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Falsifiability of Smooth Dark Energy

With the smoothness assumption, dark energy only affects
gravitational growth of structure through changing the expansion
rate

Hence geometric measurements of the expansion rate predict the
growth of structure

Hubble Constant

Supernovae

Baryon Acoustic Oscillations
Growth of structure measurements can therefore falsify the whole
smooth dark energy paradigm

Cluster Abundance

Weak Lensing

Velocity Field (Redshift Space Distortion)



Falsifying ACDM
Geometric measures of distance redshift from SN, CMB, BAO

Supernova Cosmology Project
Amanullah, et al., Ap.J. (2010)
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Falsifying ACDM

A slows growth of structure in highly predictive way

0.05 _

5 \ |
\ |
CD _
a0 %
L | | | | | | | | | | | | | | i

0 1 > 3

4

Cosmological Constant



Falsifying Quintessence

Dark energy slows growth of structure in highly predictive way
Mortonson, Hu, Huterer (2009)

0.2

0 1 2 3 0 1 2 3
Z Z

Cosmological Constant Quintessence

Deviation significantly >2% rules out A with or without curvature

Excess >2% rules out quintessence with or without curvature and
early dark energy [as does >2% excess in Hj)]



Dynamical Tests of Acceleration

Dark energy slows growth of structure in highly predictive way

Mortonson, Hu, Huterer (2009)
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Elephantine Predictions

Geometric constraints on the cosmological parameters of ACDM

Convert to distributions for the predicted average number of
clusters above a given mass and redshift
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ACDM Falsiftied?

95% of ACDM parameter space predicts less than 1 cluster in
95% of samples of the survey area above the M(z) curve

No currently known high mass, high redshift cluster violates
this bound

Mortonson, Hu, Huterer (2010)
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ACDM Falsiftied?

95% of ACDM parameter space predicts less than 1 cluster in
95% of samples of the survey area above the M(z) curve

Convenient fitting formulae for future elephants:
http://background.uchicago.edu/abundance

Mortonson, Hu, Huterer (2010)
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Number Bias

For >M ¢, scatter and steep mass function gives excess over >M
Equate the number >M p t0 >Mf5

Not the same as best estimate of true mass given model!
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Number Bias

For >M ¢, scatter and steep mass function gives excess over >M
Equate the number >M p t0 >Mf5

Not the same as best estimate of true mass given model!
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Lima & Hu (2005)



Pink Elephant Parade

SPT catalogue on 2500 sq degrees

Williamson et al (2011)
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Falsity in Favor of What?



Mercury or Pluto?

General relativity says Gravity = Geometry

=

And Geometry = Matter-Energy

Could the missing energy required by acceleration be an incomplete
description of how matter determines geometry?



Modified Gravity = Dark Energy?

Solar system tests of gravity are informed by our knowledge of the
local stress energy content

With no other constraint on the stress energy of dark energy other
than conservation, modified gravity 1s formally equivalent to dark
energy

F(gw)+ G = 8nGT,, — F(guw) = 87GT,)”
G = SWG[T% + TE/E]
and the Bianchi identity guarantees V*7 )" = 0

Distinguishing between dark energy and modified gravity requires
closure relations that relate components of stress energy tensor

For matter components, closure relations take the form of
equations of state relating density, pressure and anisotropic stress
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Modified Gravity # “Smooth DE”

Scalar field dark energy has 0p = 0p (in constant field gauge) —
relativistic sound speed, no anisotropic stress

Jeans stability implies that its energy density 1s spatially smooth
compared with the matter below the sound horizon

ds* = —(1+20)dt?* + a*(1 + 2®)dz?
V?(® — ¥) o< matter density fluctuation

Anisotropic stress changes the amount of space curvature per unit
dynamical mass

V?(® + U) o anisotropic stress

but its absence in a smooth dark energy model makes
g=(®+V)/(P — V)= 0 for non-relativistic matter



Dynamical vs Lensing Mass

Newtonian potential: ¥=0g,/2g = which non-relativistic particles feel

Most of the incisive tests of gravity reduce to testing the
space curvature per unit dynamical mass



Growth of Structure

Alteration in how density sources Newtonian potential ¥

Changes the growth of structure and hence the masses of dark
matter halos or the abundance at fixed mass

Requires solution of the dynamical structure formation problem
in the context of a model



Modified Action f(R) Model

R: Ricct scalar or “curvature”
f(R): modified action (Starobinsky 1980; Carroll et al 2004)

S = /d‘lx\/?g [Rgfg%)

fr = df /dR: additional propagating scalar degree of freedom

(metric variation)

frr = d*f/dR?*: Compton wavelength of fz squared, inverse
mass squared

B: Compton wavelength of fz squared in units of the Hubble
length

Jrr o H
1+ fr H

"= d/dIn a: scale factor as time coordinate

B =




DGP Braneworld Acceleration

Braneworld acceleration (Dvali, Gabadadze & Porrati 2000)
®) R 4) R
S= |dzx\/—qg| —=+9 — + L,
[ 000 (5 )
with crossover scale 7, = xk*/2u?
Influence of bulk through Weyl tensor anisotropy - solve master
equation in bulk (Deffayet 2001)

Matter still minimally coupled and conserved

Exhibits the 3 regimes of modified gravity

Weyl tensor anisotropy dominated conserved curvature regime
T > T, (Sawicki, Song, Hu 2006; Cardoso et al 2007)

Brane bending scalar tensor regime 7, < 7 < 7. (Lue, Soccimarro,
Starkman 2004; Koyama & Maartens 2006)

Strong coupling General Relativistic regime 7 < r, = (rgrg)l/ :

where 7, = 2G' M (Dvali 2006)



Three Regimes
Fully worked f(R) and DGP examples show 3 regimes

Superhorizon regime: ( =const., g(a)
Linear regime - closure condition - analogue of “smooth’ dark
energy density:
VH(® - 0)/2 = —4nGa*Ap
g9(a,x) < g(a,k)

G can be promoted to GG(a) but conformal invariance relates
fluctuations to field fluctuation that 1s small

Non-linear regime:
V3 (® —W)/2 = —4rGa*Ap
1
VU = 4rGa*Ap — §V2gb
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Nonlinear Interaction
Non-linearity in the field equation
V¢ = gin(a)a® (8nGAp — N¢])
recovers linear theory if N |¢| — 0
For f(R), ¢ = fr and

N{¢] = dR(9)

a non-linear function of the field
Linked to gravitational potential

For DGP, ¢ is the brane-bending mode and

2
_ e

Nlg) = 2 [(V20)* = (ViV,0)"
a non-linear function of second derivatives of the field

Linked to density fluctuation
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Environment Dependent Force

Chameleon suppresses extra force (scalar field) in high density,
deep potential regions

density: max[In(1+9)] potential: min[‘V'] field: min[//fgro]
- r : ﬁ - L]

Fro=1107]

Oyaizu, Lima, Hu (2008)



Environment Dependent Force

For large background field, gradients in the scalar prevent the
chameleon from appearing

density: max[In(1+9)] potential: min[‘V'] field: min[//fgro]
e s ; iﬂ — -

Fro=1107]

Fro=11074

Oyaizu, Lima, Hu (2008)



Cluster Abundance

Enhanced abundance of rare dark matter halos (clusters) with
extra force
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Cluster f(R) Constraints

Clusters provide best current cosmological constraints on f{R) models

Spherical collapse rescaling to place constraints on full range of

inverse power law models of index n
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Cluster f(R) Constraints

Approaching competitiveness with solar system + Galaxy constraints
of few 10-6 at low n

Vastly different scale
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Chameleon Mass Function

Chameleon effect suppresses the enhancement at high masses

Pile up of abundance at intermediate group scale

| |||||||‘ | |||||||‘ | |||||||‘ | ]
f.,|=1078 ;

0.3 O Full simulation

A No chameleon
B Spherical collapse

| |||||||‘ | |||||||‘
1012 1013 1014 1015

Moy (B! M)

Lima, Schmidt, Oyaizu, Hu (2008)



Chameleon Mass Function

Simple single parameter extention covers variety of models

Basis of a halo model based post Friedmann parameterization of

chameleon
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Halo Bias

Halos at a fixed mass less rare and less highly biased
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Halo Mass Correlation

Enhanced forces vs lower bias
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Nonlinear Interaction
Non-linearity in the field equation
V¢ = gin(a)a® (8nGAp — N¢])
recovers linear theory if N |¢| — 0
For f(R), ¢ = fr and

N{¢] = dR(9)

a non-linear function of the field
Linked to gravitational potential

For DGP, ¢ is the brane-bending mode and

2
_ e

Nlg) = 2 [(V20)* = (ViV,0)"
a non-linear function of second derivatives of the field

Linked to density fluctuation


waynehu
Rectangle


DGP N-Body

DGP nonlinear derivative interaction solved by relaxation
revealing the Vainshtein mechanism

Newtonian Potential Brane Bending Mode

Schmidt (2009); Chan & Scoccimarro (2009) (cf. Khoury & Wyman 2009)



Summary

Given current geometric data, ACDM and quintessence (w > —1)
are highly predictive and falsifiable

Linear growth at all z cannot exceed fiducial > few percent

With Gaussian fluctuations, exponential sensitivity of cluster
abundance exploits this test: e.g. high M, high 2

No currently known single cluster falsifies ACDM

Places currently the strongest cosmological constraints on
modified gravity models with enhanced forces but ACDM
expansion history, e.g. f(R)

Future tests which complement the solar system constraints will
need to move down the mass function

Parameterized approaches should take into account that the force
modifications depend on local environment, potential or density





