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T. Haxton and A. Liu: MD simulation of 2D glass. 
The temperature is nonzero but is below the glass 
transition; the shear rate is constant but very small 
on the molecular time scale.



Basic Assumptions of STZ Theory

• Starting point: Elastic solid + flow defects

• High-frequency thermal and/or mechanically generated 
noise

• STZ transitions: Rare, localized, irreversible, molecular 
rearrangements

• STZ’s are ephemeral, more like nucleating droplets in a 
supercooled vapor than defects with fixed positions.



Simple Two-State STZ Model
For simplicity, assume that the deviatoric (shear) stress σij has 
a fixed orientation, and that the STZ’s are two-state systems 
aligned along the same axes. 

σyy= - σ

σxx= + σ R(σ)

(+) state (-) state

R(σ) is proportional to the rate at which (+) → (-) transitions
occur in response to the stress s.  Reverse (-) →(+) 
transitions occur at rate R(- σ).
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Plastic strain rate = rate of volume-conserving deformation:

±n = number of ± STZ’s per unit volume

0τ = characteristic time scale (~ molecular vibration period)

Equation of motion for :±n

∝0τσΓ /)( noise strength, i.e. attempt frequency
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= STZ annihilation rate

0v ~ molecular volume ~ 1−
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STZ Order Parameters
(Internal State Variables)
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nn STZ scaled, scalar density of STZ’s

orientational bias of STZ’s

=→ ijmm traceless, symmetric tensor, consistent 
with volume conserving plasticity
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For simplicity, ignore tensorial features throughout this 
presentation.  That is, assume that the orientation of the 
stress remains fixed.  It is easy to fix this for more 
general applications. 



Nonequilibrium Thermodynamics:
The Effective Disorder Temperature

E. Bouchbinder and J.S. Langer, Phys.Rev. E 80, 031131, 031132, (2009).

During irreversible plastic deformation of an 
amorphous solid, molecular rearrangements drive the 

slow configurational degrees of freedom (inherent 
structures) out of equilibrium with the heat bath.

Because those degrees of freedom maximize an 
entropy, say SC, which is a function of the 

configurational energy UC,  the state of disorder is 
characterized by a temperature.
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Quasi-Thermodynamic Hypothesis

• Under steady-state conditions, i.e. constant strain rate, the effective 
temperature  plays a role directly analogous to that of the thermal 
temperature T.

• Extensive quantities such as the potential energy, the density, the 
density of liquidlike sites in a-Si, etc. obey equations of state in 
which appears as an independent variable.



Effective Temperature Thermodynamics
Separable Configurational + Kinetic/Vibrational Subsystems

KC HH +≅

{ }υrHH CC = = configurational energy of the  ’th inherent-structure  

{ }υr = set of molecular positions at the potential-energy       
minimum for the  ’th inherent-structure

{ }υδr,pHH KK = = kinetic energy + harmonic potential energy for    
small excursions from configurational minima.

This subsystem serves as the thermal   
reservoir at temperature θ = kB T.

Assume weak coupling between these two subsystems.

Total Energy



Inherent structure with molecules fixed in a mechanically
stable configuration



Kinetic/vibrational degrees of freedom superimposed on the inherent structure. 
In a glassy system, these rapid motions are only weakly coupled to the slow 
configurational transitions from one inherent structure to another.



T2T1
Q

Spatially separated subsystems in weak thermal contact 
with each other:

If T1   > T2, then heat Q flowing from the hotter to the 
cooler subsystem increases the entropy of the system as 
a whole.  

Therefore 
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Textbook analogy



Total internal energy: { }( ) ( )KKCCtot SU,SUU += αΛ

SC and SK are the configurational and kinetic/vibrational entropies.

{Λα} denotes a set of internal variables, e.g. the number of STZ’s or 
other kinds of defects.  

The effective and thermal temperatures, in energy units, are:

First law of thermodynamics:

σ = shear stress; V = volume.
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Second Law of Thermodynamics

Various “fundamental” statements: Are they equivalent?

Cannot make a perpetual-motion machine.

Kelvin-Planck + Clausius: Cannot convert heat directly into work.

Clausius-Duhem: Non-negative rate of entropy production.
But – what is meant by “entropy” in a nonequilibrium situation?

Coleman-Noll (1963): Axiomatic approach. The C-D inequality    
defines entropy and temperature.  But – How do we make contact    
with statistical definitions of entropy? What happens if there are 
two temperatures?

In order to construct an effective-temperature theory of plasticity, we 
(Bouchbinder and JSL) have had to address these basic issues.



Second Law of Thermodynamics, continued

Gibbs + physicists:  The statistically defined entropy of an isolated 
system is non-decreasing. But – how do we define/compute the 
entropy for a nonequilibrium system? We need to consider internal 
degrees of freedom and their variations.

{ }( ) ( )KKCCtotal SU,SUU += αΛ
Total internal energy as a function of entropy:

The inverse of this relation is the microcanonical expression for the
constrained entropy as a function of U and Λ. (Count states at fixed U and Λ.)

{ }( ) ( )KKCCtotal US,USS += αΛ

For this to be the non-decreasing entropy to be used in the 2nd law, the 
internal variables Λ (like U) must be extensive quantities. Then the 
constrained entropy S(U,Λ) is equal to S in the thermodynamic limit. 



Application of the Second Law
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Use the first law to eliminate .  The result is:CS&
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These two terms must separately be non-negative.

( ) ( ) .A,ASS KK 00 ≥−=⇒≥− θχθθχ &&

Heat flows from the C to the K subsystem if > θ.

{ }( ) 0≥αΛε && ,W pl constrains the equations of motion for the 
internal variables. (~ Clausius-Duhem)

With these results, the first law becomes an equation of motion 
for the effective temperature:



Ultra-simple example: No driving stress or strain rate
Λ = (number of STZ’s)/ N
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U1 and S1 = energy and 
entropy of everything except 
the STZ’s.

eZ = STZ formation energy
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We have derived a Clausius-Duhem inequality from statistical first 
principles.  The 2nd law simply tells us that the system goes downhill 
in free energy. No surprises here – except that S0(Λ) is essential –
and is unconventional in the solid mechanics literature. 



A short summary of where we go from here:

This situation becomes very much more interesting when the 
system is deforming under the influence of an external stress, and 
when the dynamics of the orientational variable m is included.  

The second law no longer has a variational interpretation – there is 
no free-energy minimization principle other than for Λ relaxation.  
The 2nd law (entropy production) tells us what to use for the noise 
strength Γ(σ).  (Pechenik)

The resulting equation of motion for m has a jamming-unjamming
transition at a dynamical yield stress σy. Below the glass transition, 
for σ < σy ,  m → 1, i.e. all the existing STZ’s are aligned with the 
stress, and there is no flow.  At higher temperatures, the m
dynamics predicts a smooth transition from thermally assisted 
viscosity to “superplasticity” with increasing stress.



STZ Constitutive Relations

)m,,,,(pl ΛθχσΨΛε =&

STZ density dynamic response factor

This relation must be supplemented by equations of motion for , Λ, 
and m. The Λ equation tells us that 
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The m equation tells us that m → mss(σ,θ) .  In many cases, 
these relaxation mechanisms are fast relative to plastic 
response rates; and the constitutive relation takes the form:
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Equation of motion for χ : Start with 1st law.  

Heat generated by 
deformation drives 
χ toward  steady state ss

{ }( ) ( )θχΛεχχ α −−=≅ A,WCS pleff
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Thermally induced aging
Note β.

Strain-rate 
dependent ss
→ constant at 
small strain rates

becomes:

Heat production Heat flow to the reservoir
(aging)



STZ Analysis of Deformation in Bulk Metallic Glass, Vitreloy 1



W.Johnson et al, Bulk Metallic Glass

M. Falk, MD Simulation



Comparison between STZ theory and experiment for transient 
behavior at different constant strain rates

T = 643 K

Theory
Theory
STZ Theory

Experiment

STZ Theory sample breaks

steady state



STZ fit to data for stress versus steady-state strain-rate.  

Linear viscosity

“Superplasticity” at about the 
STZ yield stress



Theoretical fit to data for stress as a function of 
steady-state strain rate x Newtonian viscosity



Shear Banding

homogeneous strain localization



What causes shear-banding instabilities?

Conventional explanation: Deformation generates heat, which 
softens the material.  But ordinary temperature diffuses too 
quickly.  The effective disorder temperature solves this problem.

Molecular dynamics simulations by Shi, Katz, Li, and Falk, 
PRL 98, 185505 (2007): Binary, 2-D alloy in simple shear.

Shear band (darker
means greater strain)

STZ theory by Lisa Manning, JSL, and J. Carlson, 
PRE, 76, 056106 2007

Position y
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Position (y) dependent strain rate and effective temperature: 

Shi-Falk Analysis

The stress σ is constant across the system.  Therefore, this 
relation gives values of (y,t) up to constants.  Then make 
the quasi-thermodynamic assumption that the potential 
energy per atom is 

U(y) ~ constant + C (y)

which gives another measure of (y,t) up to constants. 

The two estimates of (y,t) agree in detail for several 
different quenching histories.  



Comparison between theory 
and simulations

The Y axis is the position
across the width of the strip.  

Note that the band spreads
over very long times, i.e. 
strains 100% - 800%.

Hypothesis: potential energy 
proportional to .

Bottom panels: comparison 
between observed potential 
energy and theoretical 
effective temperature .

Nonlinear instability: A 
large enough local 
increase in  causes the 
stress to drop every-
where, thus localizing the 
strain rate.  



A question for this KITP program: What are the 
relations between STZ and SGR? They seem to be 
trying to solve closely related problems.

An example: Stress relaxation after a strain step:

σσ χ/e~ 1−−&

χχ χβ /e~ −−&Aging: (Lemaitre’s equations)

These equations seem to reproduce some 
(all?) of the SGR results.  JSL thinks that this 
might be a simpler and more physical 
rheological theory.
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