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Viscosity increases by 14-16 orders of magnitude as
the temperature of a supercooled liquid is decreased by
about 100 degrees
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Non-Debye relaxation of fluctuations in supercooled liquids

Multi-step decay of

density correlation function
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Connection between short-time (beta regime) and
long-time (alpha regime) dynamics ??




Recently, many experimental, numerical and theoretical
studies have investigated the existence of a length scale
associated with dynamic heterogeneity that describes
the spatial heterogeneity of the local relaxational kinetics

In supercooled liquids.
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Relevance to metallic glasses?

Studies of the “glass transition”. The main interest Is

In understanding the dynamics of the supercooled

liquid as the glass transition is approached from the
liquid side.

Studies of metallic glasses: The main interest Is In
understanding the structural and mechanical
properties of the glassy state.



dinter-particle potential in metallic glasses is not very different
from those used in studies of supercooled liquids.
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dSome met glass systems can be maintained in the supercooled
liquid state for long times
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How do the properties of the met glass depend on the
temperature of the liquid from which it is quenched ?




The glass obtained by quenching from the supercooled liquid
at temperature T is one of the “Iinherent structures” (local minima
of the potential energy) sampled by the ligquid at temperature T.

Many studies suggest a close connection between the
dynamics of the liquid and properties of the inherent
structures sampled by It.

If the dynamics of the liquid can be understood from the
properties of the inherent structures, then it should be possible
to obtain useful Information about the properties of a metallic

glass from those of the liquid from which it is quenched.
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Probing a Critical Length Scale at the Glass Transition

Majid Mosayebi, Emanuela Del Gado, Patrick g, and Hans Christian Ottinger

Polymer Physics, ETH Ziirich, Department of Materials, CH-8093 Ziirich, Switzerland
i Recerved 30 March 2010; published 21 May 2010)

We give evidence of a clear structural signature of the glass transition, in terms of a static correlation
length with the same dependence on the system size, which is typical of critical phenomena. Our approach
18 to mtroduce an external, static perturbation to extract the structural information from the system’s
response. In particular, we consider the transformation behavior of the local minima of the underlying
potential energy landscape (mnherent structures), under a static deformation. The fimte-size scaling
analysis of our numerical results indicate that the correlation length diverges at a temperature 7., below
the termperatures where the systern can be equilibrated. Our nurnerical results are congistent with random
first order theory, which predicts such a divergence with a critical exponent » = 2/3 at the Kauzmann
temperature, where the extrapolated configurational entropy vanishes.

This work suggests that it is possible to define a characteristic
length scale from the transformation behavior of an inherent
structure (metallic glass?) under a static deformation, and this
length scale grows as the temperature of the liquid from which
the inherent structure (glass?) was obtained is decreased.



Connection between dynamic heterogeneity in supercooled
liguids and “weak spots” in metallic glasses?

Dynamic heterogeneity: Coexistence of “slow” and “fast”
regions.

“Weak spots”: Liquid-like sites (Egami)
Shear Transformation Zones (Falk)
“Rattlers” (O’'Hearn)
“Clusters” with low activation barrier (Rodney)
Non-affine regions (Sengupta)
Localized eigenvectors of the Hessian matrix
with small eigenvalues (Harrowell, Reichmann)

Methods developed in studies of dynamic heterogeneity may
be useful in studies of “weak spots” in metallic glasses.




Dynamic Heterogeneity:

Four-point Correlation function:
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ga(r,t) = (9p(0,0)dp(0,¢)dp(r,0)dp(r,¢))
— {0p(0,0)0p(0,1))(dp(r,0)dp(r, t))

CD, Indrani, Ramaswamy and Phani (1991}
x4(t) = ga(k = 0,¢)

o v4(t) peaks at t = 7(T). | o a-relaxation time

o V4i(T) = x4(t = 7) and 7(T) increase as T is de-
creased toward the “mode-coupling transition
temperature” 1.



Biroli and Bouchaud (2004); Berthier, Biroli, Bouchaud,
Kob, Miyazaki, Reichman (2006):

Growth of x4(T) and 7(T) is associated with a dy-
namical correlation length &(7T') that grows as T is
decreased toward 1,.

(r) ~ (T @)~ () e

r(T) ~ (TTCTC)éwiﬁ/”

The system-size dependence of x4 (7T") and 7(7") in the
temperature range in which they exhibit power-law
orowth should exhibit finite-size scaling similar to
that observed near a continuous phase transition.



Finite-size Scaling Analysis of Four-point
Susceptibility

Smarajit Karmakar, CD, Srikanth Sastry, PNAS 106, 3675 (2009)

Kob-Andersen binary (80:20) Lennard-Jones mixture
easa = 1.0, epp = 0.0, e4p = 1.5;

A4 = 1.0? (OTBR — 0.88? AR — 0.80.

Number density p= 1.2

Temperature range: 0.45 <71 < 1.0

Number of particles: 40 < N < 1000

Newtonian dynamics simulations in (N, V,T) ensemble
with periodic boundary conditions.



10

I'- and N-dependence of y4
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Inset:
Time-dependence
of X4 at different
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N-dependence of y4(T, N) for T = 0.45, 0.47, 0.48,
0.50, 0.52, 0.55, 0.60, from top to bottom

Xﬁ increases with /N and then saturates.




Finite-size scaling for y4(T, N)
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Xa(T, L) = xo(T)f(L/E(T)), with xo(T') o< (T =T2)77,
and f(z) — 1 as x — oo, f(z) oc 7" as z — 0.
Plots of x4(T, L) /xo(T) vs. L/&(T) or N/Ve with V; =
¢ for different N, T should collapse to the same scaling
curve,



A different way of determining the correlation length £(T’)

54(a.t) = 1{Qla, )G (~a,9)

Gat = 2 £ Oulr,0) - )l
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Good agreement with FSS results
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S. Karmakar, CD and S. Sastry,
Phys. Rev. Lett. (in press)
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This behaviour is inconsistent with conventional
finite-size dynamical scaling
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Adam-Gibbs Relation
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The dependence of the (X relaxation time on both T and N is
well described by the Adam-Gibbs relation



Summary

1. The dependence of x4 (T, Wyon T and N exhibits the expected
finite-size scaling behaviour, confirming the existence of a
growing dynamic correlation length.

2. The dependence of {7, W}on T and N is not consistent with
the expected finite-size scaling behaviour, suggesting that the
growth of the (¥ relaxation time is not governed solely by this
correlation length.

3. The dependence of the relaxation time on the configurational
entropy Is well described by the Adam-Gibbs relation as both
T and N are varied, indicating that the configurational entropy
plays a crucial role in determining the relaxation time even for
T much higher than the mode-coupling transition temperature.




s there a characteristic time scale in-glassy dynamics

that exhibits dynamic finite-size scaling with the
correlation length (1) ?
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Short-time (3 relaxation: ‘caging’ regime.
Transient formation of ‘cages’ by the neighbors of a particle.



Time scale of 3 relaxation: Time at the minimum of

dIn d< ||A;’|2> [Stein and Andersen, PRL 101, 267802 (2008) ]
n




Dependence of 73 the time scale LEA A
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Finite-size scaling for 73(7", N)
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3(T) o< E(T)%, z ~0.9

First clear demonstration of

dynamic finite-size scaling

In the dynamics of a realistic
glass-forming liquid.

i E @ Finite $1ze Scahng _
BT Scaling Analysis

Length scale is the same | . l
as that obtained from the | ..., ; i
finite-size scaling analysis - . '
3.0 |

of XE(T: N) I ) _
2.0 e i

1 1 | 1 | 1 | 1 | 1 |
'8.40 0.50 0.60 0.70 0.80 0.90



Conclusions

“*Dynamics in the short-time, 5 - relaxation regime is
governed by a growing dynamic length scale.

Inhomogeneous mode-coupling theory (Berthier et al., 2006) predicts
the presence of a growing length scale in the short-time dynamics.
The observed value of the exponent for the growth of this length scale

Is different from the prediction of IMCT.

**This length scale is the same as the dynamic correlation
length obtained from the finite-size scaling of x4(T, N),
suggesting a close connection between short-time dynamics
and dynamic heterogeneity at the time scale of (¥ relaxation.

A similar connection has been suggested in Widmer-Cooper et al.
Nature Physics 4, 711 (2008), in Brito and Wyart, JISTAT L08003 (2007),

and in Candelier et al. arXiv0912:0193.



