Cluster Cosmology, Scaling Relations and Cool Cores

Adam Mantz (NASA/GSFC)

with Steve Allen, David Rapetti, Harald Ebeling and Alex Drlica-Wagner

Monsters Inc.

March 16, 2011

Cosmology needs scaling relations

Cosmology needs scaling relations

▶ We'd like to base our scaling relations on data

Cosmology needs scaling relations

- ▶ We'd like to base our scaling relations on data
 - ... but that means modeling a population based on an incomplete, unfair sample.

Scaling relations need cosmology

- We'd like to base our scaling relations on data
 - ... but that means modeling a population based on an incomplete, unfair sample.
- ▶ We need cosmological input to interpret scaling data the problems don't factor.

Cartoon view

Whole universe:

Cartoon view: selection bias

Whole universe:

Observed universe:

Cartoon view: cosmology-scaling degeneracy

Whole universe:

Observed universe:

Cartoon view: intrinsic covariance

Just detected clusters:

Same detected clusters:

Cartoon view: measurement covariance

Whole universe:

Observed universe:

Cosmology + scaling relations

Solving this requires a joint (non-factorable) model:

 $\setminus \mathsf{begin}\{\mathsf{equation}\}$

. . .

Fast forward: data

238 RASS detections 94 pointed ROSAT/Chandra

Fast forward: cosmology results

238 clusters, $z<0.5~\mathrm{(XLF)}$ Including systematics

$$\Omega_{\rm m} = 0.23 \pm 0.04$$
 $\sigma_8 = 0.82 \pm 0.05$
 $w = -1.01 \pm 0.20$

Fast forward: cosmology results

238 clusters, z < 0.5 (XLF) Including systematics

$$\Omega_{\rm m} = 0.23 \pm 0.04$$
 $\sigma_8 = 0.82 \pm 0.05$
 $w = -1.01 \pm 0.20$

Fast forward: cosmology results

238 clusters, z < 0.5 (XLF) Including systematics

$$\Omega_{\rm m} = 0.23 \pm 0.04$$
 $\sigma_8 = 0.82 \pm 0.05$
 $w = -1.01 \pm 0.20$

 $XLF+WMAP5+SNIa+f_{gas}+BAO$

$$\Omega_{\rm m} = 0.272 \pm 0.016$$
 $\sigma_8 = 0.79 \pm 0.03$
 $w = -0.96 \pm 0.06$

Fast forward: simple scaling relation model fits the data

Nominal ${\cal L}(M)$ and ${\cal T}(M)$ as power laws with self-similar evolution:

$$\frac{L_{500}}{E(z)} \propto [E(z)M_{500}]^{\beta_L} \qquad kT_{500} \propto [E(z)M_{500}]^{\beta_T} \qquad E(z) = H(z)/H_0$$

Intrinsic scatter in L,T|M as bivariate log-normal:

Fast forward: simple scaling relation model fits the data

Constrain cosmology as much as possible (flat Λ CDM, use CMB et al.)

Test how well best fitting model predictions match the data

- ► Fold in cosmology, selection function, ...
- ► Check cluster abundance, survey distribution, measured masses, luminosities, etc.

Result: The Λ CDM+self-similar evolution model is acceptable (to these data).

Fast forward: simple scaling relation model fits the data

For good measure, there is no preference for

- ▶ departures from self-similar evolution
- evolution in the intrinsic scatter
- asymmetry in the intrinsic scatter

Center-excised scaling relation

The L-M relation has

- large scatter ($\sim 40\%$)
- slope > self-similar (4/3)

Exclude the central $0.15r_{500}$ from L . . . (e.g. Zhang '07, Maughan '07)

The $L_{\rm ce}$ –M relation has

- small scatter (< 10%)
- slope 1.30 ± 0.05
- self-similar evolution with redshift

Cluster centers

Connection to astrophysics:

- ► Cool cluster cores are also bright cluster cores.
 - ▶ Up to 50% of the flux within $0.05r_{500}\sim50$ – $100\,\mathrm{kpc}$

Cluster centers

Connection to astrophysics:

- Cool cluster cores are also bright cluster cores.
 - ▶ Up to 50% of the flux within $0.05r_{500}\sim50$ – $100\,\mathrm{kpc}$
- ► Their prevalence/development in the mass-limited population should be reflected in the shape/evolution of the scaling intrinsic scatter.

Cluster centers

Connection to astrophysics:

- Cool cluster cores are also bright cluster cores.
 - ▶ Up to 50% of the flux within $0.05r_{500}\sim50$ – $100\,\mathrm{kpc}$
- ► Their prevalence/development in the mass-limited population should be reflected in the shape/evolution of the scaling intrinsic scatter.
- In practice, the data aren't up to constraining this yet. We can look at selection-biased samples, but have to always remember the bias!

BCS (23 at 0.2 < z < 0.3) MACS (32 at 0.3 < z < 0.5)

BCS (23 at 0.2 < z < 0.3) MACS (32 at 0.3 < z < 0.5)

Why these sub-samples?

- ▶ No cut on ROSAT extent.
- Exhaustive optical confirmation.
- (Near) complete Chandra follow-up.
- Similar mass range.

BCS (23 at 0.2 < z < 0.3) MACS (32 at 0.3 < z < 0.5)

Why these sub-samples?

- No cut on ROSAT extent.
- Exhaustive optical confirmation.
- (Near) complete Chandra follow-up.
- Similar mass range.

For later:

400d (13 at
$$0.35 < z < 0.5$$
, $L > 2.5 \times 10^{44}\,\mathrm{erg/s}$)
Somewhat lower masses (but not too much)

Cluster centers: bright-cool correspondence

Adopt the fiducial radius $0.05r_{500}$ (50–100 kpc), look at the luminosity ratio $L(<0.05r_{500})/L(< r_{500})$ (similar to Santos et al. $c_{\rm SB})$

Cluster centers: bright-cool correspondence

Adopt the fiducial radius $0.05r_{500}$ (50–100 kpc), look at the luminosity ratio $L(<0.05r_{500})/L(< r_{500})$ (similar to Santos et al. $c_{\rm SB})$

The ratio correlates with

- ▶ traditional "cool core" indicators
- dynamical state (Allen08 $f_{\rm gas}$ clusters in red)

Cluster centers: bright-cool correspondence

Adopt the fiducial radius $0.05r_{500}$ (50–100 kpc), look at the luminosity ratio $L(<0.05r_{500})/L(< r_{500})$ (similar to Santos et al. $c_{\rm SB}$)

The ratio correlates with

- traditional "cool core" indicators
- dynamical state (Allen08 $f_{\rm gas}$ clusters in red)

Call ratio > 0.17 "bright core" clusters $t_{\rm c} \lesssim 4\,{\rm Gyr}$ $r_{\rm c} \lesssim 80\,{\rm kpc}$

Cluster centers: brightness distribution

Peak + tail? Hard to say given the biases...

Cluster centers: prevalence of bright cores

BCS: 9/23 at 0.20 < z < 0.30

MACS: 17/32 at 0.30 < z < 0.50

Cluster centers: prevalence of bright cores

BCS: 9/23 at 0.20 < z < 0.30

MACS: 17/32 at 0.30 < z < 0.50

Cluster centers: prevalence of bright cores

BCS: 9/23 at 0.20 < z < 0.30 MACS: 17/32 at 0.30 < z < 0.50 400d: 2/13 at 0.35 < z < 0.50

Conclusions

In the end, we want to know about the BC fraction in the mass limited population to understand the scaling relation scatter, and that demands a complete accounting for selection effects. (SZ/optical selection may help, but still need to be checked for bias.)

Conclusions

In the end, we want to know about the BC fraction in the mass limited population to understand the scaling relation scatter, and that demands a complete accounting for selection effects. (SZ/optical selection may help, but still need to be checked for bias.)

But...

- ${\color{red}\blacktriangleright} \ \, \text{Most X-ray samples at} \,\, z < 0.5 \,\, \text{look similar}.$
- Lots of bright cores out to z=0.5, including some impressive cooling systems in MACS (see Anja's talk for slightly more detail).