

Shear Banding in Amorphous Solids

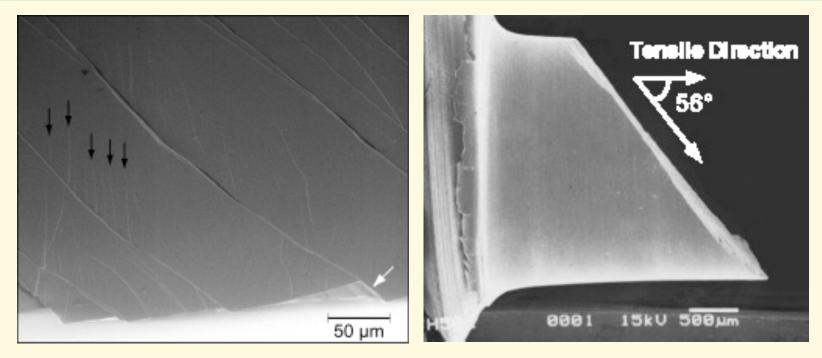
Michael L. Falk

Materials Science and Engineering Johns Hopkins University

Yunfeng Shi Materials Science and Engineering Rensselaer Polytechnic Institute

Shear Bands in Metallic Glass

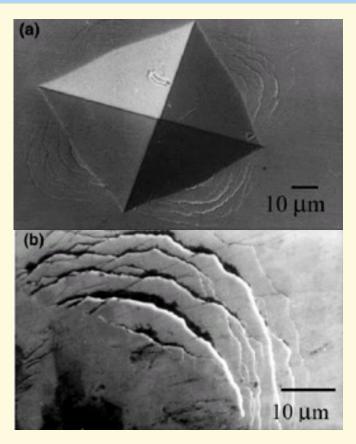
strain localization (shear banding) is the primary failure mode



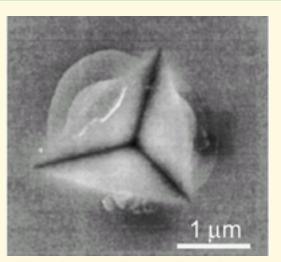
Electron Micrograph of Shear Bands Formed in Bending Metallic Glass Hufnagel, El-Deiry, Vinci (2000) Quasistatic Fracture Specimen Mukai, Nieh, Kawamura, Inoue, Higashi (2002)

18 May 2010

Indentation Testing of Metallic Glass

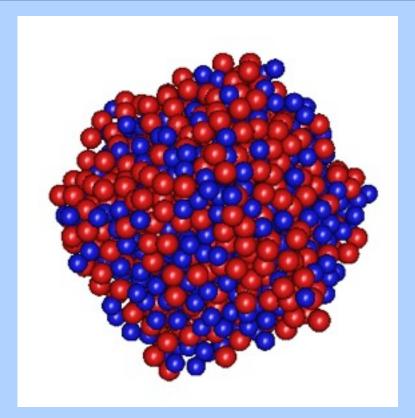


"Hardness and plastic deformation in a bulk metallic glass" Acta Materialia (2005) U. Ramamurty, S. Jana, Y. Kawamura, K. Chattopadhyay



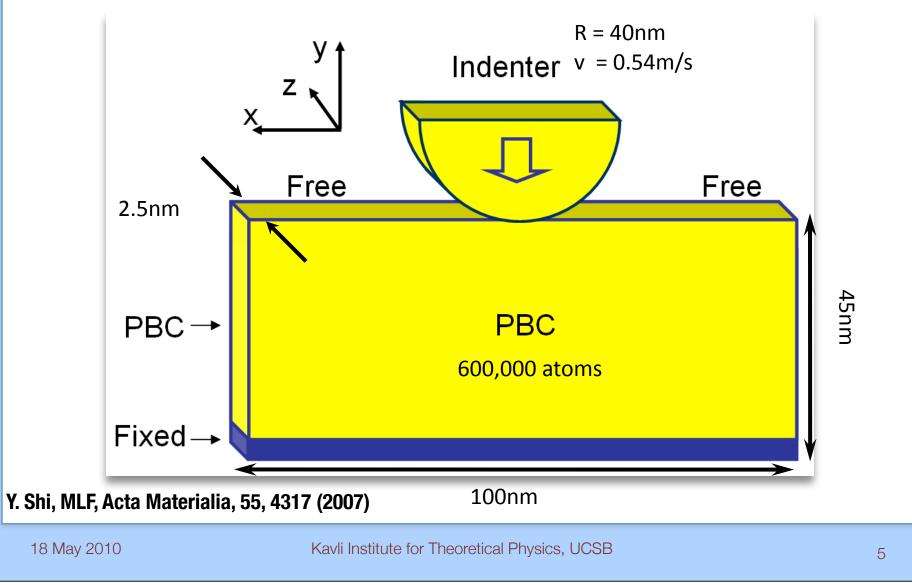
"Nanoindentation studies of shear banding in fully amorphous and partially devitrified metallic alloys" Mat. Sci. Eng. A (2005) A.L. Greer., A. Castellero, S.V. Madge, I.T. Walker, J.R. Wilde

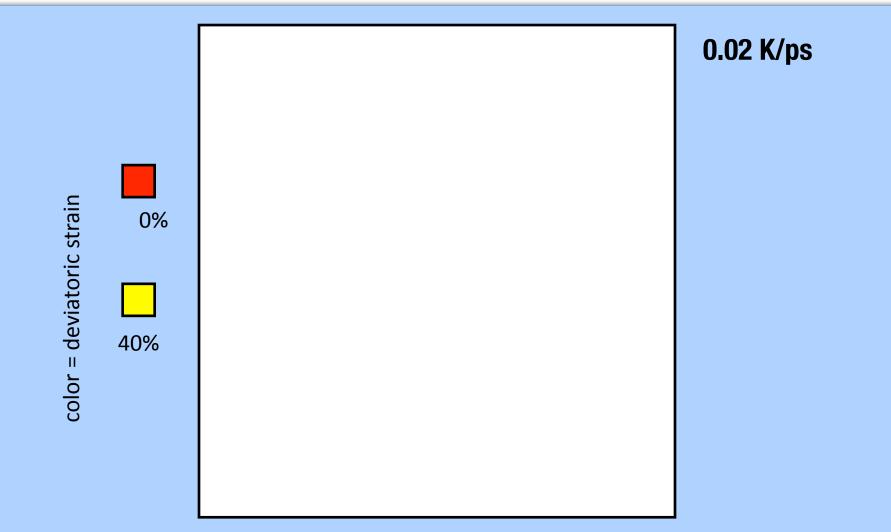
Simulated System: 3D Binary Alloy



- Wahnstrom Potential (PRA, 1991)
- Rough Approximation of Nb₅₀Ni₅₀
- Lennard-Jones Interactions
- Equal Interaction Energies
- Bond Length Ratios:
 - $a_{NiNi} \sim {}^{5}/_{6} a_{NbNb}$
 - $a_{NiNb} \sim {}^{11}/_{12} a_{NbNb}$
- T_g ~ 1000K
- Studied previously in the context of the glass transition (Lacevic, *et. al.* PRB 2002)
- Unlike crystalline systems, it is not possible to skip simulating the processing step
- Glasses were created by quenching at 3 different rates: 50K/ps, 1K/ps and 0.02 K/ps

Simulations performed using molecular dynamics code across 64 nodes of a parallel cluster

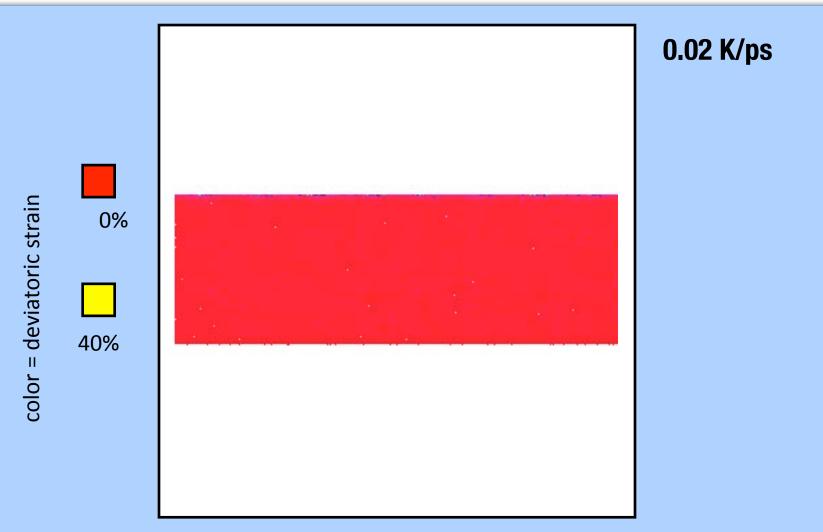




Y. Shi, MLF, Acta Materialia, 55, 4317 (2007)

18 May 2010

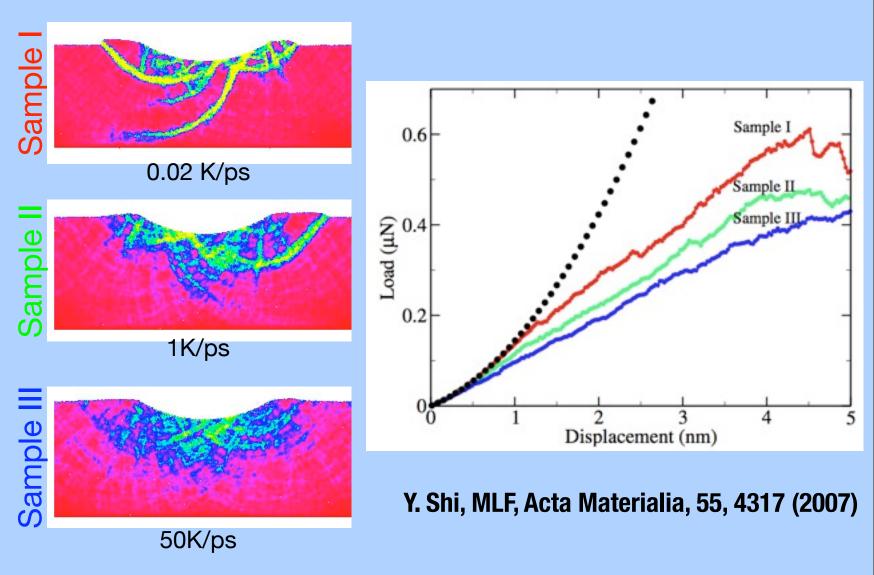
Kavli Institute for Theoretical Physics, UCSB



Y. Shi, MLF, Acta Materialia, 55, 4317 (2007)

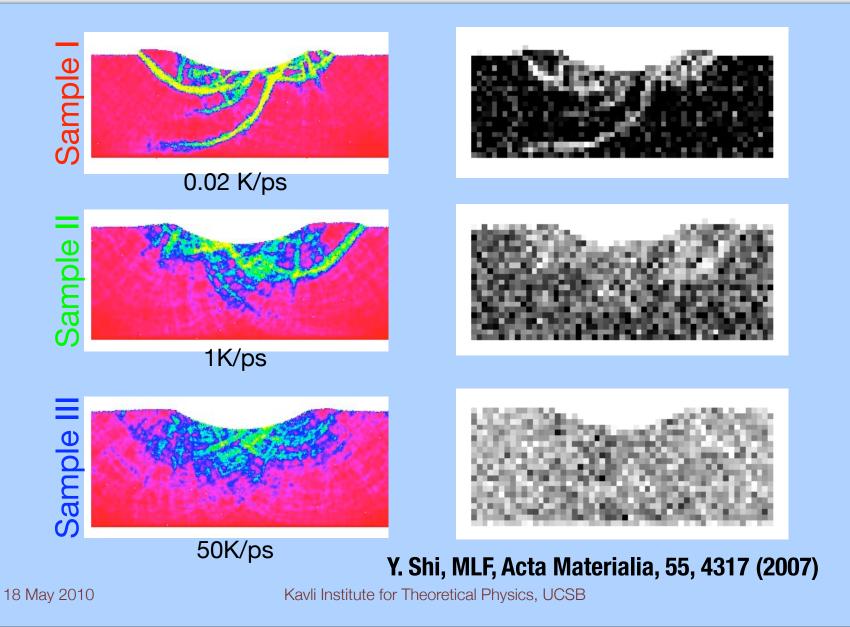
18 May 2010

Kavli Institute for Theoretical Physics, UCSB

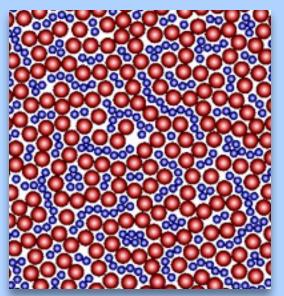


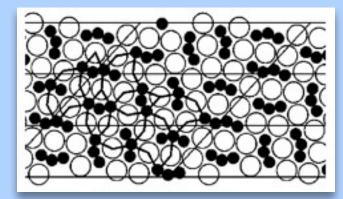
18 May 2010

Kavli Institute for Theoretical Physics, UCSB



2D Simulation System





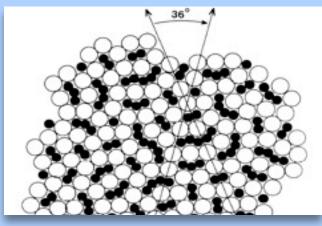
Lee, Swendsen, Widom (2001)

(Lancon et al, Europhys. Lett, 1986)

- 2D binary Lennard-Jones 12-6 potential
- Binary system with quasi-crystalline packing

45:55 composition, 20,000-80,000 atoms

 $T_{MCT} \approx 0.325$



Widom, Strandburg, Swendsen (1987)

Quantifying the Dependence of Localization on Quench Rate (2D)

- Performed 756 individual 2D uniaxial tensile test simulations at 0.1 $\rm T_g$
- 10 different quench schedules starting from equilibrium liquids
- 6-10 samples at each quench schedule
- Each of these 84 specimens was tested at 9 different strain rates spanning 2 orders of magnitude

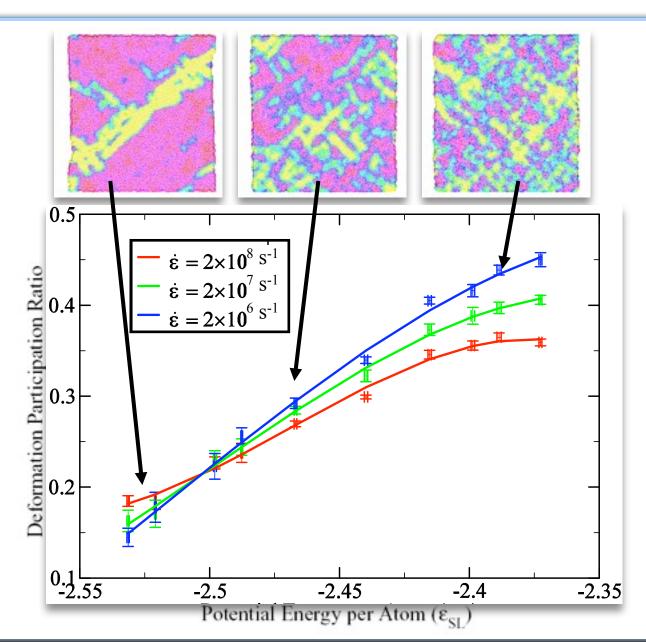
Quantification of Shear Localization

Deformation Participation Ratio

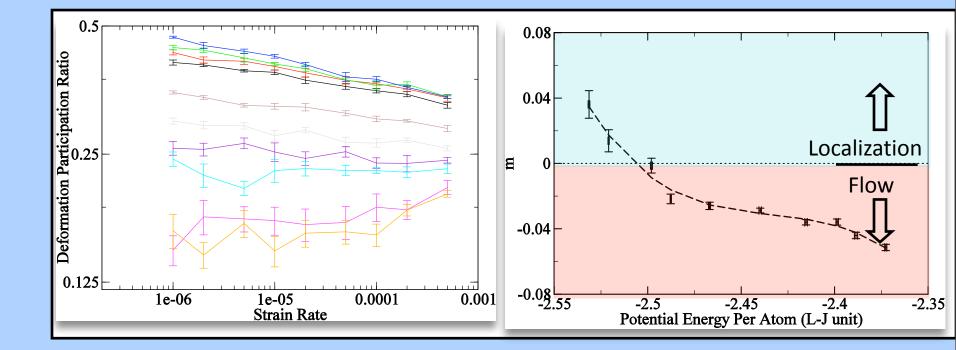
Participation Ratio:
 Percentage of
 material with a local
 shear strain larger
 than the nominal
 strain

- Low strain rate favors homogenous deformation in instantaneously quenched samples
- Low strain rate favors inhomogeneous deformation in gradually quenched samples.

Shi and Falk, PRL (2005)



Strain-rate sensitivity of DPR



 $DPR \approx A\dot{\epsilon}^m$

For $\mathcal{E} \rightarrow 0$ and system size $\rightarrow \infty$

m < 0: homogenous deformation

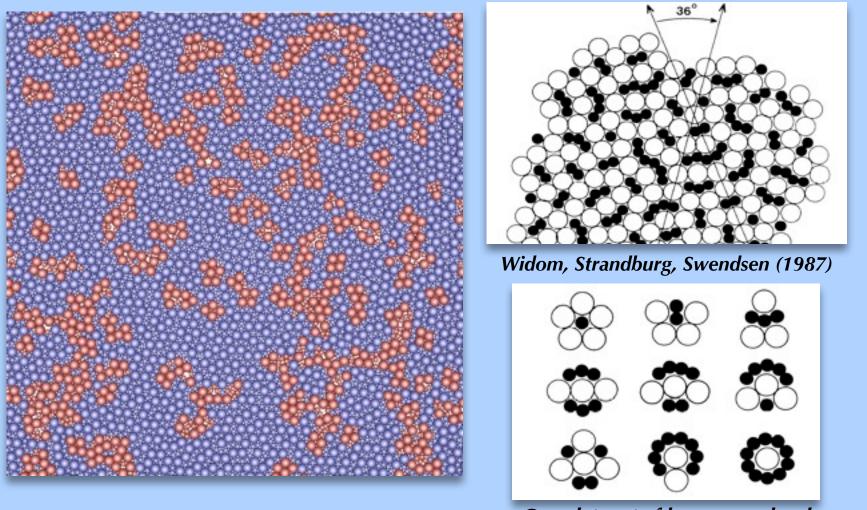
 $m \ge 0$: localized deformation

Shi and Falk, Scripta Mat (2005)

Kavli Institute for Theoretical Physics, UCSB

18 May 2010

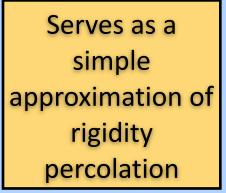
Local Structural Analysis



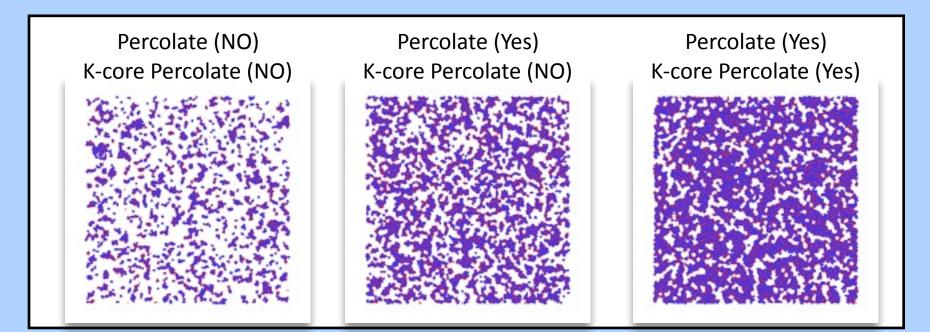
Complete set of low-energy local environments (Widom, 1987)

18 May 2010

K-core Percolation of SRO



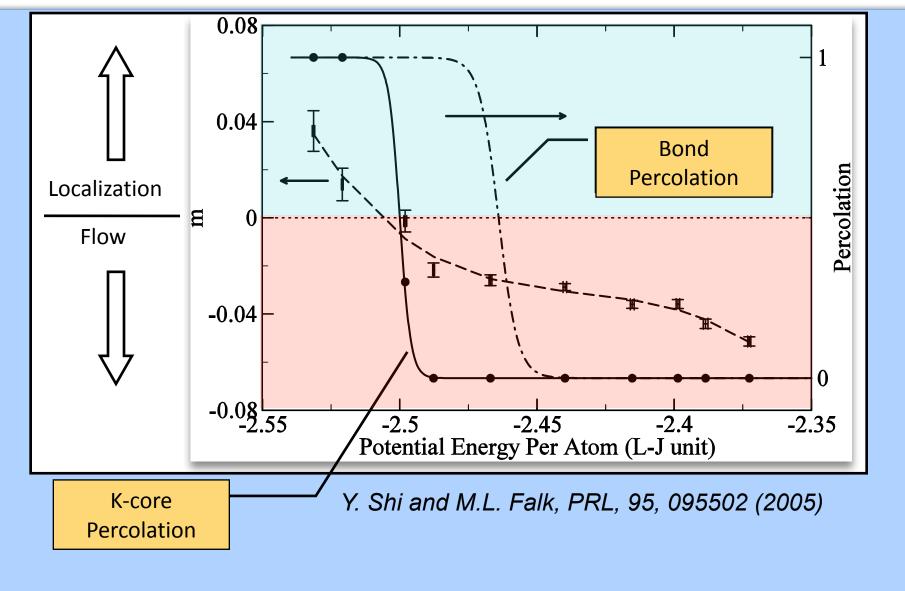
Schwarz, Liu and Chayes, arXiv:cond-mat/0410595, 2004



unstable

18 May 2010

K-Core percolation and



18 May 2010

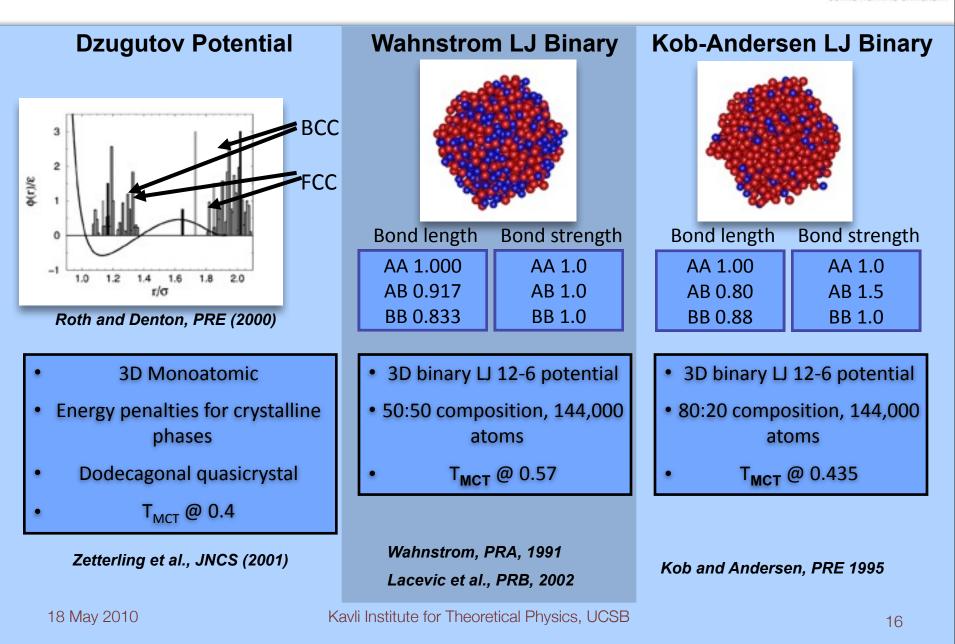
Kavli Institute for Theoretical Physics, UCSB

Tuesday, May 25, 2010

15

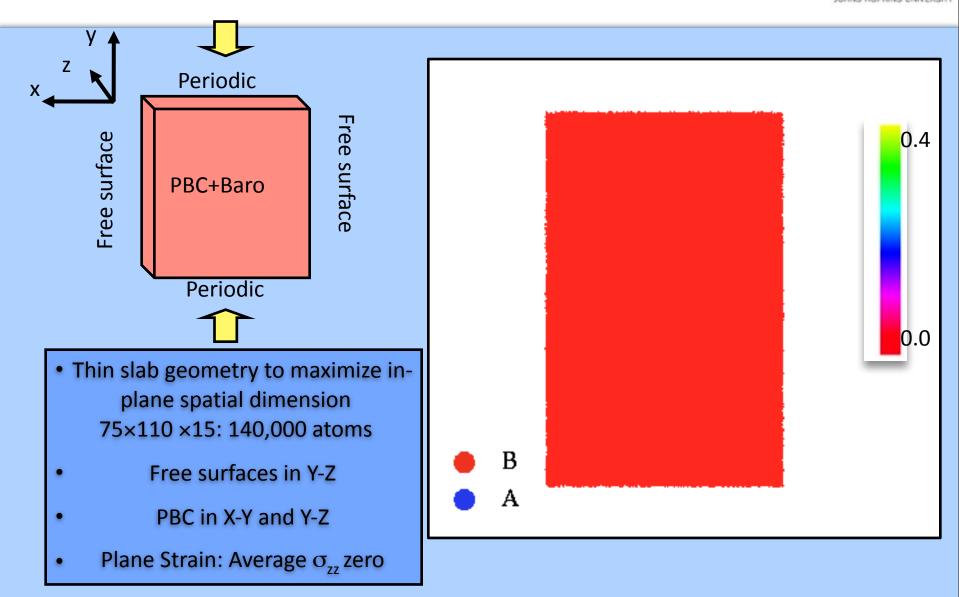
3D Simulation Potentials

WHITING

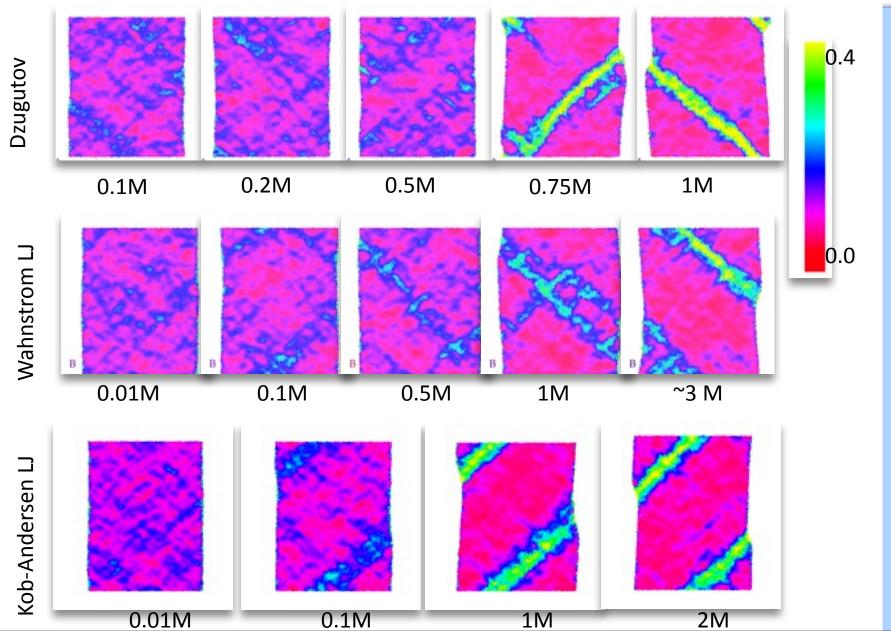


Tuesday, May 25, 2010

3D Uniaxial Compression Test



3D Uniaxial Compression Various Quench Times



Tuesday, May 25, 2010

DPR and Strain Rate Sensitivity



18 May 2010

Triangulated Coordination Shell Analysis of SRO

JOHNS HOPKINS UNIVERSITY

<u>Triangulated Coordination Shells</u>: Bonds by atoms within the coordination shell form only triangles. The center atom and the triangle has to form a space dividing tetrahedral.

Criterion: (From Euler's formula)

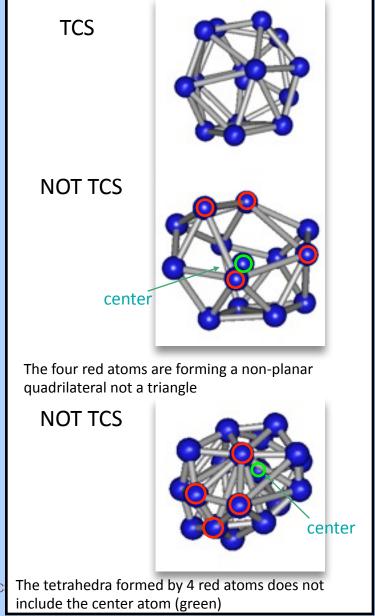
$$\sum_{q} (6-q) v_q = 12$$

q is the surface coordination number (from 3 to 8 for now)

 $\boldsymbol{v}_{\boldsymbol{q}}$ is the count of neighbors has surface coordination number \boldsymbol{q}

Glassy samples with lowest quenching rate

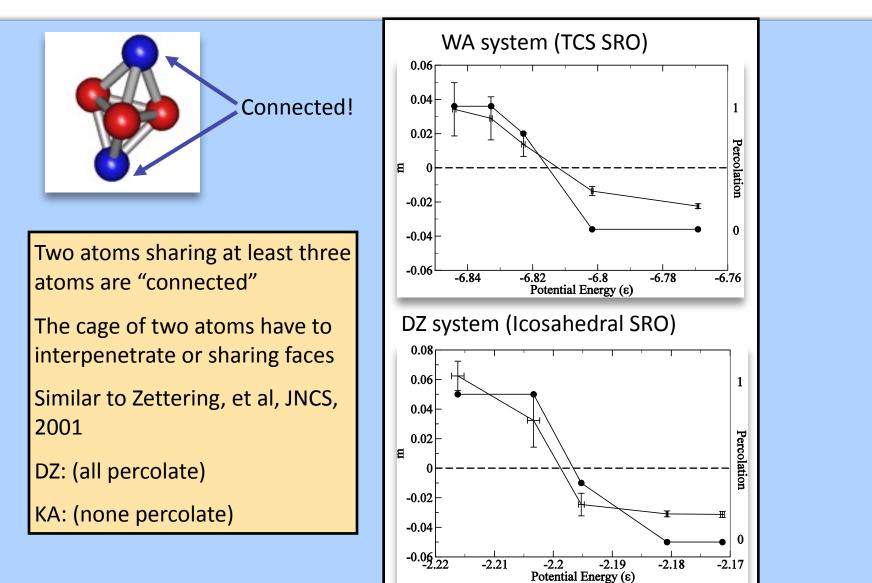
	TCS	lcosahedra
Dzugutov	25%	12%
Wahnstrom	13%	10%
K-A	3%	0.1%



18 May 2010

Kavli Institute for Theoretical Physic The tetra

3D Percolation Analysis



18 May 2010

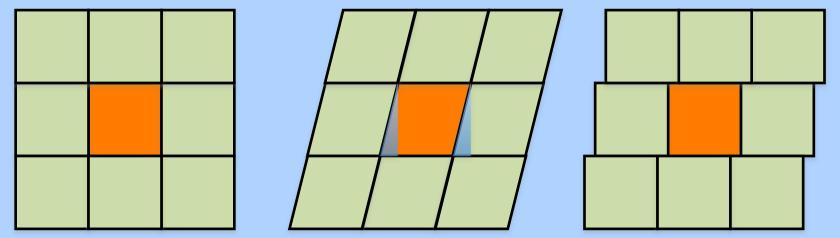
Short Range Order and Shear Bands

- Simulated glasses with higher degrees of topological SRO demonstrate a stronger tendency to localize strain.
- In more rapidly quenched samples localization decreases at lower strain rates.
- In more slowly quenched samples localization increases at lower strain rates.
- The transition from homogeneous to localized deformation in the quasi-static limit appears to correspond to the percolation of a backbone of SRO.
- How to unambiguously define the appropriate measure of SRO or MRO for a given system remains an open question.

Y. Shi and M.L. Falk, Physical Review Letters, 95, 095502 (2005) Physical Review B, 73, 214201 (2006) Acta Materialia, 55, 4317 (2007)

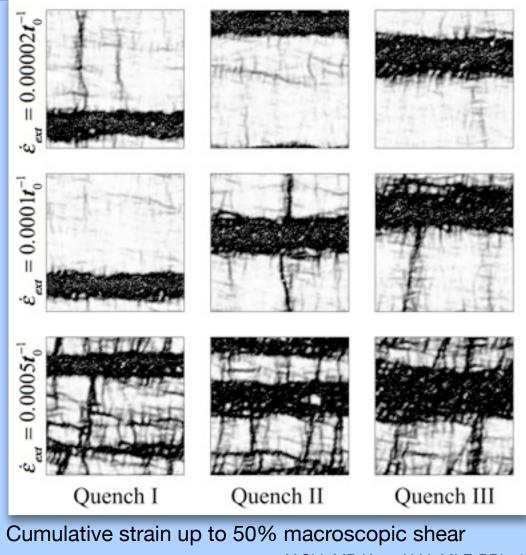
MD with Periodicity

 Simple shear is imposed maintaining periodicity using Lees-Edwards boundary conditions



 Simultaneously couple to a heat bath throughout so T is always much less than T_g.

Simulations in Simple Shear (2D)



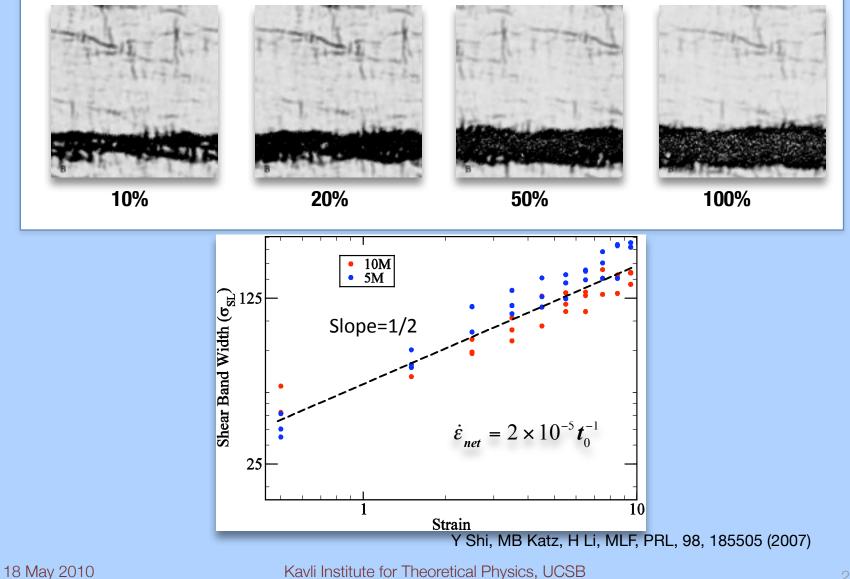
Y Shi, MB Katz, H Li, MLF, PRL, 98, 185505 (2007)

18 May 2010

2D Simple Shear: Broadening

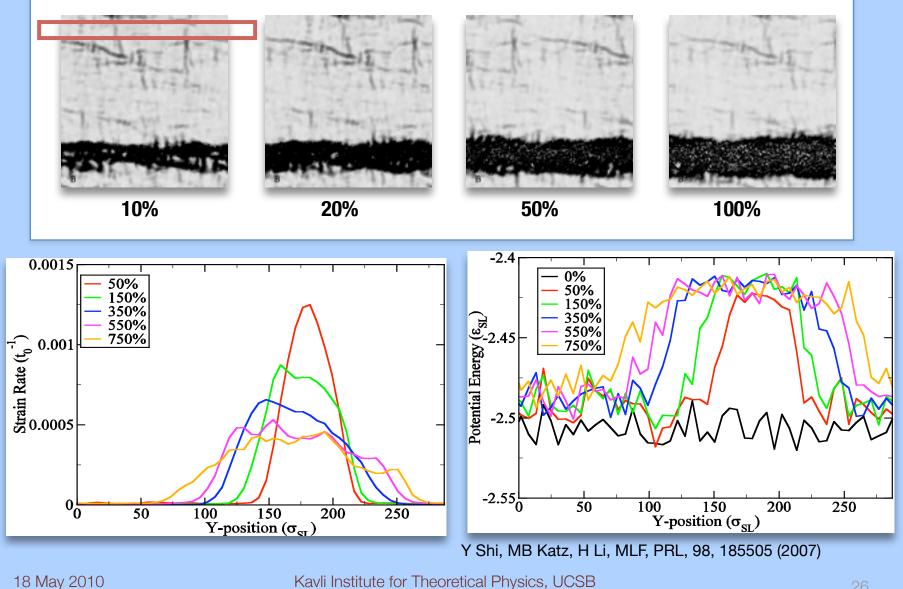
WHITING SCHOOL OF ENGINEERING

OHNS HOPKINS UNIVERSITY



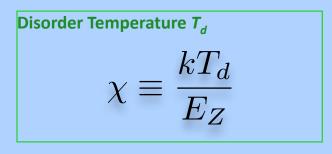
Tuesday, May 25, 2010

Development of a Shear Band



(Falk and Langer (1998), Falk, Langer and Pechenik (2004), Heggen, Spaepen, Feuerbacher (2005), Langer (2004), Lemaitre and Carlson (2004))

• Is there an intensive thermodynamic property (called χ here) that controls the number density of deformable regions (STZs)? $n_{STZ} \propto e^{-1/\chi}$



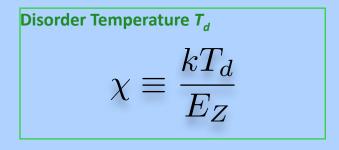
Free Volume
$$v_{f}$$

 $\chi \equiv rac{v_{f}}{V^{st}}$

(Falk and Langer (1998), Falk, Langer and Pechenik (2004), Heggen, Spaepen, Feuerbacher (2005), Langer (2004), Lemaitre and Carlson (2004))

- Is there an intensive thermodynamic property (called χ here) that controls the number density of deformable regions (STZs)? $n_{STZ} \propto e^{-1/\chi}$
- This would be an "disorder temperature" that characterizes structural degrees of freedom quenched into the glass.

$$\dot{\epsilon}_{ij}^{pl} = e^{-1/\chi} f_{ij} \left(s_{kl} \right)$$



Free Volume v
$$_{\!\scriptscriptstyle f}$$
 $\chi\equiv rac{v_f}{V^*}$

(Falk and Langer (1998), Falk, Langer and Pechenik (2004), Heggen, Spaepen, Feuerbacher (2005), Langer (2004), Lemaitre and Carlson (2004))

• Is there an intensive thermodynamic property (called χ here) that controls the number density of deformable regions (STZs)? $n_{STZ} \propto e^{-1/\chi}$

$$\dot{\epsilon}_{ij}^{pl} = e^{-1/\chi} f_{ij} \left(s_{kl} \right)$$

$$c_0 \dot{\chi} = 2s_{ij} \dot{\epsilon}_{ij}^{pl} \left(\chi_{\infty} \chi\right) - \kappa(T) e^{-\beta/\gamma}$$

Disorder Temperature T
$$_d$$

 $\chi \equiv rac{kT_d}{E_Z}$
Free Volume v_f
 v_f

(Falk and Langer (1998), Falk, Langer and Pechenik (2004), Heggen, Spaepen, Feuerbacher (2005), Langer (2004), Lemaitre and Carlson (2004))

- Is there an intensive thermodynamic property (called χ here) that controls the number density of deformable regions (STZs)? $n_{STZ} \propto e^{-1/\chi}$
- This would be an "disorder temperature" that characterizes structural degrees of freedom quenched into the glass.

$$\dot{\epsilon}_{ij}^{pl} = e^{-1/\chi} f_{ij} \left(s_{kl} \right)$$

$$c_0 \dot{\chi} = 2s_{ij} \dot{\epsilon}_{ij}^{pl} \left(\chi_{\infty} \chi \right) - \kappa(T) e^{-\beta/\chi}$$

$$\underbrace{\chi \equiv \frac{kT_d}{E_Z}}_{\text{Free Volume } v_f}$$

$$\chi \equiv \frac{v_f}{V^*}$$

(Falk and Langer (1998), Falk, Langer and Pechenik (2004), Heggen, Spaepen, Feuerbacher (2005), Langer (2004), Lemaitre and Carlson (2004))

- Is there an intensive thermodynamic property (called χ here) that controls the number density of deformable regions (STZs)? $n_{STZ} \propto e^{-1/\chi}$
- This would be an "disorder temperature" that characterizes structural degrees of freedom quenched into the glass.

Relating χ to the microstructure

- Consider a linear relation between the χ parameter and the local internal energy

$$C_{1}\chi = PE - PE_{0}$$
$$\dot{\varepsilon}_{pl} = e^{-1/\chi} f(s)$$
$$c_{0}\dot{\chi} = 2s\dot{\varepsilon}_{pl} (\chi_{\infty} - \chi) - \kappa e^{-\beta/\chi}$$

Is there an underlying scaling?

Tuesday, May 25, 2010

Relating $\boldsymbol{\chi}$ to the microstructure

- Consider a linear relation between the χ parameter and the local internal energy

$$C_{1}\chi = PE - PE_{0}$$
$$\dot{\varepsilon}_{pl} = e^{-1/\chi}f(s)$$
$$c_{0}\dot{\chi} = 2s\dot{\varepsilon}_{pl}(\chi_{\infty} - \chi) - \kappa e^{-\beta/\chi}$$

Is there an underlying scaling?

$$\frac{\dot{\varepsilon}_{pl}(y)}{\dot{\varepsilon}_{b}} = e^{1/\chi_{b} - 1/\chi(y)}$$

Relating χ to the microstructure

- Consider a linear relation between the χ parameter and the local internal energy

 $C_{1}\chi = PE - PE_{0}$ $\dot{\varepsilon}_{pl} = e^{-1/\chi}f(s)$ $c_{0}\dot{\chi} = 2s\dot{\varepsilon}_{pl}(\chi_{\infty} - \chi) - \kappa e^{-\beta/\chi}$

• Is there an underlying scaling? $\frac{\dot{\varepsilon}_{pl}(y)}{\dot{\varepsilon}_{b}} = e^{1/\chi_{b} - 1/\chi(y)} \qquad ln\left[\frac{\dot{\varepsilon}_{pl}(y)}{\dot{\varepsilon}_{b}}\right] = \frac{1}{\chi_{b}} - \frac{C_{1}}{PE - PE_{0}}$

18 May 2010

Relating χ to the microstructure

- Consider a linear relation between the χ parameter and the local internal energy

 $C_{1}\chi = PE - PE_{0}$ $\dot{\varepsilon}_{pl} = e^{-1/\chi} f(s)$ $c_{0}\dot{\chi} = 2s\dot{\varepsilon}_{pl} (\chi_{\infty} - \chi) - \kappa e^{-\beta/\chi}$

Is there an underlying scaling?

$$\frac{\dot{\varepsilon}_{pl}(\mathbf{y})}{\dot{\varepsilon}_{b}} = e^{1/\chi_{b} - 1/\chi(\mathbf{y})}$$
$$2s\dot{\varepsilon}_{b}(\chi_{\infty} - \chi_{b}) = \kappa e^{-\beta/\chi_{b}}$$

$$n\left[\frac{\dot{\varepsilon}_{pl}(y)}{\dot{\varepsilon}_{b}}\right] = \frac{1}{\chi_{b}} - \frac{C_{1}}{PE - PE_{0}}$$

18 May 2010

Relating $\boldsymbol{\chi}$ to the microstructure

- Consider a linear relation between the χ parameter and the local internal energy

 $C_{1}\chi = PE - PE_{0}$ $\dot{\varepsilon}_{pl} = e^{-1/\chi}f(s)$ $c_{0}\dot{\chi} = 2s\dot{\varepsilon}_{pl}(\chi_{\infty} - \chi) - \kappa e^{-\beta/\chi}$

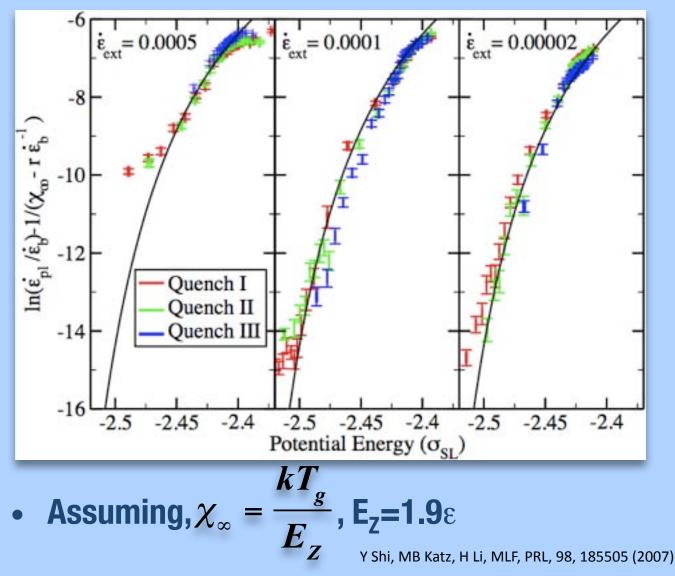
Is there an underlying scaling?

$$\frac{\dot{\varepsilon}_{pl}(\mathbf{y})}{\dot{\varepsilon}_{b}} = e^{1/\chi_{b}-1/\chi(\mathbf{y})} \qquad ln\left[\frac{\dot{\varepsilon}_{pl}(\mathbf{y})}{\dot{\varepsilon}_{b}}\right] = \frac{1}{\chi_{b}} - \frac{C_{1}}{PE - PE_{0}}$$

$$2s\dot{\varepsilon}_{b}(\chi_{\infty} - \chi_{b}) = \kappa e^{-\beta/\chi_{b}} \qquad ln\left[\frac{\dot{\varepsilon}_{pl}(\mathbf{y})}{\dot{\varepsilon}_{b}}\right] - \frac{1}{\chi_{\infty} - r\dot{\varepsilon}_{b}^{-1}} = -\frac{C_{1}}{PE - PE_{0}}$$

18 May 2010

Scaling verifies the hypothesis



18 May 2010

Kavli Institute for Theoretical Physics, UCSB

JOHNS HOPKINS UNIVERSITY

Implications for Constitutive Models

• To model the band a length scale must enter the constitutive relations

Numerical Results

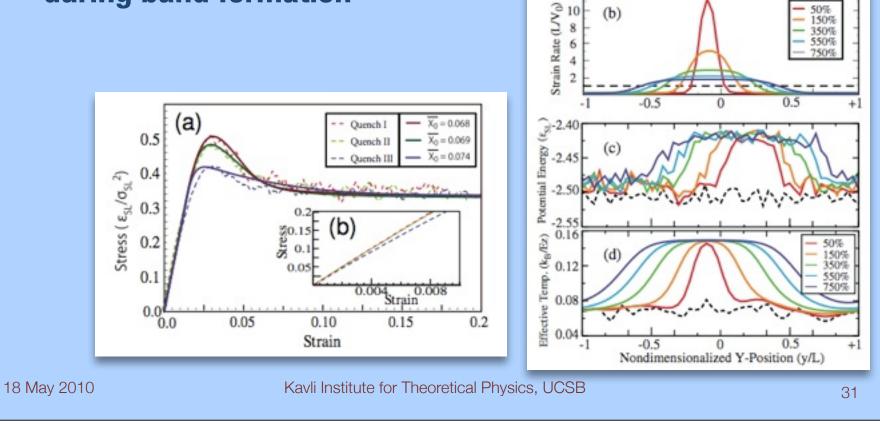
M Lisa Manning and JS Langer, PRE, 76, 056106(2007)

100-2005

500-6009

700-8009

 These equations closely reproduce the details of the strain rate and structural profiles during band formation



Strain Rate (L/V₀)

6

4

12

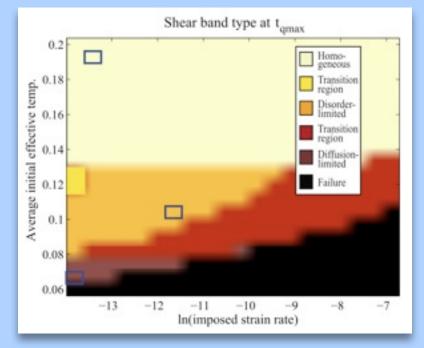
(a)

Tuesday, May 25, 2010

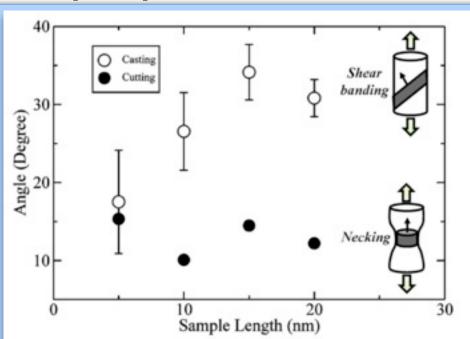
More Analysis by Manning, et al.

Manning, Daub, Langer, Carlson, Phys. Rev. E 79, 016110 (2009)

- Incorporates the Haxton-Liu effective temperature dynamics and shear rate dependent diffusivity.
- Identifies 3 failure modes:
 - Diffusion limited bands
 - Disorder limited bands
 - Failure/Fracture/Melting



Effect of Surface Preparation Yunfeng Shi, APL 96, 121909 (2010)



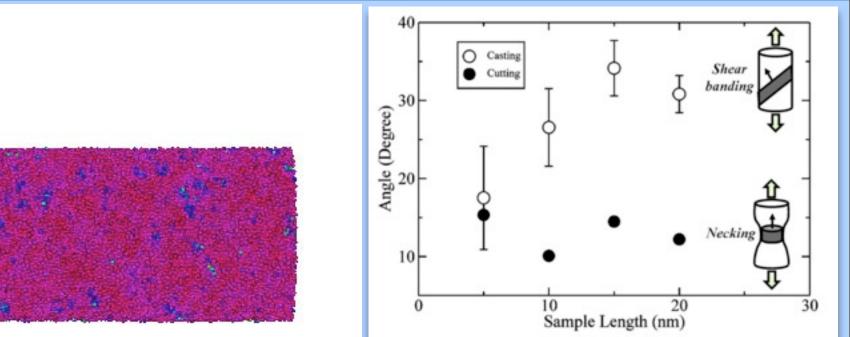
18 May 2010

Kavli Institute for Theoretical Physics, UCSB

Tuesday, May 25, 2010

33

Effect of Surface Preparation Yunfeng Shi, APL 96, 121909 (2010)



Created by "Casting"

18 May 2010

Kavli Institute for Theoretical Physics, UCSB

Summary

- Shear bands in metallic glasses arise due to mechanical softening caused by disordering.
- A percolating backbone of short range order appears to be necessary for localization to dominate at low shear rates.
- No unique means exists for characterizing the geometric character of this short range order for a known alloy description.
- Analysis of the transition from flow to jammed material in a shear band reveals that potential energy per atom may be a good measure of "effective temperature".
- The proportionality of strain rate to $\exp(-1/\chi)$ has been tested and appears to hold.
- The data also indicates that the energy to create an STZ is about 2 bonds per STZ.