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Encouraging comments of colleagues:

* You will make yourself many enemies

e Bon courage!
e Mission impossible

Outline of the talk
* Various levels of “theories”
« Examples of useful theories/models
e Questions that should be addressed in the future

NB: No glass, no shearing, no shaking, no tapping, no crystallization,...

WELCOME TO THE WORLD OF LIQUIDS!



Various levels of theories
e Fitting functions:

o Kohlrausch-Williams-Watts function
e Coupling model (K. Ngal)

 Phenomenological models:
 Adam-Gibbs “theory”
e Shoving model (J. Dyre)
» Soft Glassy Material Model (P. Sollich, M.E. Cates, F. Lequeux)
e trap model (J.-P. Bouchaud)

e Theory: Should allow to make a calculation for a given microscopic
Hamiltonian; calculations might be difficult and approximations might
be needed; results might be bad

NB: 1)There are complicated models (e.g. kinetically facilitated Ising
models, landscapes,...) that allow to reproduce certain dynamic
aspects of real glass-forming liquids; these models are useful to
understand certain mechanisms, but they are models and not
theories ;

2) In glass physics the sophistication of approaches/theories spans
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Various models/theories for the glass transition

 Adam-Gibbs

» excitation/defect mediated dynamics

* ensembles of histories

* free volume theory

o frustrated domains/avoided criticality

» Gibbs-DiMarzio theory

* mode-coupling theory (comes in various flavors)
e random first order theory

e rigidity percolation

» shoving model

e trap model



The “theory” of Adam and Gibbs

Basic idea: (Adam and Gibbs 1965)

At low T the relaxation dynamics is a sequence of
iIndividual events in which a subregion of the liquid relaxes
to a new local configuration. These rearrangements are
not single particle jumps (like in a crystal) but cooperative
— Cooperatively rearranging regions (CRR)

Assumptions:
-The CRRs are independent of each other

-The CRRs contain sufficiently many particles to allow to
apply the formalism of statistical mechanics



The “theory” of Adam and Gibbs: 2

Consider one CRR that has z particles; one can show that the
probability that the CRR rearranges is given by

W(z,T) = Aexp(-Bzou)

with B =1/k, T and du a constant. Although we have CRR with
different sizes (=z), at low T we have Bou >> 1, and thus the
relevant CRR will have size z°

W'(T) = A" exp(- B z" ou)

where z" corresponds to the smallest cluster that is able to
rearrange.



The “theory” of Adam and Gibbs: 3

What is the value of z*? At low T we can decompose the dynamics of
the particles in vibrations around local minima and transitions between
these minima (idea of Goldstein).

—=The partition function can be factorized into two factors:
contribution from vibrations x number of minima with a given energy

—=The total entropy of the system can be written as a sum of the
vibrational entropy, S,;,, + configurational entropy S

conf

The number of CRRs in a system with N particles is n(z",T) = N/z".
Each CRR has thus a configurational entropy S_ = S/ N(Z',T)

= Z =N/ n(z",T) = Ns_ /S

With W(T) = A’ exp( - B z" du) one thus obtains
8 Ns conf Y 1% C ]
S conf TS conf

and assuming that the relaxation time t(T) is proportional to W *(T)*:

conf

WH*(T) = A" exp !— ] — A'exp l—

7(T) < n(T) x exp ! ] Relation of Adam-Gibbs

TS conf



The “theory” of Adam and Gibbs: Validity

One can show that S__; can be determined from C
the specific heat (Kauzmann) 7(T) o< n(T) o exp lT o J
— The AG-relation can be tested experimentally -
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Richert and Angell (1998) = AG works well over a
large T-and t-range (NB: No fit parameter!) 8



The “theory” of Adam and Gibbs: Consequences

In several glass-forming liquids the excess specific heat AC(T)
( = spec. heat of liquid — spec. heat of crystal) can be fitted well by

AC,(T) =KIT
where K is a constant.
= AS(T) =K (1T, -1/T)
If we identify AS(T) with S_,,«(T) we obtain from the AG-relation:
CTyg/ K}
T — Tk

— The AG-relation is able to make a connection between dynamics
and thermodynamics and to rationalize the Vogel-Fulcher law

(T) x exp [

Drawbacks of the AG-theory:

- What are the CRRs microscopically???

- Are the CRRs really independent? (NO = RFOT)
- Is it reasonable to assume only one kind of CRRs?
- Almost no predictions for other observables



Rigidity Percolation
 Phillips, Thorpe, Boolchand (1974--): Idea: A structure of (many) joints and
stiff bars becomes rigid if the number of constraints, n_, equals the number
of degrees of freedom, ny:

nc = nd
Consider a structure of N particles with n, particles having coordination
numberr (r =1,...); example Ge,S,, I, ;r=4,2,and 1

A counting argument shows that the number of
floppy modes (per particle) is

FIN =6 —5/2(r)-n,/N
with  (r) = Zr21 rn, /N (mean coord. number)
= structure is rigid if F=0
= (Nn=24-0.4n,/N
= on this composition line glasses form easily g TR TR Ge

at.%Ge=
» Glass-formers with HS like structure: Evidence that there are locally
favored structures (Egami, Tanaka, Coslovich,..) = Is GT related to
rigidity percolation of these structures? 1




The mode-coupling theory of the glass transition (MCT)

e Consider a system which has degrees of freedom that are fast and slow
(good separation of time scales); the Mori-Zwanzig projection operator
formalism (1960, 1965) is a method to derive exact equations of motions for
the slow dof (by eliminating the fast dof’s)

*Glasses: Vibrations (inside the cages) are fast; a-relaxation is slow

= MZ formalism + approximations gives MCT equations

Typical structure of MZ equation: ¢(q,t) = intermediate scattering function
for wave-vector g

q’kpT
mS(q)

(a0, )+ (Q)b(q, ) +2(q) / M(q, t—5)¢(q, s)ds = 0 with Q(q) =

This equation is exact but M(q,t) is horribly complicated = make
MCT approximations

MM (g, t) = /dBQ’V(q,Q’)d)(q”;t)t’b(q?t)
11



The mode-coupling theory: 2

. v ) t I ) / | 2 ’: T
la,t) + 2V (0)¢(a,t) + Q*(q) / MMET(q,t = 5)d(g,s)ds = 0 with 02(q) = - é‘? )
0 T

with MMCT (g, ¢) = /d3q’V(an’)¢(q/;t)@(Q;t)

N.B.:

1. By the MZ construction, the vertices V(q,q’) depend only on static
guantities, such as the density, structure factor, three point correlation
functions, ...

— THE STATICS GIVES THE DYNAMICS!

2. If S(q) becomes more peaked, V(q,q’) increases, i.e. the memory function
Increases with increasing density or decreasing temperature.

= With increasing coupling the dynamics is slowed down and ultimately the

system can arrest completely = ideal glass transition
12



Mode-coupling theory: 3

» Consider the MCT solution for a very simple system: hard spheres

10 packing fraction: — 0.5165

vibration — 0.5159

0.5155 o
— 0.5108 | ¢ qualitatively the curves

B relax.

o 55 [ resemble the ones found in
& [ experiments
simple glass
- liquid o relax.
- — 0.46
[ I I I I ! I
10 10° 10° 10* 10°

Time (ps)

*There exists a critical temperature T, (or packing fraction) at which the
relaxation times increase very quickly

« MCT makes many predictions how the time correlation functions
behave close to T, . These predictions have been tested extensively

by means of experiments and computer simulations.
13



Mode-coupling theory: 4

*Nonergodicity parameter (=Debye-Waller 2im g
factor): height of plateau in time correlation n° -
function (also called Edwards-Anderson 5 5
parameter)

C(o)

log(t)

Consider the coherent intermediate

scattering function F(q,t):
1 N N
F(g,t) =—> > (exp(iq- (r;(t) — rx(0)))

N k=1 j=1

Binary Lennard-Jones system; simulation
= f.(q) ; Use simulations to obtain the
static structure factor = input for MCT




« Consider silica, SiO,, a glass-former that
has an open network structure X

- SiO

0

- 00

2

4

Mode-coupling theory: 5

c,-MCT
« MD

6 8.
qlA ]
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10

C(t)

log(t)

-dependence of nonergodicity
parameter of the intermediate
scattering function

*NO fit parameter!!

*good agreement between MCT and
simulation

—MCT is also able to make reliable
guantitative predictions for “strong”
glass-formers

15



Mode-coupling theory: 6
 The MCT equations are not exact for structural glasses
* In 1986 Kirkpatrick, Thirumalal, and Wolynes studied certain mean-field
spin glass models

1 ,
H = —Eg Jij(p(sgigj — 1) with o; € {1, p}
17]
They were able to derive exact equations of motion for C(t), the
spin-autocorrelation function: C(t) = (ci(t) ,(0))

These equations have the same mathematical structure as the MCT
equations!

Conclusions:

1.There exist models for which the MCT equations are exact

2.There might be a close connection between spin glasses and
structural glasses

3. For the spin glasses models one has a (relatively) good
understanding of the (free) energy landscape = dynamic transition at
T, (mode-coupling) and a thermodynamic transition at T, (= Kauzmann

temperature) "



Mode-coupling theory: Summary

*MCT is for the moment the only theory that can currently be used to
make quantitative predictions for a given glass-former

Failures
*Gives bad predictions for the value of T,
 Often claimed BUT WRONG: MCT predicts a singularity in the
dynamics at T, (which is not seen in real systems) = use extended
version of the theory (Gotze, Sjogren, Schweizer, Chong)
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Random First Order Theory

*Decompose the system into the cooperatively
rearranging regions of Adam-Gibbs
= local minima in the free energy
= “tile” of a mosaic

e Interface tension between neighboring tiles
= gives size of a tile

*Make assumption on how the interior of a tile
relaxes
= relaxation dynamics of the system

More detalils: Listen to talk of Jean-Phillipe Bouchaud (15 minutes)

18



Where are we? Open questions

*There are many approaches that attempt to describe the structure and the
glassy dynamics: Some of them are highly sophisticated, some of them are
simple minded.

* All of the non-trivial approaches have flaws:

*Fuzzy concepts: What are the cooperatively rearranging regions of
Adam-Gibbs? Does it make sense to talk about an interface tension in
the RFOT if the domains are only a few particle diameters?, ...

*Uncontrolled approximations: MCT takes hopping processes into
account in a rudimentary way. What about low T? What is the relevance
of mean field results for finite dimensional systems?

e Further questions:
*|s there a real difference between strong and fragile glass-formers?
*Do we need to understand dynamical heterogeneities in order to
understand the glass-transition? What is the reason for the DH?
 Are there increasing static length-scales?

e Theories and clever models have helped us to make significant progress in
our understanding of glass-forming systems (structure and dynamics).

But there is still a lot to do! 19



The end of Fragility?
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*Elmatad, Garrahan, and Chandler (2009)
*Hess, Rossler and Dingwell (1996)

16

12}

20




