WETTING IN GRANULAR FLOWS: DEBRIS FLOWS \& ICE AVALANCHES

Barbara Turnbull

\square Fast moving, subaerial gravitational flows of water, sediments and coarse material (rocks, trees boulders)
\square A general term encompassing lahars, landslides, jökulhlaups.

e.g. Vargas, Venezuela 1999

\square With our debris flow experiments we want to

- Understand the effect of various flow variables, e.g. surface roughness, particle size
- Measure velocity profiles, pore pressure and basal shear and normal stress
- Test the influence of the larger particles in the flow
- Link the extreme values of dynamic properties to bulk values

Design Criterion - Similarity

Always difficult in particle laden

Parameter	Name	Force Balance	Notts Chute	USGS Chute	1982 Oddstad
$\mathrm{N}_{\text {Bag }}=\frac{\phi_{s} \rho_{s} d^{2} \dot{\gamma}}{\left(1-\phi_{s}\right) \mu}$	Bagnold number	Inertial grain stress to viscous shear stress	2	400	4
$\mathrm{~N}_{\text {Sav }}=\frac{\rho_{s} d^{2} \dot{\gamma}^{2}}{\left(\rho_{s}-\rho_{f}\right) g h \tan \theta}$	Savage number	Inertial grain stress to friction	0.2	0.2	2×10^{-4}
$\mathrm{~N}_{\text {fric }}=\frac{\mathrm{N}_{\mathrm{Bag}}}{\mathrm{N}_{\text {Sav }}}$	Friction to viscous shear stress	9	2×10^{3}	2×10^{4}	
$\mathrm{~N}_{\text {mass }}=\frac{\phi_{s}}{\left(1-\phi_{s}\right)} \frac{\rho_{s}}{\rho_{f}}$	Mass number	Solid to fluid inertia	1	4	4

Data from
Iverson Richard M., 1997, Physics of debris flows, Rev. Geophys 35, 3, 245-296

Experiment Design

2D CHUTE Lock release				
	Variable	Notation	Values	(units)
	Solids volume fraction	ϕ_{s}	0.6	
	Volume of solids	$\phi_{s} V$	1	litre
	Roughness length	$\left[d_{r 1}, d_{r 2}, d_{r 3}\right]$	[2, 4, 8]	$\times 10^{-3} \mathrm{~m}$
	Angle of inclination	θ	27°	
	Solids: glass beads			
	Density	ρ_{s}	2600	$\mathrm{kg} \mathrm{m}^{-3}$
	Diameter	$\left[d_{1}, d_{2}, d_{3}\right]$	[2, 4, 8]	$\times 10^{-3} \mathrm{~m}$
	Fluids: water, glyce			
	Density	$\left[\rho_{f 1}, \rho_{f 2}\right]$	[1000, 1260]	$\mathrm{kg} \mathrm{m}^{-3}$
	Viscosity	[μ_{1}, μ_{2}]	[1.41, 0.8]	Pas

Experiment

What happens?

\square Snout formation
\square Longitudinal and vertical particle size and volume fraction variation
\square Distinct granular and quasi-viscous regions

Flow regimes

Velocity profiles

Conclusions: Debris

\square We have a method for systematically determining the extent of quasi-viscous/granular behaviour within a debris flow
\square Roughness is only important in the quasi-viscous regions when the roughness length is greater than or equal to the mean particle size
\square To do: lots!

Ice avalanches

An increasingly
prevalent
phenomenon
(Huggel et al
2008)
Can exhibit
surprising
mobility

\square Crystalline substances exhibit a disordered, 'liquid-like’ layer even well below melting point

Wetted granular materials

We're asking

\square How does pre-melting affect a granular flow of ice?
\square Do granular collisions enhance pre-melting?
\square Can controlled pre-melting provide an improved method of testing moisture effects in granular flows?

Experiment

Ice manufacture

Programme

\square Cold room temperature:

- $-4,-2,-1,0^{\circ} \mathrm{C}$
\square Rotation rate:
- 16 rpm
\square Fill fraction:
- 0.47
\square High Speed Camera:
- IDT M5 MotionScope, 50 mm f2.0 lens.

Results

Image analysis

PROCESSE
S: Time
averaging
Masking
TO
IDENTIFY:
Flow surface
Average
inclination
Characteristi
c profile line

Image analysis

Particle
Image
Velocimetry
provides
velocity and
vorticity
data.
Time-
averaging
over video
burst
smoothes
the data.

Dimensional analysis

$$
\begin{aligned}
& \text { Shear layer } \\
& \text { velocity, } u_{s}
\end{aligned} \quad u_{s}=f\left(\Omega, \quad d_{p}, \quad \phi D, \quad E, \quad \tau, \quad h_{s}, \quad g \sin \alpha\right)
$$

Rotation rate, Ω

Particle size, d_{p}
Fill fraction, ϕ
Drum size, D
Energy for melting, E
Time, τ
Shear layer
thickness, h_{s}
Gravitational acceleration, $g \sin \alpha$

The energy required for melting, comprises that needed to bring the ice to its melting temperature and the latent heat of fusion. For an experiment $\Delta \Theta$ below freezing

$$
E=\Delta \Theta c_{p}+\ell
$$

8 variables in 2 dimensions leads to 6 non-dimensional groups to fully describe the problem.

$$
\frac{u_{s}}{d_{p} \Omega}=f\left(\frac{\phi D}{d_{p}}, \quad \tau \Omega, \frac{E}{d_{p}^{2} \Omega^{2}}, \frac{h_{s}}{d_{p}}, \frac{\sqrt{h_{s} g \sin \alpha}}{d_{p} \Omega}\right) .
$$

Velocity scale ratio

Shear layer velocities

Estimated
errors $\sim 9 \%$
RMS
residual
6.1%

Shear layer Froude number

$$
\frac{u_{s}}{\sqrt{h_{s} g \sin \alpha}}=0.015 \frac{u_{s}}{d_{p} \Omega} \pm 0.001
$$

\square Experiments: Froude number in the range 1.4-1.6
\square Field: Froude numbers between 1 and 5

\square Statistical tests
\square Much larger temperature ranges and time scales
\square Different drum and particle geometries
\square Melting/non-melting component mixtures

Conclusions: Granular Ice

\square Melting through granular collisions and interfacial pre-melting occurs well below freezing point

- How can melting through granular collisions be incorporated into the Clausius-Clapeyron phase transition equation?
\square Wetting arising from melting reduces the apparent friction within the flow
- But how important is this compared with other moisture sources?
\square Dimensional analysis has provided a parameter space for further study

Acknowledgements

\square New Researchers Fund (Nottingham Univ.), EPSRC Research Development Fund Bridging the Gaps

- Jim McElwaine
- Perry Bartelt
- Stuart Dalziel
- David Page-Croft
- Catherine Alton
- Nishad Sohoni
- Paloma Paleo

