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Statistical Mechanics
PURE SYSTEMS: pretty well understood

add disorder

STRONGLY DISORDERED SYSTEMS

???
• disorder dominates over entropy

• what is the ground state?

• metastability

• very slow dynamics

Examples

• glasses : spin-glass, vortex-glass, electron-glass, structural glass

• random field magnet

• elastic systems in disorder
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Current understanding of disordered systems
Still many puzzles despite 30 years of research. . .

• simulations

• very few exact solutions

• phenomenological models (droplet-picture)

• mean-field approximation
unclear of whether that applies to any real physical system

Recent advances

• for elastic manifolds in random media

• advantage: approachable by other (analytical)
methods, while containing all ingredients of
strongly disordered systems
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Physical Realizations
Domain-walls in magnets

(‘‘random bond’’)  

defect

‘‘random field’’

x

u(x)

Contact line of liquid Helium/water

x

 (  )u  x
Cr
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Depinning of
contact line
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Pictures courtesy of
S. Moulinet, E. Rolley
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Vortex-lattice/Bragg glass

u(x)

x

Charge Density wave

Cracks, earthquakes, directed polymer (KPZ),. . .
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Model and Observables
u   x

x

(   )

Displacement field x∈ Rd −→ u(x) ∈ RN

↑ ↑
coordinate displacement-field

Elastic energy: Hel =
∫

ddx
1
2
[∇u(x)]2

Disorder energy HDO =
∫

ddxV(u(x),x)

with correlations (N = 1) V(u,x)V(u′,x′) = δ d(x−x′)R(u−u′)

Observables
roughness ζ [u(x)−u(x′)]2 ∼ |x−x′|2ζ

full probability-distribution function
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How to treat disorder? The replica-trick
Example: free energy averaged over disorder

F = lnZ

But how to calculate ?

lnZ = lim
n→0

1
n

(
enlnZ −1

)
= lim

n→0

1
n
(Z n−1)

n times replicated system

“Replica Hamiltonian”

H [u] =
1
T

n

∑
a=1

∫
ddx

1
2
[∇ua(x)]

2− 1
2T2

n

∑
a,b=1

∫
ddxR(ua(x)−ub(x))

Dynamic formulation or supersymmetry could be used instead.
(No problem n→ 0.)

7



The problem in the treatment of disorder: dimensional
reduction

“Theorem” (Efetov, Larkin 1977): A d-dimensional disordered system
at zero temperature (T = 0) is equivalent to all orders in perturbation
theory to a pure system in d− 2 dimensions at finite temperature.
(“Holds” under quite general assumptions.)

Example: Elastic manifolds in disorder
The thermal 2-point function becomes〈

[u(x)−u(0)]2
〉
∼ |x|2−d −→ [u(x)−u(0)]2 ∼ x4−d

roughness exponent

ζ =
4−d

2

Counter-example:
3d disordered Ising-model at T = 0 is ordered; in contrast to the 1d
Ising-model without disorder at T > 0.
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The Larkin-length

L

Be the disorder force Fx gaussian, with correlation length r. Typical
energy due to disorder on segment

EDO = f̄

(
L
r

)d/2

Elastic energy Eel = cLd−2

Balance energies EDO = Eel at L = Lc (Larkin-length)

Lc =
(

c2

f̄ 2
rd

) 1
4−d

d < 4: Membrane pinned by disorder on scales larger than the Lc 9



Why YOU need a functional RG to survive in a
disordered world

Old idea: Wegner, Houghton (1973)

For disordered systems: D. Fisher (1985)

Larkin’s argument:
d = 4 is critical dimension

Make an ε = 4−d expansion

Dimensional reduction says:

ζ =
4−d

2

Even though wrong for d < 4, it correctly says: field is
marginal in d = 4.

NEED FOR A FUNCTIONAL RENORMALIZATION
GROUP!
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Functional renormalization group (FRG)
(D. Fisher 1986)

H [u] =
∫

x

1
2T

n

∑
a=1

[∇ua(x)]
2 − 1

2T2

n

∑
a,b=1

R(ua(x)−ub(x))

Functional renormalization group equation (FRG) for the disorder
correlator R(u):

∂`R(u)=(ε −4ζ )R(u)+ζuR′(u)+
1
2
R′′(u)2−R′′(u)R′′(0)

Solution for force-force correlator −R′′(u):

renormalization

uu

−R’’(u) −R’’(u)

Cusp: R′′′′(0) = ∞ appears after finite RG-time (at Larkin-length)

R′′
L>Lc

(0) 6= dim.red.
eventhough formally
∂`R′′(0) = (ε −2ζ )R′′(0)
(≡ dim.red.)


Renormalization of
whole function overcomes
dimensional reduction
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Why is a cusp necessary?
Consider simple model with one mode

H [u] =
1
2

q2u2+
√

ε V(u)

Physics beyond the Larkin-length Lc: multiple minima
H [u]

u

H [u]

u

before Lc after Lc

This implies that for all ε and some u

d2

du2
H [u] = q2+

√
εV ′′(u) < 0

Thus R′′′′(0) = V ′′(u)V ′′(u′)
∣∣∣
u=u′

= ∞
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Beyond leading order (1 loop) ???
As a consistent theory, it should

• allow for systematic corrections beyond 1 loop

• be renormalizable

• and thus make universal predictions.

A puzzle since 1986 . . .

Next order involves R′′′(0) = ?
u

−R’’(u)

lim
u>0
u→0

R′′′(u) =− lim
u<0
u→0

R′′′(u)

Solution of the puzzle
• 2-loop statics: PRL 76 (2001) 1785

• 2-loop driven dynamics: PRL 76 (2001) 1785,
cond-mat/0205108

• large N: cond-mat/0109204
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2 loop statics

∂`R(u)= (ε −4ζ )R(u)+ζuR′(u)+
1
2
R′′(u)2−R′′(u)R′′(0)

+
1
2

[R′′(u)−R′′(0)]R′′′(u)2 –
1
2

R′′′(0+)2R′′(u)

Result of sloop-algorithm, recursive construction, super-symmetry,
background method. Only result consistent with:

• renormalizability
R’’’R’’’

R’’

• potentiality (forces are gradient of a potential)

Solution for the fixed point
• periodic case: Ad = ε

18+ 7ε2

108
(universal amplitude)

• random field ζ = ε

3 (exact)

• random bond
ζ = 0.20829804ε +0.006858ε2

roughness ζ for random bond
d ε ε2 simulation

3 0.208 0.215±0.003 0.22±0.01
2 0.417 0.444±0.007 0.41±0.01
1 0.625 0.687±0.02 2/3
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2 loops, N components

5 10 15 20

0.2

0.4

0.6

0.8

ζ

N

1-loop
2-loop

ζ =
1

zKPZ

zKPZ +ζKPZ = 2

∂`R(u) = (ε −4ζ )R(u)+ζuR′(u)+
1
2

R′′(u)2−R′′(0)R′′(u)+
N−1

2
R′(u)

u

(
R′(u)

u
−2R′′(0)

)
+

1
2

(R′′(u)−R′′(0)) R′′′(u)2+
N−1

2
(R′(u)−uR′′(u))2(2R′(u)+u(R′′(u)−3R′′(0)))

u5

−R′′′(0+)2

[
N+3

8
R′′(u)+

N−1
4

R′(r)
u

]
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Solution at large N

~u(x) ∈ RN, e.g. directed polymer in N dimensions

Calculate free energy in presence of an external field; do Legendre-
transform; obtain self-consistent equation for effective action (exact)

R̃′(u2) = R′(u2+2TI1+4I2(R̃′(u2)− R̃′(0))
)

R(. . .) bare disorder
R̃(. . .) effective (renormalized) disorder
T = temperature
In =

∫ ddk
(k2+m2)n

Functional renormalization group equation (FRG)

−m
∂

∂m
R̃(x) = (ε−4ζ )R̃(x)+2ζxR̃′(x)+

1
2
R̃′(x)2− R̃′(x)R̃′(0)+

εTR̃′(x)
ε + R̃′′(0)

complicated non-linear partial differential equation: solved analytically;
cusp under analytical control.
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Replica Symmetry Breaking (RSB)
No symmetry-breaking field (Mézard, Parisi 1992). Gaussian
variational ansatz exact at N = ∞:

R
(
(ua−ub)2

)
= σabuaub

RS: σab = σ ∀ a 6= b: dimensional reduction
RSB:

σab =




Infinit-step RSB: σab→ [σ ](z), z∈ [0,1]

z= overlap,
{

z= 0 distant states
z= 1 nearby states

Observables are constructed out of [σ ](z)

〈uku−k〉=
1

k2+m2

1+
1∫

0

dz
z2

[σ ](z)
k2+m2+[σ(z)]
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RSB and FRG, the relation

zm cz

σ m 2z[   ](  ) + 

determined by UV−cutoff

2m

10
z

determined by IR−cutoff
FRG

• FRG gives the contribution of the RSB-states with minimal overlap
• RSB: spontaneous symmetry breaking
• FRG: explicit symmetry breaking by applied field
• green part is RG-invariant: m d

dm([σ ](z)+m2) = 0

• RSB-curve can be scanned by varying m2

• RSB-reconstruction-formula (out of FRG-objects)〈
uaub

〉∣∣
k=0 =

R̃′
m(0)
m4

+
∫ mc

m

dR̃′
µ(0)
µ4

+
1

m2
c
− 1

m2

• no hierarchic matrix was ever inverted!
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1/N-calculations
Results are exact in dimension d
Physically interesting for directed polymer d = 1 (equivalent to KPZ).
However, at N = ∞: roughness ζ = 0.
Non-trivial exponent needs 1/N-expansion.

Renormalized disorder at order 1/N:

δ R̃(~u2) =
1
N

[
+ + + +

+T
(

+ + +
)

+T2
(

+ +
)]

= R′′(χab)(1−4I2(p)R′′(χab))
−1

, = R(χab)
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The β -function at order 1/N

−m ∂

∂mR̃(x) = (ε−4ζ )R̃(x)+2ζxR̃′(x)+ 1
2R̃

′(x)2− R̃′(x)R̃′(0)+ εTR̃′(x)
ε+R̃′′(0) +

1
N× [

]+O( 1
N2)

. . . remains to be analyzed
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Summary
• higher order calculations: very cumbersome, but under control

• exact solution of the large-N limit

• cusp analytically under control

• precise relation to RSB

• 1/N-expansion
Outlook• random field

• dynamics: 2-loop calculations necessary to account for experimental
and numerical data

• anisotropic depinning, relation to branching processes

COME TO NEXT WEEK!
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