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Schematic diagram of the levee formation process

Qarse-enriched surface [ayer

Breaking size-segregation wave

Deposition point
e larger particles are shouldered to the sides to create levees

e this is an example of a segregation-mobility feedback effect
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Segregation induced finger formation ...

Pouliquen, Delours & Savage (1997), Nature. 386, 816-817.
Woodhouse et al. (2012), J. Fluid Mech. 709, 543-580.










e Kinetic sieving and squeeze expulsion

— small particles fall down into gaps
— and then force large particles up
— to create inversely graded layers

P -
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Golick & Daniels (2009) PRE 80, 042301«
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Mixture framework

e the volume fraction ¢ of constituent v, per unit

volume of mixture, lies in the range

0<¢”"<1.

> ¢ =1
Vv

and their sum

e In standard mixture theory the partial and intrinsic
density, stress, pressure and velocity fields satisfy

pl‘/ — (’blfp}/*’ O_U — qbb"o.b‘*’ pL’ — qbﬂpu*’ ub’ —])

e T he bulk density, pressure and velocity are

p=>_p" p=> 1" pu=> pu
Y Vv Y

L/*

11



Mass and momentum balances for each constituent

e Each constituent satisfies individual mass
op”
ot

and momentum balances

+ V- (puuy) — Oa

0
S (PU)+ V- (Pueu) =V 0"+ p'g+ 8",
where @ is the dyadic product and g is the gravi-
tational acceleration vector.
e The interaction drag 3" consists of three terms

B" =pVf’ —pc(u” —u) — pdVe”,

¢ 1S the coefficient of inter-particle drag,
d is the coefficient of diffusive remixing

12



Acceleration negligible in the z direction.
Bulk momentum balance = pressure lithostatic

p = pg(s — z) COSC.
If pressure is shared in proportion
p’=¢"p, = NO SEGREGATION

Use non-standard partial/intrinsic pressure relation

p’ = f'p,

13



Assuming normal accelerations are negligible
1 1% v 17 v 8¢5U
P"w” = ¢"w + (f¥ — ¢")(g/c) cos{ — (d/c) .

fY—¢¥ >0 particles rise
fY — ¢ =0 no relative motion
f¥ —¢¥ <0 particles percolate downwards

Particles in a pure phase carry all of the load

ff=1, when ¢"=1,

When no particles, they cannot carry any load

ff =0, when ¢”=0.

Large particles carry more load than small

f'=¢' 4+ Bis¢'¢® (bi-disperse)



The multi-component segregation remixing equation

e fY must reduce to bidisperse case in any submixture
e suggests additive decomposition

ff=0¢"+ Z B,.¢"¢", (polydisperse case)
v

where B,, = —B,, and B,y = 0.

e Scaling on thickness H, length L and velocity U
implies segregation remixing equation (phase v) is

8(,35” 0 oo
v SU = — D’r’ y
-+ (¢5 u)_l_@z E nﬁf’ﬁb 32:( 32:)
where
Sy = Lgcos( By,, D, = Ld |
HUc H2Uc

15
Gray & Ancey (2011) J. Fluid Mech. 678, 535-588



Consistent with experiments of Savage & Lun (1988) and Vallance & Savage (2000



Bi-disperse mixtures

e Yields two equations for large and small particles

¢’ 0 ¢!
WAV G+ s = (D2
7 0z
OP* 0 Od*
¢+v(¢w—ww¢)::5m;).
< Z
e The summation condition > ¢” = 1 implies

¢ +¢" =1,

e L arge particle concentration can be eliminated

V(@) (St (L~ 6)) = o (fo) .

0z

Bridgwater, Foo & Stephens (1985), Powder Technol. 41, 147-158

Savage & Lun (1988) J. Fluid Mech. 189, 311-335

Dolgunin & Ukolov (1995) Powder Technol. 83, 95-103

Gray & Thornton (2005) Proc. Roy. Soc. A. 461, 1447-1473.

Thornton, Gray & Hogg (2006) J. Fluid Mech. 550, 1-25. 17
Gray & Chugunov (2006) J. Fluid Mech. 569, 365-398.



Steady-state concentration shocks in absence of diffusive-remixing

u(z)
. |
e shock height s(z) satisfies the jump condition
d: d. J
|[¢u—g —+ S].-,gb(l — qﬁ)ﬂ =0 = u_s —_ Sl.cs((b-l_ = qb_ . 1) — L/”
dx dx dx

e Using depth-integrated velocity coordinates

1{):/ u(2") d’
0

e this can be integrated to show there are three intersecting
shocks for a homogeneous inflow with ¢ = ¢qg

Y1 = Sispox, Yo =1— S,(1 — ¢o)z, Y3 = ¢g

18



A ternary mixture of large medium and small particles

T heory vields three equations, but one can be eliminated since

¢?n —_ 1 _ Q()S _ QSE
To give two equations for the large and small particles

O l
XV (¢) + - (S (1~ ¢~ ¢) + 5udle”) =

8@55

+ V. (¢°u) + ( stfif’sfﬁi — Sms®°(1 — ()51 - (rt’q))

A steady-state solution for a homogeneous inflow at x = 0

¢"(0,2) = ¢
and with prescribed velocity field
u=u(z), w=0

subject to no-flux conditions at z= 20,1

can be computed using Matlab function pdepe (Galerkin Method)

19



For non-monotonic segregation rates there can be linear instabilities!

Sis = 1/8, Siy, = 1, Sms = 3/8, Dr = 1073

_|_

. L 1 L
0 1 2 =3

Large

Medium

Small




Reverse distribution grading

Mixed

! 0 0?2 0:4[0?6 0?8 1 0 0?2 0?4 0:6 0:8 1 0 0?2 0?4 0?6 0?8 1
¢’ "
e comparable to experiments ...

Gray & Ancey (2011) J. Fluid Mech. 678, 535-558
Wiederseiner et al. (2011) Phys. Fluids 23, 013301

e and DEM simulations (Jim McElwaine ...)

Large

Medium

10 July 2011

Journal of
Fluid Mechanics

VOLUME 678
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Transport and accumulation of large particles

large particles segregate to the surface
where the velocity is greatest and
are transported to the flow front where they are
over run and recirculated by particle size segregation

22



A depth averaged theory for particle size segregation

e Integrating the segregation-remixing equation w.r.t z
e subject to the no flux and kinematic boundary conditions gives

o, — , 0, —
5 (@) + 5 (hu) =0

Ao
‘ L C e NS

e Wwhere the integrals evaluated assuming

S
— s d _
ho = — =
QS / QS 77 i.e. linear velocity with basal slip
b and sharp segregation

__ S 3 . - . _ _2
hqbu—/béudz—nu ¢! cu)un(l h)

e [ his vields the large particle transport equation

- 7 Small

e for the evolution of the inversely graded shock interface n.
Gray & Kokelaar (2010) J. Fluid Mech. 652, 105—-137 23



e Using n = h¢ this can also be rewritten as
g, - o, — 0, - _
= (h$) + ——(héi) — %((1 — a)hiig (1 —¢)) =0.

e Remarkably similar to the segregation equation ...

é‘qﬁ
8t

(0w + 5 (6w) — S (61 = ) = == (Dr22)

e Large grains transported forwards to form bouldery flow front

e more RESISTIVE larger particles = feedback on bulk flow

24
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Cui & Gray (2013) J. Fluid Mech. 720, 314-337




e For avalanche thickness h and mean velocity u = (u, v)
in the downslope x and cross-slope y directions.

oh O 5,

- —(hu —(hv — ,
O O . o /1 _
—Z(h3d) + =(hd?) + =(hat) + — | =gh? ):h,.
8t( u) + ag;(h“ ) + 8y( uv) + . (29h COS ¢ 9S(z);
o O O o /1
—(h?) + —(huv) + —(hv? — —h2cos') —  hgS,
5 (19) + 5= (WD) + - (h7®) + 2= ( Sah? cos¢ 95

e source terms composed of gravity, basal friction p and
gradients of the basal topography b

: - ob
Sy = smg—p(u/|u|)cosg—%cosc,

= b
S(y) — = ,‘.L(’U/|’IL|) COS( — 6_’9 COSs ¢,

e system is hyperbolic, Froude number Fr = |ﬁ|/\/gh cos(

Grigorian et al. 1967; Savage & Hutter (1989), Gray et al. P. Roy. Soc. 1999, JFM 2003 26



Granular jets and hydraulic jumps on an inclined plane

e ODblique impingement of an
Journal of inviscid jet
Fluid Mechanics (Hasson & Peck 1964)
VOLUME 675
e Friction law for rough beds
I N . tan (¢ —tan ¢y
2N p=tang 4 nez—taneL

i 1 + Bh/(LFr)

( 9 : %.;i A

)

| e including treatment of static
) material for 0 < Fr < £
(Pouliguen & Forterre 2002)

Johnson & Gray (2011) J. Fluid Mech. 675, 87-116 -
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Johnson & Gray (2011) J. Fluid Mech. 675, 87-116 29






A simple two-dimensional fully coupled segregation model

e For avalanche thickness A, small particle thickness n and
depth-averaged velocity u the 2D coupled model is

oh . .
a—l—dlv(hu) = 0,
@+div(nﬁ—(1—a)n(1—3)ﬁ) - 0
ot h ’
o, _ N 1.5
a(h,fu,) + div(hu ® w) + grad (Eh COS g“) = hS,

e sSource terms composed of gravity and basal friction

_ ([ sin¢ — u(u/|ul) cos,
S = ( — u(v/|u|) cos, )

e coupling through ¢ = n/h dependent friction coefficient

pw=(1-9¢)u"+us, u=>p

31



Woodhouse et al. (2012), J. Fluid Mech. 709, 543-580.
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e [ he model is hyperbolic

e captures the instability mechanism
e and forms large rich lateral levees, BUT ....




Numerical solutions are grid dependent ...!

e this indicates that there is some important physics missing

55



e Linear stability about a steady uniform base state

’E=ﬁo, 'l_/’:og h:hO: n—"1o

e _ 09 _o ® O

—
IS

\ 4

e Predicts unbounded short wavelength instability when

1

Fr=Fr.=
(1 —a)[2no — 1|

e T his is when the characteristics coincide

34



0 50 ¢
e Depth averaging the u(I) rheology suggests
e adding a diffusive term to the righthand side of the form

o0 30U
2 (“h a_)

e which gives cut-off (Fr = Fr.) and boundedness (Fr #= Fr.)
35



A two-dimensional fully coupled model including rheology

e When the depth-averaged u(I)-rheology is generalized to
2D it suggests a system of conservation laws of the form

oh

v + div(hw) = O,

@—I—diV(?}ﬁ—(l—&)n(l—ﬁ)ﬁ) = 0

ot h ’
%(hﬁ) + div(hw @ @) + grad (%hﬁ cos c;) = hS+div (uh%D),

e where the two-dimensional strain-rate tensor is
1 T
D = 5 (L + L )

e and L = grad(u) is the depth-averaged velocity gradient
e Numerics converges ... (Baker, Johnson & Gray in prep)

36
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