Dynamic localization in quantum dots: analytical theory

D.M.Basko ${ }^{1}$, M. A. Skvortsov ${ }^{2}$, and V. E. Kravtsov ${ }^{1,2}$
${ }^{1}$ Abdus Salam International Centre for Theoretical Physics, Trieste
${ }^{2}$ Landau Institute for Theoretical Physics, Moscow

Population oscillates (Rabi oscillations), energy saturates

Infinite system: the case of small perturbation

$$
\mathrm{H}=\mathrm{H} 0+\mathrm{V} \cos (\omega \mathrm{t})
$$

$\mathrm{V} \ll \delta$
Probability to fall in resonance (V / δ)
Number of allowed active initial levels (ω / δ)
Saturation energy of a resonant pair $\hbar \omega$

For $t>t^{*}=\hbar / \delta$ the total energy of an infinite system saturates at

$$
E^{\star} \sim V(\omega / \delta)^{2}
$$

Wilkinson, Austin, 1992

Dynamic localization

How general is this effect? How to describe analytically?

Kicked rotor:

$\hat{H}(t)=-\frac{\partial^{2}}{\partial \theta^{2}}+V(\theta) \sum_{n=-\infty}^{\infty} \delta(t-n T)$
$\psi_{m}^{(0)}(\theta)=e^{i m \theta}, \quad E_{m}^{(0)}=m^{2}$

$$
\mathrm{V}(\theta)=\cos (\theta) \quad \mathrm{V}_{\mathrm{m}^{\prime}}=\mathrm{V}\left(\delta_{\mathrm{m}^{\prime}, \mathrm{m}+1}+\delta_{\mathrm{m}^{\prime}, \mathrm{m}-1}\right)
$$

only neighboring states are connected by perturbation

$$
f(t) \propto \sum_{n=-\infty}^{+\infty} \delta(t-n T)=\sum_{n=-\infty}^{+\infty} \cos (\omega n t)
$$

all harmonics have the same amplitude
Can the results on dynamic localization in this system be extended to a generic chaotic system (random matrix)???

No analytic results for $\Gamma \gg \delta$

Perturbation by periodic δ-function (kicks) $\quad H=H_{0}+V f(t)$;
All sites are directly connected $f(t)=\sum_{n=-\infty}^{+\infty} \delta(t-2 \pi n / \omega)=\sum_{n=-\infty}^{+\infty} \cos (\omega n t)$

Kicked random matrix : $\quad\left\langle V_{l l^{\prime}}{ }^{2}\right\rangle=\operatorname{const}$
NO DYNAMIC
LOCALIZATION
\downarrow
All orbitals are connected: resonance between remore orbitals on arbitrary remote sites is possible

Random matrix with almost harmonic perturbation

$$
H=H_{\text {GOE GOE }}+V f(t) ; \quad f(t)=\sum_{n} A_{n} \cos \left(\omega_{n} t+\varphi_{n}\right)
$$

Few harmonics are relevant: $\quad A_{n}<\frac{1}{n^{3 / 2}}$

$\omega_{i \prime}^{\prime \prime}$

Few sites are connected

DYNAMIC LOCALIZATION IS POSSIBLE

$$
\begin{array}{ll}
\substack{\text { X.B.Wang, } \\
\text { V.E.K.,.2001 }} & \mathrm{f}\left(\mathrm{t}+\mathrm{t}_{0}\right)=\mathrm{f}\left(-\mathrm{t}+\mathrm{t}_{0}\right) \\
& f(t)=\sum_{n} A_{n} \cos \left(n \omega t+\varphi_{n}\right)
\end{array}
$$

Average dephasing rate γ_{c} versus time:

Quasi-1d orthogonal: $\delta W \sim-\left(t / t^{*}\right)^{1 / 2}$

Quasi-1d unitary: $\delta W \sim$ - ($\left.\mathbf{t} / \mathbf{t}^{\star}\right)$

Monochromatic perturbation: T-symmetry always a very special case

Incommensurate periods

$$
A_{n}^{2} \sin ^{2}\left(\omega_{n} t+\varphi_{n}\right)
$$

dephasing rate:

Number theory game seen in mesoscopic physics X.B.Wang, V.E.K. 2001

Almost-no-dephasing points contribute:

$$
W(t)-W_{0} \sim-\omega^{2} \int_{1 / \Gamma}^{t} \frac{\Gamma d t_{1}}{\sqrt{\left(\Gamma t_{1}\right)^{d}}}
$$

d-dimensional weak Anderson localization Basko,Skvortsov, VEK, 2003; Numerics for kicked rotor: Casati, Guarneri,
Shepelyanskii, 1989

A glance at the reality

GaAs dot:

- size $L \sim 1 \mu \mathrm{~m}$
- mean level spacing $\delta \sim 1 \mu \mathrm{eV}$
- Thouless energy $E_{T h} \sim 100-1000 \mu \mathrm{eV}$
- dephasing time $t_{\varphi} \sim 1-10 \mathrm{~ns}$

Microwave field:

- $\quad V \sim$ several $\mu \mathrm{eV}$ (field \sim several $100 \mathrm{~V} / \mathrm{m}$)
- $\hbar \omega \sim 10-100 \mu \mathrm{eV}\left(\sim 10^{10} \mathrm{~Hz}\right)$

Dynamic localization:

- $t_{\text {loc }} \sim 10 \mathrm{~ns}, E_{\text {loc }} \sim \sqrt{D t_{\text {loc }}} \sim 100-1000 \mu \mathrm{eV} \sim 1-10 \mathrm{~K}$

Conclusions

- A quantum-mechanical system under a timedependent perturbation may be subject to dynamic localization in energy space.
- It depends both on the model for the unperturbed system and the perturbation.
- For a chaotic system described by RMT the character of dynamic localization depends entirely on the time dependence of perturbation.
- For a periodic δ-function perturbation there is NO dynamic localization in RMT.

Conclusions

- For a periodic perturbation with few harmonics weak dynamic localization is similar to quasi-1d Anderson localization of orthogonal or unitary symmetry class depending on the symmetry of time dependence with respect to $t \rightarrow-t$ (up to an arbitrary shift in time)
- For d incommensurate harmonics weak dynamic localization is similar to the Anderson localization in a d-dimensional system.
- Dynamic localization seems to be observable in quantum dots under ac excitation (this is another story)

What everybody knows...

- $\hat{H}=\hat{H}_{0}+\hat{V} \cos \omega t$
- (Quasi)continuous spectrum
- Absorption and emission of quanta $\hbar \omega$ random walk up and down
- Diffusive evolution of the electron distribution function

What some people know...

Kicked rotor:
$\hat{H}(t)=-\frac{\partial^{2}}{\partial \theta^{2}}+V(\theta) \sum_{n=-\infty}^{\infty} \delta(t-n T)$
$\psi_{m}^{(0)}(\theta)=e^{i m \theta}, \quad E_{m}^{(0)}=m^{2}$

Dynamic localization in the energy space:
after some time the rotor stops absorbing

(G. Casati, B. V. Chirikov, J. Ford, and F. M. Izrailev, 1979)

Historical developments

1. Quantum interference - analogous to the Anderson Iocalization (Fishman, Grempel, and Prange, 1982)
2. Incommensurate periods T_{1}, T_{2}, T_{3} - 3D localization (Casati, Guarneri, Shepelyansky, 1989)
3. Particle in a box: just $\psi(0)=\psi(2 \pi)=0$ instead of the periodic $\psi(0)=\psi(2 \pi)-$ no localization (Hu, Li, Liu, Gu, 1999)
4. Mapping to a quasi-1d σ-model (Altland, Zirnbauer, 1996)

What do these observations mean and how general are they?

Spatial localization

Quantum correction to the diffusion coefficient of electrons in disorder
mean free path

Change variables $D_{0} k^{2}=1 / t$:
$D-D_{0} \sim-\frac{1}{v} \int_{\tau}^{t_{0}} \frac{D_{0} d t}{\left(D_{0} t\right)^{d / 2}}$

Localization: $d=1: \quad L_{l o c} \sim v D_{0} \sim l$
$d=2$: $\quad L_{\text {loc }} \sim l \exp \left(V D_{0}\right) \quad(?)$
$d \geq 3$: no localization in weak disorder

Chaotic systems

Ballistic systems:

$\tau_{\text {erg }}=L / v_{F} \quad$ ergodic time $\quad \tau_{\text {erg }}=L^{2} / D$

RMT is valid at low energies:

$$
E \ll E_{T h}=\hbar / \tau_{\text {erg }} \quad \text { (Thouless energy) }
$$

Random matrix theory

$\hat{H}(t)=\hat{H}_{0}+\hat{V} \phi(t) \quad \begin{array}{r}\text { real symmetric } \\ N \times N \text { Gaussian }\end{array}$ \uparrow random matrices with statistically independent elements

In the end let $N \rightarrow \infty$

Technicalities

Zero order (diffusion)

$\Gamma \equiv\left\langle V_{l l^{\prime}}^{2}\right\rangle / \delta$ - one photon absorption rate (measure of perturbation strength)

Long-time, period-averaged dynamics:

$$
\left[\frac{\partial}{\partial t}-D \frac{\partial^{2}}{\partial E^{2}}\right] f(E, t)=0 \quad \begin{aligned}
& \text { time-dependent } \\
& \text { electron distribution } \\
& \text { (Wigner variables) }
\end{aligned}
$$

$D=\overline{\Gamma(d \phi / d t)^{2}}-$ energy diffusion coefficient

$$
W_{0} \equiv \frac{\partial}{\partial t} \int E f(E, t) d E=\frac{D}{\delta}-\underset{\text { absorgti }}{\text { absit }}
$$

One-loop correction

$$
\begin{aligned}
& W(t)=\frac{D}{\delta}+\frac{\Gamma}{\pi} \int_{0}^{t} \dot{\phi}(t) \dot{\phi}(t-\tau) C_{t-\tau / 2}(\tau,-\tau) d \tau \\
& \underbrace{}_{\text {large }} \overbrace{\text { small (?) correction }} \\
& \text { zero-order }
\end{aligned}
$$

Cooperon keeps track of the quantum interference:
$C_{t}\left(\tau_{1}, \tau_{2}\right) \equiv \theta\left(\tau_{1}-\tau_{2}\right) \exp [-\int_{\tau_{2}} \frac{\Gamma}{2} \underbrace{[\phi(t+\tau / 2)-\phi(t-\tau / 2)]^{2}} d \tau]$
dephasing rate

Periodic perturbation

$$
\begin{gathered}
\phi(t)=\sum_{n=1}^{\infty} A_{n} \cos \left(n \omega t-\varphi_{n}\right) \quad W_{0}=\frac{\Gamma \omega^{2}}{2 \delta} \sum_{n} n^{2} A_{n}^{2} \\
C_{t}\left(\tau_{1}, \tau_{2}\right) \approx \exp \left[-\Gamma\left(\tau_{1}-\tau_{2}\right) \sum_{n=1}^{\infty} A_{n}^{2} \sin ^{2}\left(n \omega t-\varphi_{n}\right)\right]
\end{gathered}
$$

If $\varphi_{n}=n \varphi$ the exponent can vanish at $t_{k}=\frac{\varphi+k \pi}{\omega}$
No-dephasing points give a large negative contribution to the integral:

$$
W(t)-W_{0} \sim-\omega^{2} \sqrt{\Gamma t}
$$

Time-reversal symmetry
 $\varphi_{n}=n \varphi \Leftrightarrow \phi\left(t-t_{0}\right)=\phi\left(-t-t_{0}\right)$

Average dephasing rate versus time:

T-symmetry: yes

T-symmetry: no

Monochromatic perturbation: T-symmetry always a very special case

Two loops

There is a contribution from diffusons:
$D_{\tau}\left(t_{1}, t_{2}\right) \equiv \theta\left(t_{1}-t_{2}\right) \exp \left[-\int_{t_{2}}^{t_{1}} \Gamma[\phi(t+\tau / 2)-\phi(t-\tau / 2)]^{2} d t\right]$
For a periodic perturbation:
$D_{\tau}\left(t_{1}, t_{2}\right) \approx \exp \left[-2 \Gamma\left(t_{1}-t_{2}\right) \sum_{n=1}^{\infty} A_{n}^{2} \sin ^{2} n \omega \tau\right]$
No-dephasing points are always present, regardless of the time-reversal symmetry...

$$
W(t)-W_{0}=-\frac{\omega^{2} \delta}{24 \pi^{2}} t
$$

Incommensurate periods

$$
f(t)=\sum_{n=1}^{d} A_{n} \cos \left(\omega_{n} t-\varphi_{n}\right) \quad \gamma_{i}=\sum_{n} \sin ^{2}\left(\omega_{n} t+\varphi_{n}\right) A_{n}^{2}
$$

dephasing rate:

Phase relationships do not matter that much

Almost-no-dephasing points contribute:

$$
W(t)-W_{0} \sim-\omega^{2} \int_{1 / \Gamma}^{t} \frac{\Gamma d t_{1}}{\sqrt{\left(\Gamma_{1}\right)^{d}}} \quad \begin{aligned}
& \text { A-dimensional weak } \\
& \text { Anderson localization }
\end{aligned}
$$

Conclusions...

1. A quantum-mechanical system under a timedependent perturbation may be subject to dynamic localization in energy space.
2. It depends both on the model for the unperturbed system and the perturbation.
3. We have studied one-loop correction to the usual Fermi-Golden-Rule dissipation rate for a chaotic system described by RMT

...conclusions

4. For a perturbation with d incommensurate frequencies the correction can grow arbitrarily with time if $d=1,2$ (analogously to spatial localization in d-dimensional disorder)
5. For commensurate frequencies phase relationships matter:
6. Time-reversal symmetry: the "dimensionality" is effectively lowered
7. No time-reversal: the correction is small

$$
\begin{aligned}
& \text { A stationary analogy }
\end{aligned}
$$

- Take the original levels E_{l} of \hat{H}_{0}
- Replicate them into a lattice with a shift $E_{l, s}=E_{l}-s \hbar \omega$
- Couple neighboring sites with \hat{V}

Why RMT is not KQR

- Quantum rotor: $\psi_{l}=e^{i \theta}, V(\theta)=\cos \theta$, $V_{l^{\prime}} \propto \delta_{l, l \pm 1}-$ out of resonance $V(t) \propto \delta(t-n T)$ - all Fourier harmonics $V^{(s-s)}$
- Particle in a box: $\psi_{l}=\sin l \theta, V(\theta) \propto \cos \theta$, $V_{l l^{\prime}} \propto 1 /\left|l-l^{\prime}\right|-$ long-range
- Random matrix: $V_{l l^{\prime}} \propto$ const but we want few Fourier harmonics $V^{\left(s-s^{\prime}\right)}$

Spatial localization

Quantum correction to the diffusion coefficient of electrons in disorder

$d=1: \quad L_{\text {loc }} \sim v D_{0} \sim l$
$d=2: \quad L_{\text {loc }} \sim l \exp \left(v D_{0}\right)$
$d \geq 3$: no localization in weak disorder

