
How do microscopic displacements 
accommodate total global strain?

Is there a typical size of plastic event?

How are “earthquakes” distributed in 
energy, location and time?

How does inertia affect deformation?
Many systems critical without inertia. 
Here critical with inertia.
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Motivation
Find power law distribution of events, avalanches, earthquakes 
in a wide variety of systems and on wide range of scales as 
long as they are driven slowly
• Charge-density wave motion
• Fluid invasion of porous media, contact line motion
• Magnetic domain switching (Barkhausen noise)
• Deformation of solids 
(acoustic emission, dislocation bursts, cracks, earthquakes)

• Granular media, foams, ….
For large objects or events temperature may be irrelevant
Dynamics are also generally underdamped at large scales
⇒Focus on quasistatic, T=0, momentum conserving dynamics 



Quasistatic Athermal Simulations
2D Molecular Dynamics (usually)
•Binary Lennard-Jones (or harmonic)

Mean diameter σ, binding energy ε
•Quenched at pressure p=0
protocol not important

•T=0, Underdamp relative velocities  
Gallilean invariant (Kelvin/DPD)

•Periodic boundaries (usually)
•Axial, fixed area strain or 
simple shear, const. rate

•Quasi-static limit ⇒ low rate 
controlled by Δγ not Δt

Different than saying motion of
all atoms is always slow,
i.e. overdamp or minimize energy

Prescribed Ly(t), Lx(t)  
to conserve area

Ly(t)

Lx(t)



Nonaffine Particle Displacements
Non-affine displacement u = 
deviation from mean motion
Integrate affine displacement 
along trajectory rather than 
using value for initial position.
For each particle at each 
time step find distance 
moved relative to affine 
displacement at 
instantaneous position.
Eliminates terms analogous 
to Taylor diffusion in simple 
shear

Ly(t)

Lx(t)



Quasi-static, Steady-State Shear
• Shear rate low enough that independent (not causally related) 
events are separated in time.  Typically 10-6 tLJ

-1 or less
• Number independent of rate
• Statistical properties  
independent of initial
configuration

• Atomic velocities fast,
only shear rate low



Defining Avalanches
Deformation through series 
of avalanches
Find energy dissipated = 
change in potential energy -
work done by system.
Drops have wide 
distribution, 0.03 to 20 here
Identify by sharp rises in 
dissipation rate.
Dissipation rate/Kinetic 
energy drops to constant as 
energy moves to longest 
wavelengths.
Ratio measures wavelength 
where have kinetic energy 
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Avalanche Distribution

Amplifying scale shows 
earthquakes can have 
complex structure with 
many spurts of activity.

Find kinetic energy ratio 
gives a constant number of 
events per unit strain in the 
limit of low rates 

Have also tested that 
stopping strain during event 
gives same statistics
⇒ quasistatic



P(E) = Number of Events per Unit Strain per E
Reduce strain rate so quasi-static, only affects small events.
Find power law P(E)~1/E over 5 decades.
P(E) and maximum E increase with system size

P(
E)



E P(E) ~ Constant
Find P(E) ~ E-1

Maximum event size grows more rapidly than length L 
E 

P(
E)



Scaling Collapse of N(E) and E

E*(L/100)2−β

Scale E by Emax ~ Lβ .   Find β~1.1
N(E/Emax) must scale as L1−β to maintain energy balance
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Slow Enough?
Stop straining when detect event
Same distribution (dashed curves) as continuous strain (solid) 



Power Law Independent of Potential, 
Geometry and Thermostat



Exponential Scaling of P(E) in Other Models
Same system but with energy 

minimization, not dynamics
Largest event ~3ε vs. 200ε
(Maloney & Lemaître PRE 74, 016118, ’06)

3D amorphous metal 
N(E)~exp[-E/Lx] x=1.4

(Bailey, Schiøtz, Lemaître & Jacobsen, PRL 98, 
095501, ‘07).

Do see power laws in overdamped
systems with quenched disorder
AND 
Inertial models without disorder
(Carlson, Langer, Shaw – Burridgge-Knopof)



Inertia Matters

InertialOverdamped Difference

Energy minimization finds 
nearest minimum
Energy lower with inertia
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Langevin Damping Changes Distribution
Overdamped systems ⇒ fewer events at small and large E 
Tail at large E ~ exponential



Relation Between Duration and Energy
Duration ~ square root of energy
Consistent with area~energy and duration ~ length = area0.5



Relation Between Stress Drop and Energy
Mean stress over whole volume * volume ~ moment
Find moment ~ energy for large events (dashed line)
Large dispersion for small events
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Our Quakes Include Fore and After Shocks
How Does this Affect Statistics?



Integrated Density of Quakes Based on Kinetic Energy

Large events are broken up.  Find integrated density ~ E-0.4

Gutenberg-Richter ~ E -2/3



Relation Between Energy and Spatial Size
Size = # triangles where curl of displacement field

has magnitude > 0.1 (limit of elastic deformations)
Find linear (dashed line) relation for large events
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Defining Local Deformation
Shear related to local rotation ω=∇×u , u=displacement
Find Delaunay triangulation for initial particle centers
For each triangle:

Invariants:

ω<0ω>0

“Right Strain” “Left Strain”

MR4



Slide 21

MR4 Mention coarse-graining property
Note we 2x strain
Mark Robbins, 10/30/2008



Spatial Variation of Nonaffine Displacement u

ux uy

(ux+uy)/√2 (ux-uy)/√2

Components of u 
during 0.2% strain
+σ white, -σ black
Strain localizes in 
plastic bands → step 
in total displacement

Largest projection of 
u along bands ±45º
Sign → rotation sense
Length up to system
Typical   a ~ σ

L=1000L=1000



Earthquakes
Examples of events (111.065,24.5098,2.982,1.4181)→



Earthquakes
Examples of events (3.2643,301.448,21.3862,0.0794)→



Earthquakes
Total integrated activity shows 
long range correlations

Activity over 1% strain

Single largest event



|Δr|

ω

Strain γ: 6.0% to 6.1% 6.0% to 6.2% 6.0% to 6.4%

Displacement and ω in steady state
Most analysis looks at magnitude Δr=| u | → smallest in plastic band
Curl sharply localized in plastic zone, +/- regions correlate along -/+45º
Strain accumulates to a~σ in plastic bands through many avalanches
→Displacement ~σ allows all regions to find new metastable state 

Strain over intervals Δγ > ~σ/L occurs in uncorrelated locations

h~L/20

→

L=1000

Black =clockwise

White = 
counter-clockwise



Distribution of Displacement Magnitude Δr = rms u

If displacement across band = a,
flat distribution P(Δr) up to a/2

Roughly consistent with observed P
Large fluctuations → long-range correlations

Δγ=0.002

Results for 4 intervals

Mean



Displacements Diffusive with D∝L
Plastic band formed in each strain~a/L gives |Δr|<a/2, add incoherently

Δr2~Δγ/(a/L) a2/12 ~ D Δγ → D ~ L a/12
Consistent with observed D=57σ2 for a=0.7σ and for L down to 40

D=57σ2

For ω, no L 
dependence



Distribution of Vorticity ω
Sharp elastic peak at small ω
Exponential tails at large ω
Weight in tails grows 
~linearly with strain

Characteristic ω∗ for 
decay ~0.1

Since ω ~ twice strain, 
ω* → 5% strain

~ yield strain

Plastic bands have ~10 
sharper localized bands



Vorticity Correlation Function

Mean of log S scales as 
power of wave vector.

Prefactor linear in Δγ
→Incoherent addition 
of successive intervals

BUT scaling highly 
anisotropic



Angle Dependence of Structure Factor, Δγ=0.1%

α = a+b cos(4θ)
A = c+d cos(2θ)

θ=π/8

θ=3π/8

θ=π/8 and θ=3π/8 have same shear 
stress, different normal stress.
Mohr-Coulomb predicts shift to π/8

S(q;θ)=A(θ)q-α(θ) Α: broken shear symmetry
bigger for planes with low normal load
as predicted by Mohr-Coulomb
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Conclusions
• Earthquake probability P(E) ~ 1/E over ~ 5 decades

Exponent independent of geometry, interactions
May depend on how events are broken up

• Inertia leads to qualitative changes in deformation statistics.

• Strain localizes in plastic bands that extend across system
Typical slip distance along band a~particle diameter
Typical thickness h scales with system size ~L/20
Several sharper features in h with strain ~5 – 10%

• Non-affine displacement Δr2~Δγ/(a/L) a2/12 ~ D Δγ, D~La/12
• Strain over short intervals has anisotropic power law 

correlations
S(|q|,θ) ~ A(θ) |q|-α(θ)  where α = a+b cos(4θ), A = c+d cos(2θ)
Breaking of symmetry for A → Mohr-Coulomb
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