Turbidity Currents and River Outflows

Eckart Meiburg UC Santa Barbara

- Motivation
- Governing equations / computational approach
- Results
 - turbidity currents over complex seafloor shapes
 - turbidity current/sediment bed interactions
 - turbidity current/pipeline interactions
 - river outflows: double-diffusive sedimentation
- Summary and outlook

Coastal margin processes

Turbidity current

- Underwater sediment flow down the continental slope
- Can transport many km³ of sediment
- Can flow O(1,000)km or more
- Often triggered by storms or earthquakes
- Repeated turbidity currents in the same region can lead to the formation of hydrocarbon reservoirs
- Properties of turbidite:
 - particle layer thickness
 - particle size distribution
 - pore size distribution

Turbidity current.

http://www.clas.ufl.edu/

Piper et al. (1984)

Grand Banks turbidity current historical event, Nov 18 1929 (M7.2)

- $length\ scale = 10^6\ m$
- grain size = $\leq 10^{-1}$ m
- volume of deposit = 1.8×10^{11} m³
- $Re = O(10^9)$
- $Fr = ??? Probably \le 2$

Field data – levee complex, Maastrichtian, Baja California, Mexico

Var Fan, off Nice coast, caused in 1979 by airport construction accident

Off the coast of Santa Barbara/Goleta

Framework: Dilute flows

Assumptions:

- volume fraction of particles $< O(10^{-2} 10^{-3})$
- particle radius « particle separation
- small particles with negligible inertia

Dynamics:

- effects of particles on fluid continuity equation negligible
- coupling of fluid and particle motion primarily through momentum exchange, not through volumetric effects
- particle loading modifies effective fluid density
- particles follow fluid motion, with superimposed settling velocity

Moderately dilute flows: Two-way coupling (cont'd)

$$\nabla \cdot \vec{u}_f = 0$$

$$\frac{\partial \vec{u}_f}{\partial t} + \left(\vec{u}_f \cdot \nabla\right) \vec{u}_f = -\nabla p + \frac{1}{Re} \nabla^2 \vec{u}_f + c \, \vec{e}_g$$
 effective density
$$\frac{\partial c}{\partial t} + \left[\left(\vec{u}_f + \vec{U}_s\right) \nabla\right] c = \frac{1}{Sc \, Re} \nabla^2 c$$
 settling velocity

$$Re = \frac{u_b L}{\nu}$$
 , $Sc = \frac{\nu}{D}$, $U_s = \frac{u_s}{u_b}$

Model problem

Lock exchange configuration

Dense front propagates along bottom wall

Light front propagates along top wall

Complex seafloor topography (with M. Nasr-Azadani)

- second order central differencing for viscous terms
- third order ENO scheme for convective terms
- third order TVD Runge-Kutta time stepping
- projection method to enforce incompressibility
- domain decomposition, MPI
- employ PETSc (developed by Argonne Nat'l Labs) package
- non-uniform grids
- immersed boundary method for complex bottom topography

Lock exchange configuration (with M. Nasr-Azadani)

Flow of turbidity current around localized seamount

- turbidity current develops lobe-and-cleft instability of the front
- current dynamics and depositional behavior are strongly affected by bottom topography

$$Re_{sim} = 2{,}000: u_b \approx 2cm/s, L \approx 10cm, \nu \approx 10^{-6}m^2/s$$

→ simulation corresponds to a laboratory scale current, not field scale!

Inverse problem: Reconstruct current from deposit data (w. L. Lesshafft, B. Kneller)

Lock Exchange Problem Forward simulation

Parameters: Re = Pe = 5000, $u_s = 0.01$ a = b = 0.5

- isolated deposit data allow reconstruction of initial conditions of turbidity current
- feed those initial conditions into high-resolution forward simulation
- obtain complete information on spatially distributed deposit configuration
- based on detailed deposit information, construct reservoir model

Channelization by turbidity currents: A Navier-Stokes based linear instability mechanism (with B. Hall, B. Kneller)

Field data show regularly spaced channels along the ocean floor

Hydrodynamic instability?

Channelization by turbidity currents (cont'd)

• Northern California margin:

Shaded relief bathymetry; Field et al. (1999)

- Spacing: 100's of meters to a few km
- *Depth: O(1-100) m*
- *Mechanism for formation? Hydrodynamic instability?*

Previous stability-oriented work

- Smith & Bretherton (1972), Izumi & Parker (1995, 2000), Imran
 & Parker (2000), Izumi (2004), Izumi & Fujii (2006):
 - depth averaged equations; don't capture internal velocity and concentration structure of the current, and its coupling with the sediment bed
- Colombini (1993), Colombini & Parker (1995):
 - externally impose secondary flow structure on the current

Present approach

Focus on unidirectional flow some distance behind the head:

- fully developed velocity and concentration profiles
- consider two-dimensional, three-component perturbation flow field, allow for full two-way coupling between flow and sediment bed

Moderately dilute flows: Two-way coupling

$$\begin{array}{rcl} \nabla \cdot \vec{u}_f &=& 0 \\ & \frac{\partial \vec{u}_f}{\partial t} + \left(\vec{u}_f \cdot \nabla\right) \vec{u}_f &=& -\nabla p + \frac{1}{Re} \nabla^2 \vec{u}_f + G \, c \, \vec{e}_g \\ & & effective \\ & \frac{\partial c}{\partial t} + \left[\left(\vec{u}_f + \frac{1}{Pe} \vec{e}_g\right) \nabla\right] c &=& \frac{1}{Pe} \nabla^2 c \\ & & settling \\ & velocity \end{array}$$

At surface $\eta(y,t)$ of the sediment bed: no-slip boundary conditions. $\eta(y,t)$ evolves due to:

a) Settling of particles
$$\frac{\partial \eta}{\partial t} = w_s c|_{z=\eta}$$

a) Erosion of particles
$$D\frac{\partial c}{\partial n}\Big|_{z=\eta} = -\beta \tau_n$$
, $\frac{\partial \eta}{\partial t} = -\beta \frac{\tau_n|_{z=\eta}}{n_z}$

Base flow profile

Unidirectional flow some distance behind the head:

Fully developed velocity and concentration profiles:

$$u_0(z) = 1 - e^{-z/L}$$
 , $c_0(z) = \frac{N Pe}{L c_{\infty}} e^{-z} + 1$

Important parameter:

 $L = length \ over \ which \ u_0 \ decays / length \ over \ which \ c_0 \ decays$

Results: Influence of Re

Dispersion relations:

$$L = 0.5$$

$$G = 0.1$$

$$c_{\infty} = 10^{-2}$$

$$N = 10^{-5}$$

- larger Re are destabilizing
- most amplified wave number α~0.25

Results: Instability mechanism (cont'd)

Main criterion for instability:

base flow shear has to decay faster than base concentration profile

- if base shear decays faster than base concentration profile:
 - an upward protrusion of the sediment bed will see less shear (less erosion), but still substantial sedimentation \rightarrow will grow
 - a valley of the sediment bed will see higher shear (more erosion), but not much more sedimentation \rightarrow will grow
- if base shear decays more slowly than base concentration profile: perturbations will decay

Results: Eigenfunctions

Influence of secondary flow structure:

$$\alpha = 0.24$$
 $L = 0.5$
 $Re = 1,000$
 $G = 0.1$
 $c_{\infty} = 10^{-2}$
 $N = 10^{-5}$

perturbation u-velocity

perturbation shear stress

secondary flow structure reduces shear stress at peaks, increases shear stress in valleys \rightarrow perturbation shear stress is destabilizing

Sediment wave formation by turbidity currents (w. B. Hall, L. Lesshafft, B. Kneller)

Large scale sediment wave forms at the ocean floor

- sediment waves are prime targets for oil reservoir formation
- formed by turbidity currents and bottom flows; mechanism?
- traditional assumption: lee waves, but no rigorous stability analysis available

Sediment wave formation by bottom currents

Santa Barbara channel

Sediment wave formation by bottom currents

Australian coast

Base flow profile

Unidirectional flow behind the head:

Fully developed velocity and concentration profiles:

$$u_0(z) = 1 - e^{-z/L}$$
 , $c_0(z) = \frac{N Pe}{L c_{\infty}} e^{-z} + 1$

Important parameter:

 $L = length \ over \ which \ u_0 \ decays / length \ over \ which \ c_0 \ decays$

Linear stability results

Dispersion relations:

- most amplified wave number α ~1.44
- base flow has main destabilizing effect
- sediment waves migrate upstream

Results: Eigenfunctions

Influence of secondary flow structure:

shading: perturbation shear stress

line contours: perturbation concentration

- perturbation shear larger on downstream side of peak than on upstream side
 - \rightarrow more erosion on downstream than on upstream side \rightarrow upstream migration
- perturbation concentration is larger at peak than in trough \rightarrow more sedimentation at peak than in trough \rightarrow growth of wave amplitude

Field observation of sediment bed structures

Net deposition is stronger on the upstream side

Stratification: Internal wave generation

• Excitation of internal waves in the ambient fluid

Reversing buoyancy (M. Boekels, E. Lenk, S. Radhakrishnan)

- propagates along bottom over finite distance, then lifts off
- subsequently propagates along top

Hazards posed by gravity and turbidity currents (with E. Gonzales, T. Tokyay, G. Constantinescu)

Gravity currents may encounter underwater marine installations, Such as pipelines, wellheads etc.:

Hazards posed by gravity and turbidity currents (with E. Gonzales, T. Tokyay, G. Constantinescu)

Simulation of gravity current past a model pipeline:

- what forces and moments are exerted on the obstacle?
- steady vs. unsteady?
- erosion and deposition near the obstacle?

Gravity current flow over elevated circular cylinder Vorticity:

• important for the prediction or erosion and scour

Hazards posed by gravity and turbidity currents (cont'd)

Comparison with experiments by Ermanyuk and Gavrilov (2005):

____ experiment

. - . - . 2D simulation

--- 3D simulation

- 2D simulation captures impact, overpredicts quasisteady fluctuations
- 3D simulation captures impact and quasisteady stages well

Sedimentation from river plumes: Motivation (w. P. Burns)

• 10^{10} tons of sediment are transported by rivers into the world's oceans every year \rightarrow important to understand sedimentation in river plumes

Mississippi river plume drainage basin size: $3.3 \times 10^6 \text{ km}^2$ annual sediment yield: $1.2 \times 10^2 \text{ t/km}^2$

Santa Clara river plume drainage basin size: $4.2 \times 10^3 \text{ km}^2$ annual sediment yield: $1.4 \times 10^3 \text{ t/km}^2$

→ a large fraction of the sediment supply into the oceans is due to small, mountainous streams

Sedimentation from river plumes: Configuration

Hypopycnal river plumes:

density of the river (fresh water + sediment) < density of ocean (water + salinity)

→ river outflow propagates along the ocean surface

• focus on the downstream density stratification

Sedimentation from river plumes: Double-diffusion

Base density profile:

Sedimentation from river plumes: Double-diffusion

Base density profile:

Sedimentation from river plumes: Double-diffusion

Base density profile:

Traditional case: Salt fingers

• warm, salty water above cold, fresh water:

Huppert and Turner (1981)

- dominant process for the vertical flux of salt in the ocean
- robust against shear
- believed to be responsible for the formation of the thermohaline staircase
- → for salt/sediment system, how does double-diffusion affect sedimentation?

Sedimentation from river plumes: Experiments

• previous experimental work by Parsons et al. (2001):

convective 'fingering' mode space filling

'leaking' mode localized, structures move along interface

→ goal: understand mechanisms driving these modes, and their influence on the effective particle settling velocity

Sedimentation from river plumes: Experiments

Hoyal et al. (1999): convective sedimentation

Green (1987):DDS from buoyant gravity currents

Maxworthy (1999):DDS from hyperpycnal plumes

Sedimentation from river plumes

Physical setup:

density profile

characteristic quantities:

$$V_{st}^* = \frac{gd_p^2(\rho_p - \rho_f)}{18\mu_f}$$

$$g' = \frac{\Delta\rho_c}{\rho_0}g = \gamma g$$

$$U^* = (\nu g')^{1/3}$$

dimensionless parameters:

$$V_p = \frac{V_{st}^*}{U^*}$$

$$Sc = \frac{\nu}{\kappa_s}$$

$$R_s = \frac{\alpha \Delta S}{\gamma \Delta C}$$

$$\tau = \frac{\kappa_s}{\kappa_c}$$

Sedimentation from river plumes: Numerical simulations

- Two dimensions:
 - streamfunction, vorticity-formulation of Navier-Stokes equations
 - Boussinesq approximation
 - spectral/compact finite differences

• Three dimensions:

- IMPACT code (Henniger and Kleiser 2011)
- primitive variable formulation of Navier-Stokes equations
- Boussinesq approximation
- staggered grid
- 6th order compact finite differences
- massively parallel

Sedimentation from river plumes: Numerical simulations

Sedimentation from river plumes: Mean fields

- thickening of the interfacial region \sim time \rightarrow convectively dominated
- vigorous convective motion
- 'streaks' due to the release of buoyant plumes

Sedimentation from river plumes: Effect on sedimentation

Settling velocity enhancement:

• in the region z < 0, the effective settling velocity is O(1), rather than $V_{st} = 0.04$

Sedimentation from river plumes: Leaking mode

Sedimentation from river plumes: fingering vs. leaking

x,t-diagrams of sediment concentration at fixed vertical location:

• 'phase locking' results in the characteristic features of the leaking mode

Summary

- high resolution 3D simulations of turbidity currents and river outflows
- detailed information regarding erosional/depositional behavior, energy budgets, dissipation, entrainment, mixing dynamics . . .
- recent extension to complex seafloor topography: meandering channel/levee systems, mini-basins, local seamounts
- linear stability analysis explains formation of channels, gullies and sediment waves, gives their dominant length scales
- interaction of turbidity currents with submarine pipelines: forces, moments, time scales
- reversing buoyancy (hyperpycnal) currents
- double-dffusive sedimentation in river outflows dramatically enhances the effective settling velocity
- convective 'fingering' vs. 'leaking' mode