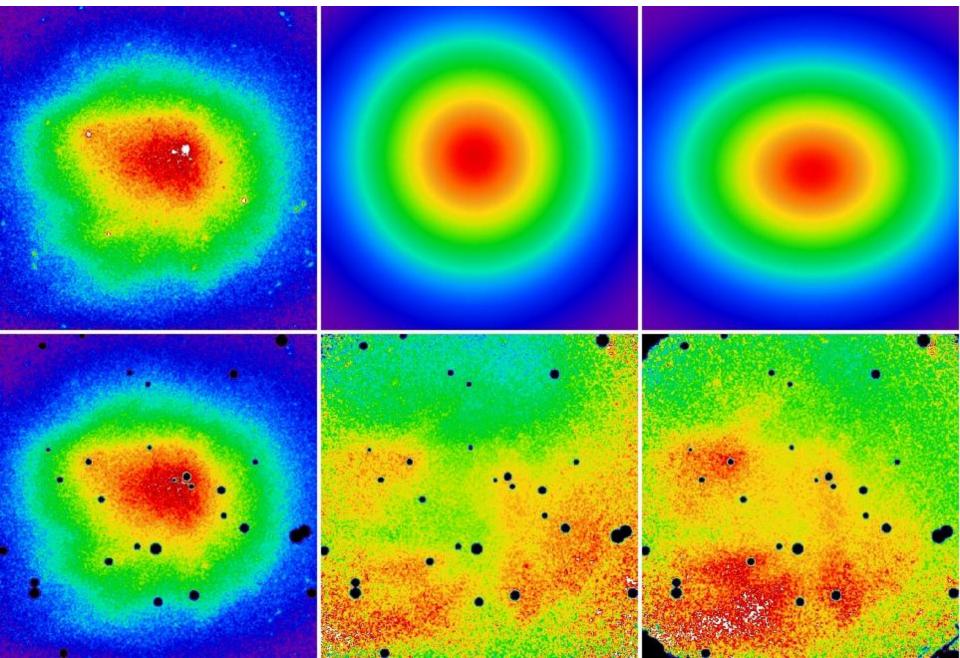




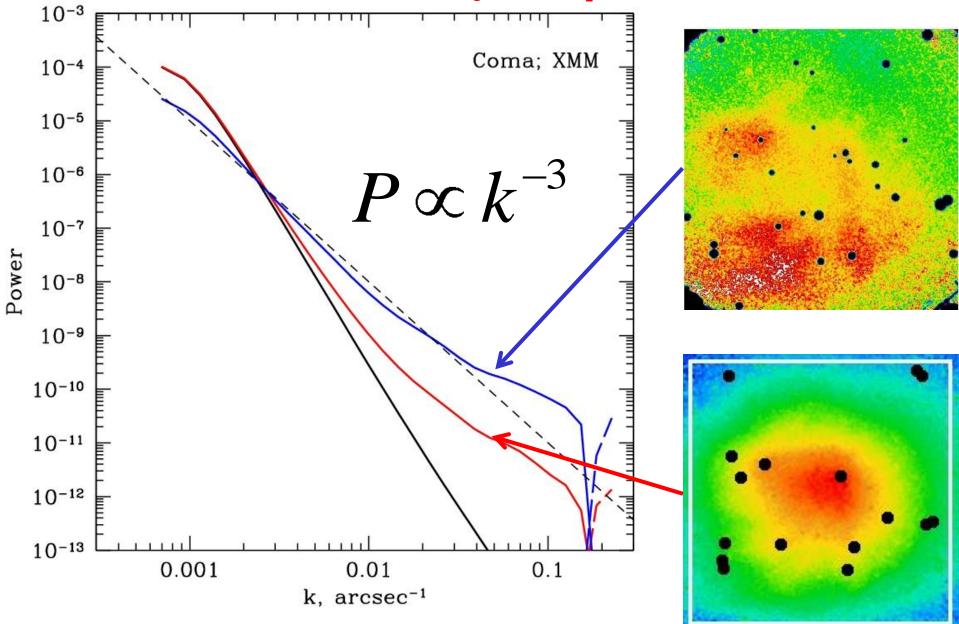
Power Spectrum of X-ray Surface Brightness



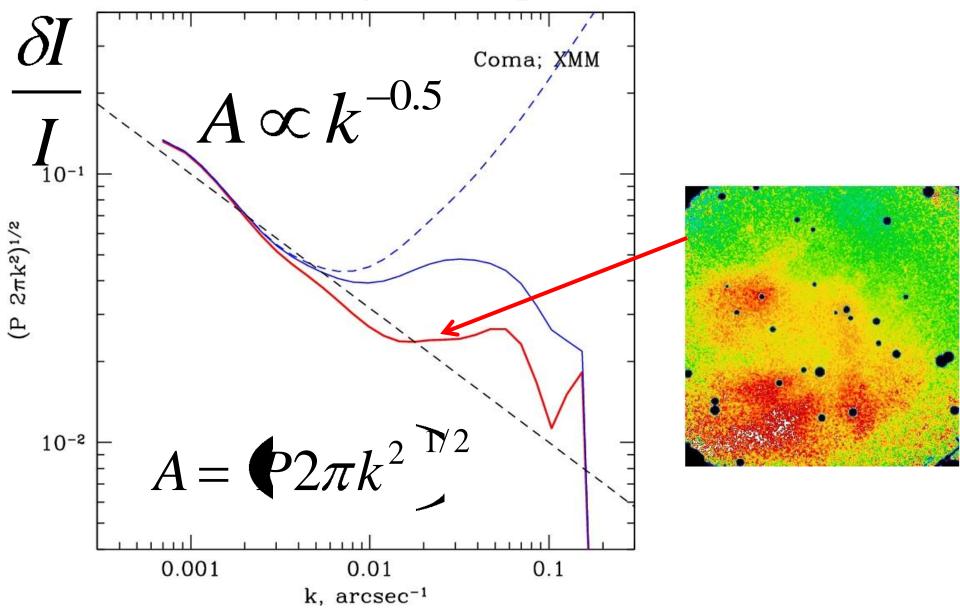
Removing global Coma profile



Coma divided by the ß model



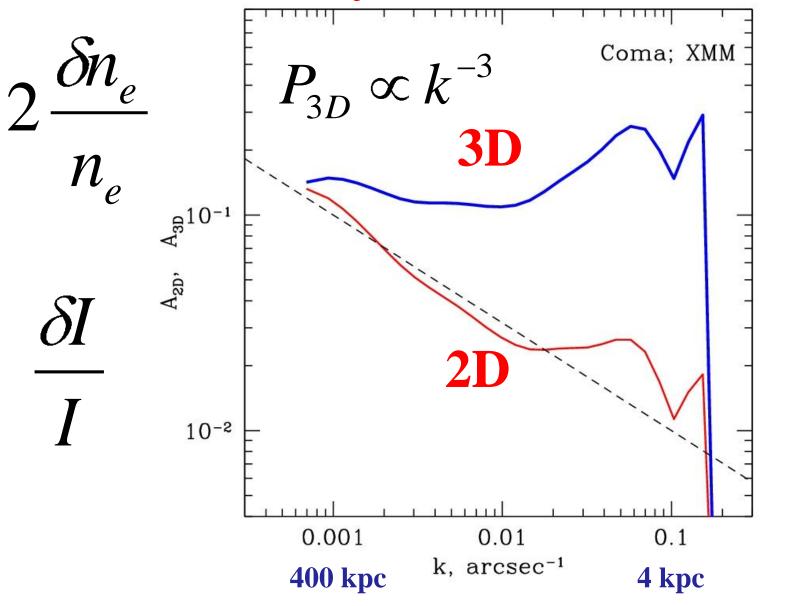
Converting to Amplitudes



Relating 3D and 2D power spectra $I(x, y) = \int \delta(x, y, z) n_e^2(x, y, z) dz$ $P_{2D}(k) = \int P_{3D}(\sqrt{k^2 + k_z^2}) W(k_z) dk_z$ $W = P_1[n_e^2(z)]$ 10-2 $k >> \frac{1}{l} \Longrightarrow P_{2D} = aP_{3D}$ Amplitude $k \ll \frac{1}{l} \Longrightarrow P_{2D} = aP_{3D} \times k$ 10^{-3} 10^{-3} 10-2 10^{-4} 10^{-1}

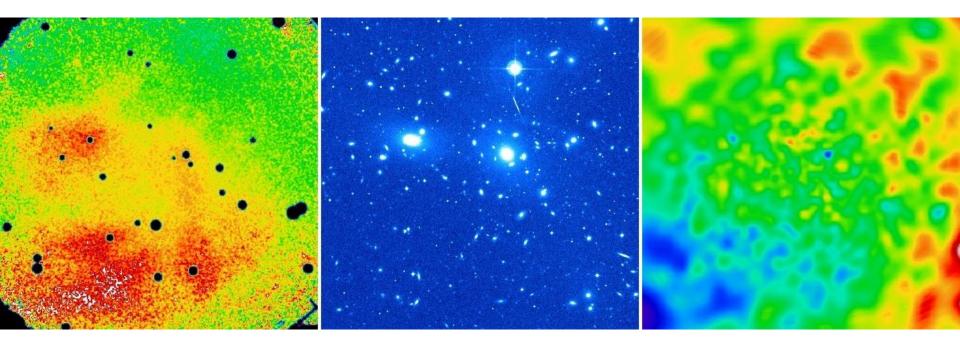
k, arcsec⁻¹

3D Density fluctuations in Coma



Density fluctuations ~5-10% on scales 4-400 kpc

X-Image/β	Optical	Gas T-map
-----------	---------	-----------



~5-10% density fluctuations include (4-400 kpc): potential perturbation (big galaxies) entropy fluctuations (infalling groups) $P_{3D} \propto k^{-3}$

Conclusions

ICM velocities ~ few 100 km/s [except for mergers]

Direct V measurements -> structure function

Modified MH method provides robust measure of V(k)

We are approaching "precision ICMology"