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‘metallurgists " are apt The New Science

of Strong Materials

to be practical down-to- |
earth people who stand
no nonsense, but the

theoriticians
"are

probably more lyrical
and imaginative”
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\*/ Why not measure structure A\
—M J-I’.E[;ﬂy ? S
Early investigations used ‘eyesight’
— State-of-the-art experimental methods nevertheless lose important details

— Low spatial resolution provides globally averaged signals

— Reliable information primarily available for first few atomic coordinations

— Deconvolution of overlapping signals is required to quantify atomic
coordinations and separations

— Large integration limits produce non-
unique results

Direct experiment gives only
broad statistical descriptions

Computations provide an

alternate approach to describe

structure

— Individual simulations are ultimately
system-specific

— The information produced is

overwhelming, so that a system for
organizing results is needed

KITP 2010 5



“The greatest strengthy
atomic S|mulat|on§ 1S;:

coordinates of
the system.”
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\, 7 CONTINUOUS RANDOM
§$,*/ NETWORK (CRN) MODEL

Efficiently-packed atomic clusters
form the basis of the CRN model

— Si0O4 and BOj; polyhedra form local
representative structural elements (RSEs)

— vertex-sharing between adjacent RSEs
establishes approach for building structure
beyond the nearest neighbor shell

Important differences exist for
metallic glasses

— predominantly non-directional metallic
bonding vs. significant directional covalent
bonding in oxide glasses

> efficient filling of space expected in metallic
glasses

— conservation of charge is not a constraint
— smaller variation in atom sizes (<40%)

» radius ratios in metallic glasses range from
0.6<R<14

Zachariasen; J. Am. Chem. Soc., 54, (1932)



\ / DENSE RANDOM PACKING
\.{ A Statistical Model

A dense random packed
structure of equal-sized
spheres is characterized by:
— a packing fraction of 0.6366

— frequently observed specific local
atomic clusters

» tetrahedra, half-octahedra, trigonal
prisms, Archimedian antiprisms,
tetragonal dodecahedron

— the absence of medium-and long-
range order

Bernal; Nature, 185, (1959) KITP 2010 9



\/’ DENSE RANDOM PACKING
b

Interstitial Model

Polk proposed that solutes fill ‘holes’ left in solvent array

— subsequent analysis showed that the ‘holes’ are too small and too few to
account for observed constitutions of metallic glasses

» solute radius ratios are ~0.6 <R < 1.4 and concentrations are ~10% <C <40%
— computer simulation of ‘hard’ and ‘soft’ spheres confirms this result

35 Redrawn from Frost; Acta metall., 30, 889-904 (1982)
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\  / STEREO-CHEMICALLY
¢  DEFINED (SCD) MODEL

Local structures show similarity to those in
the crystalline state

— Short-range atomic forces are similar in crystal and
amorphous states

— Capped trigonal prism in metal-metalloid glasses
similar to structure of Fe;C, Pd;Si etc.

The SCD model is similar to the CRN model

— Representative structural element (solute-centered
atomic cluster) is repeated to fill space

— No preferred bond angle and adjacent clusters share
edges or faces to conserve volume

Efforts to extend model beyond 15t shell
have been only marginally successful
— simple chemical twinning applied to binary glasses

— extensive curve fitting with arbitrary adjustable
parameters required to match observed MRO

— extension to other local coordination numbers and
higher order systems is problematic

LeCaer; Acta
Metall., (1984)

:
G\ 2 ) DuBois and
~
/,/’

c
. b Ord G Ord 30
®si o) si (v

Hirotsu et al.; Mat. Sci Eng., (1997)

Gaskell; Glasy Metals II, (1983)



N7 CONFUSION PRINCIPLE

4
o

Simply states that the greater is the number of alloy
constituents and the difference in relative sizes of atoms,
the greater is the tendency to form a glass

— based on observation that best
glasses often have many constituents
of significantly different sizes

— the atoms become ‘confused’ and
don’t know where to go

— not supported by the single controlled
experiment to validate this concept

— the ‘Miracle Corollary’ states that the
atoms know exactly what they are
doing, and that it is the scientists who
are confused!

Not a structural model since atomic configurations
In the amorphous state are not described
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N Y4 FEATURES

c&t

A credible :~:tructu|r|aEiEEm|oSdeI .ﬁi rr?lyvs,t.r.]sl‘lac‘j\-/rv.eé%{rﬂéément with
established metallic glass characteristics:

— randomness is a dominant and defining feature

— efficient atomic packing is required over all length scales

» low molar volume, small density decrease upon solidification and crystallization
and quantification of locally efficient atomic packing are all observed

— strong short range ordering (compositional and topological)

— significant medium range order (compositional and topological)

— significant size difference (>12%) between solvent and solute atoms

— large negative enthalpy of mixing of constituent elements

— three or more solutes

— relative sensitivity in some glasses to small composition changes (~1%)

— relative insensitivity in some glasses to large composition changes (~10%)

A compelling structural model will give a
predictive capability for many of these features




A 2
* METALLIC GLASSES HAVE HIGH
\q;r/ RELATIVE DENSITY

Metallic glasses have an exceptionally high density
relative to the crystalline state of the same alloy
— relative density is typically 297%, and is 299.5% for BMGs

ALLOY Ap (W)
ZrsoAl1Cug, 0.30
ZrsoAlsCU,s 0.31

ZrssAl10CugNig 0.44
Zrss T1sAl,CU,NIi g 0.30
Zrs, s TisAl 1, sCUNI g 0.45
Pd,,Cu;Ni; Py 0.54
Alg:NigFe,Gd, 3.31
AlgNigFe, Gd, 2.80
AlgNisFe,Gd, 1.85

Density increase for crystallization of most metals
ranges between 4-12%



CUNVIFARIOUIN VVIL T

N7 METALLIC GLASS
S CHARACTERISTICS

Metallic Glass Characteristics

Global Local
Packing Packing
Randomness | Efficiency | Efficiency Constitution

DRP vv X X

DRP/Finney vv v X

ScD/scCT v X v

Confusion v NA NA

Principle

Critical Strain NA NA NA
Universal MRO NA NA NA

Structural Concepts

NA—Not Addressed X —Inconsistent v/ — Consistent v'v — Predictive

KITP 2010 15



“Gentleman, we have
models

A\
run outefmoeney. Now

we must think.”

Winston Churchill



\./ EFFICIENT FILLINGOF f§Y
\w/ SPACE 2

A problem of broad commercial & technological importance
— Agriculture 5.0 & ® & 00 0 6 & ¢

— Biology

— Civil Engineering BUILLETIN

— Communication Theory e

— Materials Science

— Mathematics
— Packaging and Shipping
— Physics

7~ THE PUrsuIT of
¢ PerrecT Packing

)

KITP 2010 17



\_/ HISTORY OF EFFICIENT
74 PACKING

Kepler Conjecture is an intuitive
solution to a ‘simple’ problem

David Hilbert highlighted efficient
packing in a list of problems to guide

mathematics in the 20t century

— “How can one arrange most densely in space an
infinite number of equal solids of given form?”

Mathematics has extended intuition . | -

and experience &R
— Solution to Kepler Conjecture claimed in 1998 SeiEinits

Significant additional complexity

exists in systems of unequal spheres

— the number and relative sizes of spheres
becomes important

— binary or complex size distributions may exist
— relevant in problems from concrete to cosmology




“When complexity
assalls, let insight
prevail.”



N  EARLIER INSIGHTS

L

s

“This, in turn, suggests correlated rather than random arrangements of
local structural units.” (P.H. Gaskell, 1983)

“We can no longer assume, | believe, that we can think in the seductive
simplicity of the language of randomness alone.” (P.H. Gaskell, 1991)

“...the amorphous state is in reality not a disordered state, but a rather
well organized arrangement of atoms. . .” (S. Steeb and P. Lamparter,
1993)

“But more recent work has shifted the balance of evidence towards
structures that are more complicated, more diverse and more ordered—
at least in the sense that there may be an underlying ordering or
structure-forming principle.” (P.H. Gaskell, 1991)

“My own view is that simple geometry. . . atomic sizes. . . will prove to be
the main criterion that in various subtle ways incorporates the others.”
(R.W. Cahn, 1991)



N OUTLINE

LOCAL STRUCTURE
Efficiently-packed solute-centered clusters

EXTENDED STRUCTURE
VALIDATION

ADDITIONAL TOPICS
REMAINING ISSUES




CIrICICIN D LUCUAL

\/ PACKING

_l.raﬂu-em-e-m‘-laelauwe.Ammm_Slze—
Look for structural insights from the efficient filling

of space by unequal spheres
Choose relative size as first variable
Start with 2D model

KITP 2010 22



./ TOPOLOGICAL MODEL
\‘.r/ Efficient Atomic Packing (2D)

The 2D theoretical coordination
number (N") is the number of I:
circles of radius r; that can be

placed around a central circle of

radius ri, where R =r/r;.
— N is a real number

N' = w/arcsin[1/(1+R)]

PaCk|ng Eﬂ:ICIen Cy (P) |S the Egami and Waseda; J. Non-Cryst. Sol., 64, 113-134(1984)
maximum number of full circles of = 2
radius r; that can be placed P = Trunc(N')/ N
around a central circle of radius r;,
normalized by N' il I SR 1
z 7 il <
Packing efficiency varies with R £ 5\ bl 5
— P is highest when the first shell is 2 4] % %? i
completely ‘filled’ with no gaps Py = >
— P is highest for specific values of R E2}p- % —————————— (%) —————— C%) ————— @ s
where N' is an integer (R*) § 1 frmdidbed S S 3
&) R ¥ y .

0 0.6
02 04 06 08 1 12 14
Radius Ratio (R =r;/r)

<ITP 2010 23



k.

3D COORDINATION NUMBER A

g

Accurate evaluation of N is needed

In 3D to determine R*

— consider sphere packing on a curved
surface

— tesselate curved surface by constructing

planes that are perpendicular bisectors
of lines joining atom centers in the 15t

coordination shell

» the intersection of these planes with the
solute surface form great circles which
define the area associated with a surface
sphere

» the area associated with a sphere on a
curved surface depends onthe number of

nearest neighbors in the 15 coordination
shell, n Q

> n is the surface symmetry, and n = 6 for i =

R=e, n=34,0r5forR < ‘(\ A ) H
— closed-form solution for the area =Ty
bounded by great circles is given by %
spherical trigonometry
7 A

" {7(2=n)+(2n) arccod Sin(z | n)(A—1/(1+ R)?)]}




\ /7 TOPOLOGICAL MODEL
\‘.r/ Efficient Atomic Packing (3D)

3D relationship given between R
and packing efficiency in 15t

_ A QO AR
?tzoé?gizgsgif?ecgz?cy is @ maximum when I:C,\_) C/\) %]

— N is an integer for specific ratios, R*
— Suggests that specific radius ratios R* ’
: 1

may be preferred in metallic glasses

25 i i i N kY
‘-.\ \.,\ \ A AAY \f‘,"\./‘-./'-
| \PY A |

N
o

NT R* NT  R*
6 0.414 14 1.047
7 0.515 15 1.116

N\
o
(o]

/n

-—h
o

=

ﬂ

7

f 9 1‘0” 1243 1i4 16 | 118 | 20 | 22
Y

Coordination Number (Nth)
o
N\
=
[e0)
(d) Aouaroyyg Bunjoeyq

o

=
o

06 08 1 1.2 1.4
Radius Ratio (R =r;/r)

-
[#2]

Miracle, Sanders and Senkov; Phil Mag. A, 83, (2003)
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|

SURFACE SYMMETRY

5-fold Surface Symmetry

RS

T N Pl N
7 R =0.902
4-fold Surface Symmetry

I Y R =0.414
i— -
3-fold Surface Symmetry
R =0.225
= = = T

Surface symmetry decreases discontinuously with radius ratio

KITP 2010 26



\ *
§_{ R VALIDATION

Analysis of >400 radius ratios in metallic glasses confirms
strong preference for R'values

— Efficient local atomic packing is concluded to be important in the
formation of metallic glasses

30 T U LU | LU LU N LR U A RN LR LU | LR U L 20 ———— ‘@ S —
© r--. B ® S wN M XY W M~ SO * 5 L * * * *

£ -““““EEEEEEEEEEE RaRsr\rAfRu R R R

25
g x| s= | [\&F | Complex
> i 1%k j/‘ \ M
e 20 L = @
> : 3 @
=l 3 In@ary 8 7 :
£ 15} g 10 B4 \:/ L
M - =3
Y— - Q
o] [ - \]
i 10 _ L “
S | 5| J
£ 5 /\
= [

OUl..I... OJI [ N N | Y 1 I | |\-

0.40 0.60 0.80 1.00 1.20 1.40 0.5 0.7 0.9 1.1 1.3 1.5

Nominal Radius Ratio, R Radius Ratio, R
Miracle, Louzguine, Louzguina, Inoue; Int’l Mater. Rev., In Press. | Miracle, Sanders and Senkov; Phil. Mag., 83A, (2003) |
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\ EFFICIENT LOCAL ATOMIC
p - PACKING : Implications

Changing solute-to-solvent radius ratio enables
efficient atomic packing in the 1st coordination shell
— Specific solute-to-solvent radius ratios are preferred

Efficiently packed 3 A4 f\s 6
solute-centered W 3 @‘;‘ @
canonical clusters with ‘/ . / ‘4'
specific N, R

— Can be considered as

local representative
structural elements

— Each N introduces a family
of clusters

— Many different local
clusters

Miracle, Lord and Ranganathan;
Trans. JIM, 47, 1737 (2006)

KITP 2010 28



\ ASSESSED ATOMIC RADII

*’ Miracle, Louzguine, Louzguina, Inoue; Inter. Mater. Review, In press.
Elemen Radius | Elemen Radius | Elemen Radius
t At#| (pm) t At# [ (pm) t At # (pm)
Li 3 152 Se 34 118 Th 65 176
Be 4 112 Rb 37 244 Dy 66 175
B 5 88 S 38 212 Ho 67 177
C 6 77 Y 39 179 Er 68 175
N 7 72 Zr 40 158 Tm 69 175
O 8 64 Nb 41 143 Yb 70 190
Na 11 180 Mo 42 139 Lu 71 175
Mg 12 160 Tc 43 136 Hf 72 158
Al 13 141 Ru 44 134 Ta 73 145
Si 14 110 Rh 45 132 W 74 135
P 15 102 Pd 46 142 Re 75 137
S 16 103 Ag 47 144 Os 76 135
K 19 230 Cd 48 157 Ir 77 136
Ca 20 201 In 49 155 Pt 78 139
S 21 162 Sn 50 155 Au 79 143
Ti 22 142 Sb 51 155 Hg 80 152
V 23 134 Te 52 140 TI 8l 172
Cr 24 130 Cs 55 264 Pb 82 174
Mn 25 132 Ba 56 223 Bi 83 162
Fe 26 125 La 57 187 Po 84 168
Co 27 125 Ce 58 182 Th 90 178
Ni 28 126 Pr 59 183 Pa 91 165
Cu 29 126 Nd 60 182 U 92 158
Zn 30 140 Pm 61 185 Np 93 175
Ga 31 134 Sm 62 185 Pu 94 175
Ge 32 114 Eu 63 196
As 33 115 Gd 64 176




\% OUTLINE

LOCAL STRUCTURE

EXTENDED STRUCTURE
Filling of space by efficiently-packed clusters

VALIDATION
ADDITIONAL TOPICS
REMAINING ISSUES

Miracle, Nature Mat., 3, 697 (2004); Miracle, Acta mater., 54, 4317 (2006)




\./ CLUSTER ORGANIZATION
\*.*J Evolution of MRO from the Liquid

Decreasing Temperature
-_ e »

T>E/k T~ E/k "“Tliqufdus ""Tglass
No persistent A-B bonds begin A-B bonds begin A-B bonds
atomic bonds to persist to percolate percolate
Isolated solute- Solute-centered Solute-centered
centered clusters clusters begin to clusters organize
begin to form dominate & coalesce and percolate
Finite fragments Network fragments
of a TD network percolate, forming
begin to form extended TD network
Ooq. O.
N Cz O.%O
000 QO
000 OOO
00 O

Increasing number of A-B bonds

Increasing short- and medium-range order

Cluster organization is motivated by solute-solute avoidance




RULE 1

Efficient Packing of Primary Clusters

A
N~
3

Efficiently-packed solute-centered atomic clusters are
Imagined to be sphere-like

Efficient atom packing beyond the 1st atomic shell achieved
by dense packing of these sphere-like clusters

— fce, bece, hep, sc, icosahedral and
random cluster packing considered

— fcc cluster packing gives the most
efficient packing of equal-sized
spheres and best agreement with
measured MRO

Efficiently-packed, solute-
centered clusters are organized
In space to achieve efficient
clusterpacking

KITP 2010 32



L2 RULE 1 CONSEQUENCES

«5» Efficient Packing of Primary Clusters

Four topologically distinct atomic
species and sites
— Solvent atoms (£2)

— Primary () solutes produce the structure-
forming unit clusters

— Cluster-octahedral interstices (/)
— Cluster-tetrahedral interstices (7)
—r,>rg>r,

Solute atoms occupy ~ordered sites

— Provides basis for observed medium range
atomic ordering (MRO)

— Variable cluster-cluster separation degrade
cluster ordering beyond a few cluster diameters

Preferred atom positions introduces
the possibility of structural defects
— Vacancy and anti-site point defects

— Constitutional and thermal

KITP 2010 33



“Ninety-nine percent loyalty
IS 100% disloyalty.”

Napoleon Bonaparte

“He’s not dead. | said he’s
mostly dead. BIG
Miracle Max, from “ Tdei FfrfreerseEn@e .”

“The Pirate’s Code IS more
what you'd call ‘guidelines’
than actual rules.”

Captain Barbossa, from “The Pirates of the Caribbean”



L2 RULE 1 CONSEQUENCES

«5» Efficient Packing of Primary Clusters

Four topologically distinct atomic
species and sites
— Solvent atoms (£2)

— Primary () solutes produce the structure-
forming unit clusters

— Cluster-octahedral interstices (/)
— Cluster-tetrahedral interstices (7)
—r,>rg>r,

Solute atoms occupy ~ordered sites

— Provides basis for observed medium range
atomic ordering (MRO)

— Variable cluster-cluster separation degrade
cluster ordering beyond a few cluster diameters

Preferred atom positions introduces
the possibility of structural defects
— Vacancy and anti-site point defects

— Constitutional and thermal

KITP 2010 35
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/’ CONSTITUTIONAL
» STRUCTURAL DEFECTS

&’

4

<o,B, > <o> VgtV




2o OTRUCTURE AND BONDING g X

+«* o—aBonds in Solute-Rich Glasses

Solute-centered clusters are the primary structural unit
— The first shell of solutes (o) are filled only by solvent atoms (Q)

— Inter-cluster sites (3 and y) can also be filled by solutes
» Increases number of a—£2 bonds without forming o—ca bonds

Solute-rich glasses can have a significant number of o

anti-site defects, S(«,,)
— The first shell of o sites has mixed o + € occupancy

— Produces o—o nearest neighbor bonds

KITP 2010 37



' INU L L. 4L

\j Structure-Forming Clusters Don't
@ Overlap

Structure-forming o clusters do not overlap
— Gives largest number of Q2 atoms bonded to each o atom
» QX glass model consists of non-overlapping icosahedra
— This can be validated experimentally
» Gives smaller critical o concentrations for glass formation
» Partial coordination numbers and density

— Additional solutes occupy cluster-interstitial sites that bind structure-forming
clusters and produce overlapping clusters

KITP 2010 38



\/ RULE 3
1

< No Cluster Orientational Order

No orientational order exists amongst e clusters
— point group symmetries of efficiently packed clusters are
incommensurate with a cubic lattice

— enforces randomness of solvent atoms

— provides important distinction from ‘icosahedral glass’ model for
quasicrystals
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Images of icosahedral glass along
2-fold and 5-fold axes

Stephens; in Aperiodicity and Order, V.3, (1989)
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\ RULE 4

\i-» Specific Solute Sizes

All solutes possess specific atomic radius
ratios R’ relative to solvent atoms

— enables efficiently packed configurations in the first i \q i
coordination shell of ¢, fand ysolutes A f/\ \ _
)

— atoms with radius ratios within 2% of one another are
topologically equivalent " RadiusRatio,R

» provides reasonable bound to account for changes in atomic
radii due to local structure and chemistry N R*+2%

» provides important simplification for structural description of 8 0.62
multi-component glasses

Frequency
=

Miracle, Sanders and
Senkov; Phil Mag. A, 83,
(2003)

KITP 2010 40



\ / CONVENTIONS

Glass Designations

List alloy compositions with £2first, followed by solutes in
decreasing order of size: 2o~y

Combine topologically equivalent solutes in parentheses
— Zr-Al-Ti-Cu-Ni-Be is a topological quaternary Zr-(Al,Ti)-(Cu,Ni)-Be

Structures are designated by the coordination N_ R
numbers of solutes present <Z,, Z5 Z,> 5 D
— Zr-(Al, Ti)-(Cu,Ni)-Be are designated as <12,10,9> glasses 8 0617
>Ra1i = 0.905, Ry i = 0.807 and Ree = 0.709 A
>ZAI,Ti =12, ZCu,Ni =10 and ZBe =9

, 12 0.902
— Ca-Mg-Zn-Cu are designated as <10,9,8> glasses 13 0.976
3 - - 047
»Rug = 0.8, Rzq =0.7 and R, = 0.64 e 1116
»Zyng =10, 2z, =9 and Z¢, = 8 16  1.183
17 1.248

18 1.311
19 1.373

20  1.433



STRUCTURAL
TOPOLOGIES

'\\

A wide range of glass topologies (276) are possible

BINARY TERNARY QUATERNARY
<8> <9 8> 9
$3>2'10'9> Gl@ss <10 8> <df1d.¢s ﬁd% é_ga.&ﬁz,g,&

<10> <12,10>, <12,9>, <12,8> <15 12 10> 2,9> ...
<12> 12>, <15,10>|... ' ,

5>, <16,12>|...
<17,15>|..
8,16>|...
A7>|..
18>]...




\/ STRUCTURAL
\*vj CHARACTERIZATION

-

Site occupancies S(i;) are the primary structural descriptors

— S(i;) is the number of species, i, that occupy
sites, J, per a site

— There are 4 structural sites: j = @, , fand y
— There are 4 structural species: i = 2, , fand y
— S(i;) is obtained by matching composition

> Fill solute sites in the order a, B, vy, Q

- §a = (Fa/FQ)(‘S’;Q _S(ag))

Pt ]

| &y

» 2010 43




\ /7 BINARY STRUCTURE
\*4*/ FROM CONSTITUTION

<9> R*=0.710 (Co-B, Fe-B, Pd-SI)
— When f, = 0.10 = 1/(1+9), all o sites are just filled
— When f,=0.18 = 2/(2+9), all o and 3 sites are just filled
— When f,= 0.31 = 4/(4+9), all o, B and vy sites are just filled
— When f,> 0.31, all a,, B and vy sites are filled and o, defects are formed

<12> R*=0.902 (Nb-Ni, Nb-Rh, Ti-Cu)
— When f, = 0.08 = 1/(1+12), all o sites are just filled
— When f,=0.14 = 2/(2+12), all oo and 3 sites are just filled
— When f,=0.25 = 4/(4+12), all o, B and vy sites are just filled
— When f,> 0.25, all a,, B and vy sites are filled and o, defects are formed

<17> R*=1.248 (Al-Gd, Al-Y, Cu-Hf, Cu-Zr, Ni-Hf, Ni-Zr)
— When f, = 0.06 = 1/(1+17), all o sites are just filled
— When f,=0.11 = 2/(2+17), all oo and 3 sites are just filled
— When f,=0.19 = 4/(4+17)), all o, B and v sites are just filled
— When f,> 0.19, all a,, B and vy sites are filled and o, defects are formed



DIINANT ULAOO
EnalIn/aliiaYa. LI:L‘
| Miracle, Louzguine, Louzguina, Inoue; Inter. Mater. Review, In press.

: Cu-t?ased

Solute

0.0 0.2 0.4 0.6 0.8 1.0
Zr Cu atom fraction, F Cu



\ Z BINARY GLASS
N TOPOLOGIES

0'8 L L L
- —_ ® All binary systems |
LL TR = W Binary BMGs [ ]
it 8 80
S 06 [} IN S
" — - - oy
I3 % £ N
(0 * & G 3
II it ﬁ Solute o |81 : m;_:irm&‘j
E 0.4 1 1 Anti-site
O L.... T- ................... T 5 . fects ........
{ r b ""'.._‘ f + 4 » & 1
O -l : | ?.-.____ -l.i___
5 0.2 1§y — s Solute "T""'- ----- .
3 I ............................................................... 'ur mw-~ » T
bt L L LTI SO P i Defects - "r-ﬂ.ﬁ;i_ &
N Fo(min) ey, 8 B e
0 L~ L. -

0B 0.7 D8 0 2GS e S
Nominal Radius Ratio, R

Miracle, Louzguine, Louzguina, Inoue; Inter. Mater. Review, In press.



\, /7 TERNARY STRUCTURE
§$,*/ FROM CONSTITUTION

Zr-Al-(Cu,Ni) R_*=0.902 Z, =12

o-centered clusters form the scaffold of the metallic glass

structure

— Each o site creates 12 Q sites, 1 B site and 2 vy sites for 16 total
structural sites

— A minimum f, of 1/13 = 0.077 is needed to fill o sites

Al atoms are distributed on o sites and then progressively
on B, yand Q sites until all the Al is used up
— If f,< 0.077, then B solutes are placed on « sites

The remaining solutes occupy B and vy sites

— No account of the relative size is necessary from a site occupancy point
of view, since 3 and y sites do not create new Q sites

» The solute size is important for local strain considerations

These ideas have not yet been validated by comparison
with actual glass compositions



\% OUTLINE

LOCAL STRUCTURE
EXTENDED STRUCTURE

VALIDATION
Partial coordination numbers
Cluster organization via diffraction

ADDITIONAL TOPICS
REMAINING ISSUES



\~/ SHORT RANGE ORDER

+* o Nearest-Neighbor Coordinations

artial coordination of a¢around a (N,_,)
[ W, .= S@)s(@) + S(@) + 5@))/3,

— Can be checked against experimental measurements

— A single value of S(«;) gives consistent fit to height of solute-solute
neareSt'neighbor peak and Na_a for Ni81B19, FegoBzo, Nigopzo, Zr65Ni35 and
Nb60Ni4o but not for Ni63Nb37 or A|90Y10

Partial coordination of 2around a (N, o)
— Given directly from N(R*) for binary glasses when
S(a)=0
— Non-integer values of N,,_ are anticipated for

R~R* via the concept of quasi-equivalent clusters
(Sheng et al., Nature, 439, 2006 419)

— When () defects are present,
_ N\ _ 16  1.183
[Na—Q_N(R) Noa ] 17 1.248
18 1.311




A 2 OfURI RANGE URVER
\.’/ £2Nearest-Neighbor

artial coordination of 2around 2 (No_o)
— For vertex-sharing between adjacent clusters,

[ Moo= 2g+)-S@)IN, o/S,] |

Partial coordination of e¢around £ (No_)

[ N = 2015(0,)+ 5(e) + S() +S(@,) @] SV N, , |

q is ‘surface coordination’
from Frank and Kasper

¢ is the number of nearest-
neighbor clusters
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\7/ SHORT RANGE ORDER

Qe Predictions vs. Experiment

Experimental and predicted partial coordination numbers

(lass .'Vﬂ_g] J"\'rﬂ_g J'Vg_,, J'Vq_ﬂ Ref.

NigiB1o (9)sc Expt. 10.8 2.2 0 9.3 (4]
Pred. 10.0 1.93 0 8.62

NigsBsg (99, Expt. 9.2 4.9 1.1 8.7 [84]
Pred. 9.07 4.78 1.94 6.67

FesoBao (9se Expt. 12.4 2.16 0 8.64 [85]
Pred. 10.0 211 0 8.52

NigoP g (10} Expt. 9.4 2.33 0 9.3 [76]
Pred. 10.00 2.50 0 9.80

ZrgsNias (10}, Expt. 9.0 2.9 2.3 5.4 [74]
Pred. 7.50 2.59 1.88 8.65

NbgoNia {12)ee Expt. 9.0 5.5 3.8 8.2 [72]
Pred. 8.63 6.21 344 7.03

NigzsNbsr {16 Expt. 6.6 5.9 5.6 10.0 [72]
Pred. 10.19 6.56 5.23 11.40

AlooYro {17 )ee Expt. 10.7 0.8 1.6+ 0.2 1.2+09 142+1.3 [86]
Pred. 11.81 1.47 0.13 17.04

Miracle, Acta mater., 54, 4317 (2006)
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L\~ SOLUTE-SOLUTE MRO

o Introduction

The degree to which solute organization represents MRO
can be studied directly

— Expand the structure factor for candidate
cluster organizations by a length scale
representing the cluster size

» Cluster packing symmetries considered include

fce, bec, sc, hep, icosahedral (Bergman and
Mackay) and dense random

— The length scale is the cluster unit cell length,
Ap, which can be estimated from the packing
of hard spheres

— Compare predicted structure factors with
solute-solute partial pair distribution functions
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\/ CLUSTER UNIT CELL LENGTH
Cluster Unit Cell Length (Ag)

Cluster unit cell length (Ap) can be calculated from geometry

/

|<7Aowrtex 4.| |<_ Aedge _.l

vertex _ Z:R n 2+ ] Kg’ge _ q\/(1+ Ra) —1+ \/(1-|— Rﬂ)z _1]

Ay =43+ R,) ~ 413+ /+R;) - 41 3]



\ / CLUSTER UNIT CELL
b4 LENGTH 4,

Cluster unit cell length A, is calculated from A<"K> values
— Determined from unrelaxed hard sphere calculations

— Needed for MRO, density comparisons
— A, is given as A79> A<"">\2 and A<""">13 ... .
» 9 values obtained depend on the relative solute .. .
sizes and site occupancy .

> A, is the largest of A<19%>, A<119>/v2 and A<111>/v3 .
for face-sharing clusters

— tensile strains exist along less densely packed
directions

»edge and vertex sharing configurations reduce the
internal strain

Unit Cell Derived From
<100> <110> e f<111>
A A =4

face 7°0.925 0.684 = 6.998
A, edge = 0.99 <0.732 *4+1.088
(nm) .2 .

vertex «*1.184 = 0.861 1.316

Calculated for <12-10-9> glass with Zr solvent (r,, = 0.158 nm)
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\ Z SOLUTE SYMMETRY AND
\.,./ CLUSTER-PACKING SYMMETRY

Solute symmetry depends on cluster-packing symmetry and
site occupancy
— In binary glasses, the «, fand ysites are only occupied by «

— For fcc cluster-packing symmetry, the solute symmetry changes with defect
structure as shown below

Defect Solute
Structure Symmetry Length
Vg +V, fcc Ag
og + V, sC Aol2

op + 0O bce Aol2




\/’

rCMNIVUIC LULUO I NN

35 Cluster packing symmetry is
(@) determined by p-RDF
\’/\,.} s¢ Cluster Packing}  _ Clear distinction between different
25 | cluster packing symmetries
G, AL' Nmpiese | sc cluster packing gives good fit
= 20 \/\J hep Cluster Packing|  — Misses splitting of 1<t ordering peak
k= 15 hcp, ?(t:C cluster symmetry give
s poor fi
° AR .
10 VIR S (g fcc cluster symmetry gives best
\‘/\J bee Cluster Packing | fit for periodic cluster packings
5| — o defect state gives bcce solute
[ (d) symmetry
0 — Edge-sharing of nearest-neighbor
\/\J fcc Cluster Packing clusters gives best fit
0.0 0.50 1.0 1.5

Radial Distance (nm)

Exptl data from Lamparter, Phys. Scr., T57, 72 (1995)



\/’ ICOSAHEDRAL & RANDOM CP

o B-B Partial RDF for NigiBqg9
s ¢ ] Denserandom cluster packing
(a) m (DRCP) gives poor fit
30 | B l.L/\Jﬂvav—m------- — Misses splitting of 15t ordering peak
;\—/\’j \/ Dense Random and the 3 ordering peak
25 | 1 Bergman cluster packing
o) m)\ ] gives good fit
f}l f"h.vhv_...- _ . e st .
E 20 \'/\,J | \/“ VARV ¢ R Misses splitting of 1 o-rderlng-; peak
o ol v Mackay cluster packing gives
pip il ©) better fit
© | — Captures 15t ordering peak splitting
10 ] . . .
:\J\J \/ Mackay — Requires edge-sharing of adjacent
| clusters
(d) Lcecsflftijtster symmetry gives
0f ViR
:\'/\J \/ fee — Edge-sharing of adjacent clusters
0.0 0.50 1.5

Radial Distance (nm)

Exptl data from Lamparter, Phys. Scr., T57, 72 (1995)



YWz MEDIUM RANGE ORDER

o Prediction

Notable results
— fec cluster packing with (as+a,) defect state for N>12, sc cluster packing for N<10

— MRO for Nig4B19 now well-predicted by ECP model
— Good fit to MRO of solutes to radial distances of ~1nm

Zr65Ni35 —
Ni-Ni (+10)
b.(+20) —
Nig1B1g
NS
Ni-Ni" _ /1 it B Ry
L -5-
0.0 0.50 1.0 1.5 2.0 0.0 0.50 1.0 1.5
Radial Distance (nm) Radial Distance (nm)

Miracle, Nature Mat., 3, 697 (2004)



‘I

\ 4 DENSITY

Calculated densities and packing fractions

Composition Actual density (gfem®) Predicted density (g/fem®) Density error (%) Ay Error (%) Corrected A, (nm) Packing fraction Ref.
Nig,B g 5.4 10.92 30.0 9.1 0.395 0.7420 4]

Pd79551202 10.25 13.45 31.2 -9.5 0.663 0.6997 [52]
AlgsGdg(FesNig)  3.51 LX) ~12.6 4.4 0.928 0.7048 [19]
AlgsGdg(FesNis) 371 i ~129 4.5 0.927 0.7223 [19]
Alg7Gdg(FeNig)  3.47 2,95 —149 53 0.920 0.7115 [19]
FeqpZrinBax 7.23 9.52 3le 9.6 0.855 0.7086 [87]
FeqNb,,Bsg 7.68 9.07 18.2 -5.7 0.807 0.7183 [87]
FeqpCrpBay 7.34 T.75 5.6 ~1.8 0.755 0.7105 [B7]
MggoY 10Cuzo i3 271 ~134 4.7 1.039 0.6784 [88]
Pdqq sCugSi4 5 10.48 9.74 ~7.1 24 0.766 0.7051 [52]
Pd 3N, Py 9.83 6.94 ~204 11.0 0.768 0.7227 [52]
Ptsz sNizz sPas 15.85 13.29 —16.1 5.7 0.809 0.6811 [52]
ZropAlCusg 6.72 4.60 —31.6 119 0912 0.7254 [21]
ZrenAlysNiss 6.36 4.07 ~36.0 138 0.896 0.7272 [21]

Miracle, Acta mater., 54, 4317 (2006)
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“There i1s no problem, no
matter how complex, which,
upon careful analysis, does
not become more complex.”

Anderson’s Law

“For every complex problem
there i1s a solution that Is
simple, neat, and wrong.”

H.L. Menken

“Everything should be made
as simple as possible, but not
simpler.”

A. Einstein



N\ OUTLINE

LOCAL STRUCTURE
EXTENDED STRUCTURE

VALIDATION

ADDITIONAL TOPICS

Solute selection: Which solute is a?
Solute site sizes

Partial coordination numbers

nfluence of structure on properties: Stability,
Density

Defects: Constitutional and Thermal
Deformation: STZ static structure
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\ 2 | UFULUGOIUAL
%  CONTRIBUTION TO
—————_STABILITY

Significant topological complexity is possible
— The ECP model allows quantification of structural topology in metallic
glasses

— 276 distinct metallic glass topologies have been defined with the ECP
model

Do all topologies have the same stability, or are
some intrinsically more stable than others?

VsV, o5V, agtay
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\./  MISSING BINARY
N Y4 TOPOLOGIES

Do all topologies have the same stability, or are
some intrinsically more stable than others?

Thirteen values of R* (or <Z>) may be expected in metallic
glasses
— 0.617 < R*< 1.433, which gives o
8<72<20
— Only 5 R* values are common
— <11>, <13> and <14> can be
excluded on topological basis
— Preference for <10>, <17>,
<12> and <15> may be related
to unusual ‘inverse’ relationship
— Scarcity of <8> and <20> may
be related to relatively few _
candidate systems 0L

_ 040 060 080 100 120  1.40
— Scarcity of <16>, <18>, <19> Nominal Radius Ratio, R
not understood

Miracle, Louzguine, Louzguina, Inoue; Intl Mater. Rev., In Press.
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\/ WHEN DOES THE SOLUTE
<+ BECOME THE SOLVENT?
O

??*lw Lol ’; -d;
INVERSE

ASSES




E 4

Complementary inverse glasses

— The solute-to-solvent radius ratio and solvent-to-solute radius ratios both
match R* needed for efficient local atomic packing

Two pairs of systems
stand out

— The inverse of R*=0.799
for <10> almost exactly
equals R*=1.248 for <17>

— The inverse of R*=0.902
for <12> matches
R*=1.116 for <15> almost
as well

1.0

| UFULUGUOIUAL
N2 CONTRIBUTION TO
— STABILITY

O
©

O
oo

Nominal Radius Ratio, R
o

O
o)

*

Ca-Cu

-
o

—
.
—

—
M

—
w

0.2 0.4

0.6

0.8

Solute Atom Fraction, F

Inverse System Radius Ratio, 1/R



“This paper is unlikely to be
very important in its field, but
It could be interesting to a
wide spectrum of physicists.”

Unattributed
July 2003
Comment of ‘Referee B’ for manuscript submitted to Phys. Rev. Lett.



\f OUTLINE

LOCAL STRUCTURE
EXTENDED STRUCTURE

VALIDATION
ADDITIONAL TOPICS

REMAINING ISSUES

Solute-rich structures

Chemical contributions
Strength/Fragility of Supercooled Liquids



N2  CLOSING COMMENTS

°w’

Key features and predictions validated by comparison
with experimental data

— SRO/ partial coordination numbers
— MRO

— Number of topologically distinct atomic species
— Preference for specific radius ratios

A simple topological model helps organize the way we
look at structures

— Has proved useful in computations
— Simplifies the way we ‘bin’ metallic glasses

ECP model has been used to guide exploration of new
bulk metallic glasses

— New BMGs based on Ca, Fe, Sc...
A lot of work still needs to be done
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