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Some properties of polymers

A polymer chain: A very long molecule consisting
of a large number L of monomers:

~C' Hy——CHy——CHy—CH;

Neglecting excluded volume effects, the chain behaves
as if it is the trajectory of a random walker (e.g.
a drunken sailor) starting at a given point in
space and propagating L steps of length b each.

L=number

of bonds
R=end—-to—end
Distance
Rgzradius
of gyration

A chain as a random walk.

(R?) =L b’

When a gaussian random potential is present,
a very long chain will typically curl up in
some small region of low potential energy.

Main results:

For a system of volume V in d dimensions and a
gaussian random potential of strength g, the end-to-
end distance of a chain that is free to move is given,
for large L, by:

R~ (gV) V04 1 <d<y
Independent of L !

The depth of the well entrapping the chain is
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approximately
Unmin ~ = ((j In V)Q/("'J.-— d) _

Note that the annealed and quenched results are
different. In the annealed case the polymer collapses
to a point. The annealed result is argued to apply in
the quenched case for a system of infinite volume.

e Previously advocated by Cates and Ball,
Nattermann and Renz, using Flory arguments.
J. Phys. (France) 89, 2435 (1988); Phys. Rev. A
40, 4675 (1989)

e Y. Y. Goldschmidt: Derived from first principles
using the Replica technique with one-step breaking.
Phys. Rev. E61, 1729 (2000)

e Y. Shiferaw and Y. Y. Goldschmidt: Have derived
the results from the localization of a quantum
particle in a random medium and have given physical
interpretation to the replica calculation. Brought
together two apparently disparate fields of polymers

5

and quamtum particles im random media.
Phys. Rev. E63, 051883 (2001)
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The gaussian chain in a random potential

To define the model of a polymer chain in a random
potential plus a fixed harmonic potential we use the
Gaussian chain approximation to write:

L
H—/ du
0

were R(u) is the d-dimensional position vector of the
chain at arc-length u (0 < u < L),

)) +§RZ(U)+V(R(u)) ,

dksT (R (u
2b? ou

L — proportional to the number of monomers.

1 governs the strength of the harmonic potential.
It is introduced to induce a finite volume for the system
instead of hard walls of a box.

V(R) is the random potential satisfying:
(V(R)) =0, (VR)V(R))=g YR~ R).

The partition sum (Green’s function) is given by the

5
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A quantum particle at finite temperature

The polymer problem can be mapped into that of a
quantum particle in a random potential + a harmonic
potential. The density matrix for a quantum particle
in such a potential at a finite temperature T' = 1/kf3

reads:
R(hB8)=R’ 1
p(R, R’,[)’) A] DR (u) exp (~~S) .
R(0)=R h
with

hs m (OR(u) ? L
S:/O du [5( B ) +§R"’(u>+V(R(u))},

with the variable u representing the imaginary time.
The mapping from a quantum particle of mass m at a
finite temperature 1/3 to a polymer chain is given by

h— kT, kB — L, m — dkT/b?

From this mapping we learn that for the polymer
problem too we can consider solutions of the

7

Schrodinger equation in imaginary time. Thus:
Z(R,R'; L) = (Rlexp(-fLH)|R),

where

1 82

= = Fon

+ g-fiz + V(R).

We compute the matrix element by expanding it in
terms of the energy eigenstates of H

Z(R, R L) = ) exp(—BLEp)®m(R)*®m(R).

Thus knowing the structure of eigenfunctions and
eigenvalues of the Schrédinger equation in a random
potential enables us to solve the polymer problem.
There are many known results from the study of
electron localization, but they have to be somewhat
modified for a system of finite size.

In a finite volume there is always a lowest energy
even for a gaussian random potential. The lowest

8
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energy states dominate the partition sum for large L.
Localized states are given by

¢(R) ~ exp (—|R — R/l

where the localization length £,,, is related to the energy
of the state E,, by

by ™~ 1/\/ |Emi

We can study eigenfunction properties in d=1 by
solving the Schrédinger equation on a lattice. Random

potential with short range correlations is generated
numerically.

ol

How eigenfunctions affect chain
properties

Probability of finding a polymer loop passing
through a point R:

Z(R,R, L)
[dRZ(R,R, L)

PR,L) =

As L is increased the chain is more likely to be
located near the minima of the potential which coincide
with the position of the low lying localized states.

!
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The average end-to-end distance

e Short L: (R2%(L)) ~ L: Simple diffusion, extended
states dominance

e long L: (RZ(L)) ~ constant:
ground state dominance

Localization,

0.5

Localized state dominance is associated with glassy
behavior and large sample to sample fluctuations.

11

Derivation of the end-to-end distance
from the density of states

Density of states for a gaussian random potential ee)

of strength ¢: |
BB,

o(B) o exp(—(B/gIBf), (="

with § = (4 —d)/2 (Lifshits, Halperin...) This is for an
infinite volume.

For a finite volume V we can estimate the lowest
energy Fjy from the tail of the distribution:

| aBe (~/g)Ep) <1y,

which gives
Ey = —(glogV)*/?
Thus the localization length ¢, associated with the

ground state (and also the end-to-end distance of a
chain) is given by

bo ~ 1/+/|Eq| ~ (glog V)~ (29)

12
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The replica method and variational
approximation

In order to average over the quenched random
potential we use the replica method.

The replica trick:

_ zn —1
—BF =1n(Z) = lim :

n—0 n

77 can be evaluated by introducing n identical copies
(replicas) of the system and than averaging over the
random potential.

After introducing n-copies of the chain and
averaging over the random potential one obtains

13

(2" = / DR . DR on(-fH
with

-L AR (u 2 c
H, = jo duZﬁzl [%I( If‘aé )) +%R§(U)}
L L
—B8 L du [ du’ 3,09 (Ra(u) — Re(w)).

which is a peculiar form of n-body interactions. We
have to obtain an approximate analytical solution valid
for general n and then take the limit of n — 0.

In order to proceed we use a quadratic variational
Hamiltonian to be the best approximation to H,. This
is given by [ Y.Y.G., Phys. Rev. E 61, 1729 (2000)]

I ; wa LA 2 :
= G T [ (S59)° 4 4R

. L s
—Ilﬂ .f() du fO du/ Zabpab (Ra(u) = Rb(u ))2 )

16
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where the n X n matrix pg is to be determined
variationally with n — 0 at the end. It is determined
from the stationarity of the variational free energy
which is given by:

n(F)g = (Hy — hn),, — %ln/DRl .-+ DR, exp(—fhy).

Our parametrization of h,, preserves an important
translational symmetry of H,, in the limit g — 0 (the
large volume limit), which is given by

R,(u) =+ Ro(u)+C, a=1,---,n

This symmetry has been explicitly broken by the one
parameter choice of Edwards and Muthukumar who
used for the infinite volume case

2
b = foL du 3 h_s [% (B_R;%) + qug(U))

Preserving this symmetry is crucial for the correct
solution of the problem and obtaining the logV
dependence of the radius of gyration.

15

The 1-step replica symmetry breaking
ansatz

With replica symmetry breaking we have two more

parameters:
PAN fo
AN '

P

n \
-0 P \ "
m - Xc AN e
odX < | , P”;Ei‘ '
I

The n — 0 can be taken to yield a variational free
energy F'(p, po, p1,z.), where the size of the diagonal
blocks m becomes an additional variational parameter
Ze (0 <z, < 1). The stationarity of the free energy
yields four coupled non-linear equations for the four

16
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variational parameters. In the limit of small x (large
volume) and long chains (L large) these equations were
solved analytically.

Denoting
A=p—p+ (1 —z)p1 + Zepo,
we find
A~ (g np) =
From this final result we obtain the radius of gyration

By ~AVin (g [Inpf)™/ 479
~ (g InV)"V=d

For any value of p and L the equations could be
solved numerically.

17

Physical interpretation of the 1-step
RSB solution

Interpretation of the 1l-step RSB in terms of
exponentially localized tail states. The following
analysis is valid for a very long polymer (large L)
when the system becomes glassy. What is the
interpretation of the l-step replica solution? Recall
from the Schrédinger equation

_ Z(R7 R:L) _ 2
h
where A= exp(—BLE,)

Z'y exp(gﬁLE"f) ‘
This agrees with the interpretation of the replica
solution as a sum over “states” provided we identify

(R — Ra)2> _

®2(R) o< exp (— 5 —a1)

and R, are an infinite set of uncorrelated random

18
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variables distributed according to I B

) | (Ro —Ro)? gt ,:r
P(R1,Ry, ) = l;[ 2n(q — 90))%/ exp ( 2(q1 — q0) ) .

with Rg being picked from the distribution N
1 R3 ™ e LV g
Ro) = ————=exp | ——2 ) . 7
PR} = Grgey@ P ( 2qo> o
d, go and q; are related to , pp and p; of the 1-step J N H
RSB solution. Hence, the “states” labeled by a are ‘

in our case the actual eigenstates of the Schrodinger
equation. These are localized tail states centered at
position R, with an associated “weight” A,. Thus
the 1-step RSB solution approximates the tail states
by a fixed Gaussian form of constant width wy.

The exponential distribution of energies as governed
by z. is consistent with the density of states in the tail
in the vicinity of Eg

p(E) ~ exp ((1/9)|Eo|’*E) ~ exp(z.LE).

z 4'1-#
ReB: ¥ (G llapl )

19
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Random Obstacles

Let
x = Probability that a site is occupied by an obstacle

An obstacle prevents the chain to visit the site (volume
a%). We will measure all lengths in units of a which
is also taken to be the chain’s mean monomer size.
Assume that the chain is occupying a spherical region
(lacuna) of volume R¢. In this region the actual
volume fraction of obstacles will be denoted by &. This
is a fluctuating quantity which occurs with probability
b(R%%; RY, ), where

b(k;n,p) = (Z)p’“(l —p)" 7,

denotes the binomial probability distribution.
In the limit where the system has infinite volume V

the free energy for the chain is given by

N L . .
F(R,%)=—LlIn(z) + m T L3 — In[b(R%%:; RY, 2)],

23

All these terms originate from entropy F' = —T'S
where for simplicity we take 7' = 1 since the
temperature does not play a significant role here
with respect to the results. This free energy for
Y — oo is called the annealed free energy since when
the polymer can sample the entire space it is the
same as the random potential adjusting itself to the
polymer configuration. The free energy has to be
minimized (the entropy maximized) with respect to R
and Z. The most favorable value of % is 0. Since
b(0; R%,z) = (1 — m)Rd, we find

L
F(R) = —Lln(z) + T R3In(1 — x).

This free energy has now to be minimized with respect
to R to yield

L 1/(d+2)
)) '

Rm,annealcd ~ (m

Thus the size of the chain grows with L, but with an
exponent smaller than 1/2, the free chain exponent.

22
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Summary of results for the obstacle case
Region | V<V ~ exp(m—(d—z)ﬁ)

Rur ~ (zln V)fl/(l*d)

Region Il  V; <V < Vy ~~ exp (3;2/(d+2)Ld/(d+2))
R InV 1/d
i | In(1 — )| '
region Il Vo <V
I 1/(d+2)
Ry o~ [ — _
o~ (i)
In Region | one can approximate the binomial

distribution by a gaussian distribution, and hence the
results agree with the gaussian random potential case.

The behavior in region |l can be deduced
from known results of the density of states for a

29

quantum particle in the presence of obstacles (repulsive
impurities). In that case (Lifshits) the density of states
is given by (when the obstacles are placed on a lattice)

p(E) ~ exp(—c|In(1 = z)|[E~4%), E >0
with ¢ being some dimension dependent constant and
x is the density of impurities. Note that p(E) vanishes

for £ < 0. We can estimate the lowest energy in a
finite volume V from the integral

Ee
/ dEp(E) ~1/V,
0

Iny —2/d

and thus the localization length is given by

1/d
b~ |E V2 (Y )T
T [In(1 — z)|

and find

30
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Excluded Volume

s
“d @

Two parameters: g- variance of random potential;
v- strength of self-avoidance

Conformation of chains cosists of many “blobs”
with connecting segments. As L increases the first blob
“overflows” and there is “hopping” to another deep
minimum. Competition between length of connectiong
segment and probability to find a deep minimum
nearby. We evaluated average number of monomers
in a blob and length and number of monomers in
connectiong segments. For g >> w, chain still
attached to a given region of space.

31

The free energy per monomer:
Flw,m,Y;L)

L
1 <Y2 m  vm?

m  Y? Y3

w -+ m

w - the number of monomers in each blob,

m - the number of monomers in each connecting
segment.

Y- the length of the jump (distance)
G(Y?) = 3¢1n(Y)
The free-energy has to be minimized with respect to

w, m and Y to find the parameters giving rise to its
lowest value.

32
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Introduction

Phase diagram for
Clean superconductors

MAGNETIC FIELD H

TEMPERATURE T z

e Flux lines interact with the modified Bessel function
of the first kind. This interaction is repulsive
in nature. For short distances the interaction is
logarithmic while for the bigger distances it decays
exponentially.

e For the pure system a first order transition (FOT)

from the vortex solid phase to the vortex liquid phase Vorter Cattice (o NeSea  (Hess et of Physica B 169,
is seen both experimentally as well as numerically. 4221 (1191)

Sca.nn[& 'llu.nNe@'V\ﬁ Yﬂi;roscor‘é.
2 /F\I‘OLQS &h:/é 01(\ @@d[/‘ons aﬂ'ﬁcle/ f:- l/o/“}(lr_M
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Vortex Lines

For small and intermediate values of the magnetic
fields, we can write the following expression for the
London free energy functional for YBCO:

)’ S (%)}

g 1 (L e (dR;
a=irl, ©125 (%) 2
+Z\/(R‘;')

where R;(z) is a two-dimensional vector, g =
®2/(4w)\)* is the vortex line energy per unit length, the
line tension is &, ~ £o/~°. Average distance between
FLs:

ao ~ /¢o/B

A similar expression is used for BSCCO with some
modifications.

Maps to a system of 2D Bosons with repulsive
Coulomb interaction.(Nelson)

32
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The cage model

e 2
E= /0 dz {522 (diﬁz)> + %Rz(z) + V(R(Z))} :

The harmonic part represents the cage which follows
from the neighbor's repulsion.

wr d*(—2e01n(r))/dr?|—e, ~ €o/a?.

V(R/(z)) represents random columnar defects. Assume
first that V=0 (pure system).

Assume that the vortex requires a distance z = ¢
to sample the interior of its cage (Crabtree & Nelson).
If the transverse deflection is denoted by 7, the energy
is

E = ~(g,/6 + ub)r.

N =

33

optimizing with respect to £ one gets

=/g/u, E*=Fpr?
The equipartition theorem gives

(r?) = kT /\/eip = kgTyap/eo.
The melting transition can be obtained from the
Lindemann criterion (r2) > c2a3, with ¢, ~ 0.1 —0.2.
Turning on columnar defects (random potential)has the

effect of decreasing (r?), thus increasing the melting
temperature (YYG 1997).

34
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Snapshots

In the figures below, snapshots of FLs, projected
on a plane, at temperatures less than the transition
temperature and at a temperature bigger than the
transition temperature are shown.

800 =
R
; % L N By
600 1 Vo oy PR N o
# & ) & @ RO
- Rl -
500 - & . RS
I . W T e
a00 # - P
> waale 0 N Fe
300 i # i ‘%‘ &
R &
e B P D& O
200 o T oa T . X
st L e Oy B
¥ E 3 =
100 e & " e
& ® B = oy
o » = ®
00 . . —
) 200 400 500 800 1000 1200

Figure 1: BSCCO: A typical configuration in the
solid phase (low temperature) for N = 64 FLs for
By/B = 0.2. FLs have been projected onto one plane.

From Fig. 1 it is easily seen that at low
temperatures most columnar defects have captured

34

FLs. Also, the FLs make simple loops and have cleverly
set themselves so as to make a hexagonal lattice and
yet occupy as many defects as possible. The transverse
fluctuations of the trapped FLs are greatly suppressed
at low temperatures. At higher temperature beyond
the transition point, we see that columnar defects are
not occupied any more and a lot of FLs are entangled.

Inspection of snapshots like Fig. 1 gives support
to the assertion of Sen et al. that the Bose glass
consists of patches of ordered regions with only short
range positional and orientational order. This phase is
different from the Bragg-glass in systems with point
pins which is characterized by quasi-long-range order.

35
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Figure 2: BSCCO: A typical configuration of FLs in
the liquid phase (high temperature) for N = 64 and
By4/B = 0.2. FLs have been projected onto a single
plane. Columnar defects are not drawn to scale. Some
FLs on the boundary do not seem to make loops. That
is only because virtual images of FLs outside the cell
are not shown.
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Mapping of Parameters

Quantum Particle Polymer chain(s) | Flux line(s)
or System of bosons

T U Z
(imaginary time) (monomer label) | (plane label)
h kT kT

A/kTs T I,

m dkT/b* €2 = €g/°
(mass) b=bond length tilt modulus
g° (Coulomb repul.) 2¢0
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