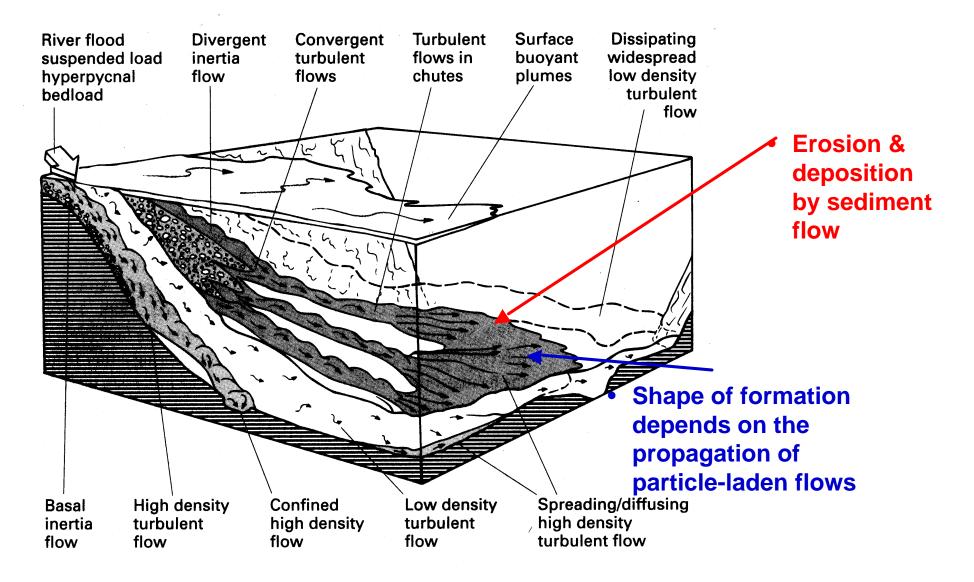
Gravitational Transport of Grains

Deniz Ertas Corporate Strategic Research ExxonMobil Research and Engineering

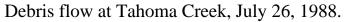
ExxonMobil: Thomas Halsey Sandia National Labs: Gary Grest Leo Silbert (now at Chicago) James Landry (now at BAE) Steven Plimpton

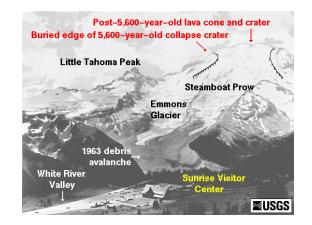
June 20, 2005 Granular Physics Conference KITP, Santa Barbara, CA

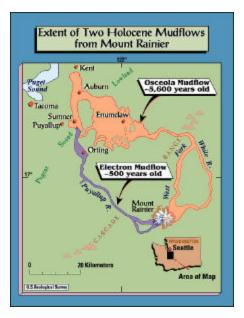
Formation of Off-Shore Reservoirs from Sediments

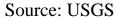


Debris Flows - Mt. Rainier



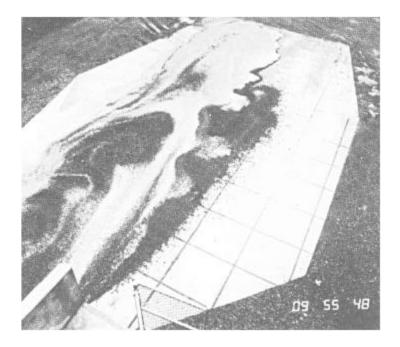




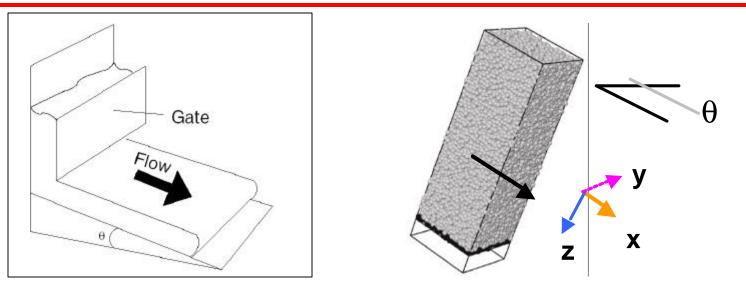


Debris Flow Flume

 R.M. Iverson, J.E. Costa, and R.G. LaHusen, 1992,
 H.J. Andrews Experimental Forest, Oregon: USGS

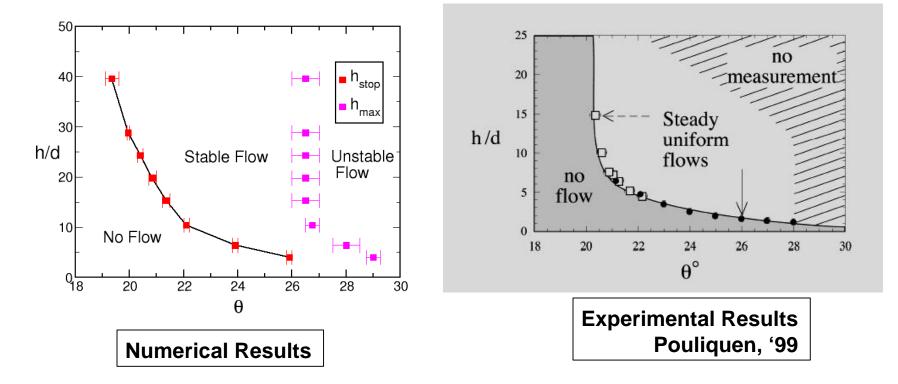


Chute Flow



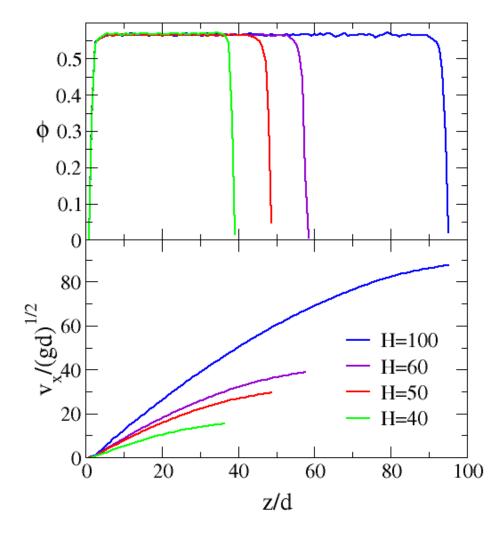
- Study chute flow -- flow of a dry granular medium down an inclined plane
- Fundamental geometry for geophysical applications
 - Debris flows
- Concentrate mainly on three dimensions
 - Two-dimensional variation of parameters
 - In 2-d, crystallization creates significant hysteresis, boundary effects

Phase Diagram for Flow



- Phase diagram shows three regions:
 - No flow
 - Stable flow
 - Accelerating (unstable) flow
- For h large, angle of repose is ~19.5°

Kinematics of Chute Flow



- Constant density profile
 observed with depth
 - Density drops near surface
- Velocity obeys 3/2 power law with depth
 - Best fit to power law with exponent of 1.52
 - Agrees with Bagnold scaling (next slide)
- Other kinematic variables also suggest inverse strain rate as only apparent time scale
- Normal stresses in shear plane approximately equal

$$\boldsymbol{S}_{xx} \approx \boldsymbol{S}_{zz} > \boldsymbol{S}_{yy}$$

Viscosity Length and Bagnold Rheology

• Typically for liquid-like shear flow, we expect shear stress to obey

$$\boldsymbol{s}_{xz} = \boldsymbol{r}\boldsymbol{n}\boldsymbol{g}$$

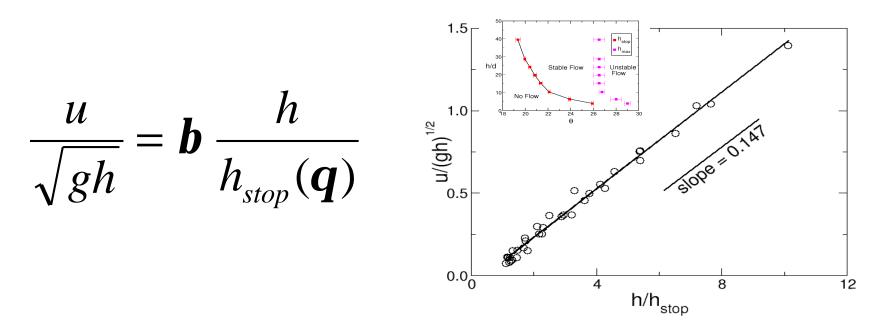
• On dimensional grounds, define viscosity length scale $l_{v}(\rho)$

$$\boldsymbol{n} \equiv l_{\boldsymbol{n}}^2 \, \boldsymbol{\dot{g}}$$

• For chute flow, if ρ = const, "Bagnold rheology"

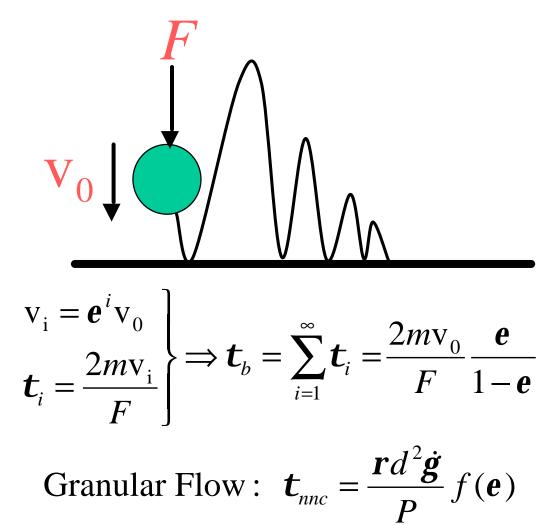
$$\boldsymbol{s}_{xz} = \boldsymbol{r}gz\sin\boldsymbol{q} = \boldsymbol{r}l_n^2 \dot{\boldsymbol{g}}^2 \Longrightarrow \begin{cases} \partial_z \mathbf{v}_x = A_{Bag}\sqrt{z} \\ A_{Bag} = \frac{\sqrt{g}\sin\boldsymbol{q}}{l_n} \end{cases}$$

Pouliquen Flow Rule



- Pouliquen flow rule summarizes much of the phenomenology of chute flows
 - Relates average velocity *u* to depth *h*
 - Connects depth of arresting pile $h_{stop}(\theta)$ with rheology (l_v)
 - Unstable flow line is approximately independent of flow depth

Inelastic Collapse of Nearest Neighbors



- Inelastic ball (ε < 1) pushed to a surface with force F comes to rest in finite time τ_h
- In dense granular media, depletion force

$$F \sim P / d^2$$

• Initial collision velocity

$$\mathbf{v}_0 \sim d\dot{\mathbf{g}}$$

 Expect more complicated dependence on E in granular flow due to disorder, friction, angular averaging and presence of other neighbors

Correlated Motion of Grains

 Anticipate that neighboring particle motions will become correlated if they collide sufficiently many times before shearing off:

$$\boldsymbol{t}_{nnc} = \frac{\boldsymbol{r}d^{2}\boldsymbol{\dot{g}}}{P}f(\boldsymbol{e}) < \boldsymbol{\dot{g}}^{-1}$$

- Time for a correlated region surrounded by constant pressure *P* to grow to size *l* :
- Characteristic correlation length l_e due to cutoff time imposed by strain rate, given initial collision velocity :

$$\boldsymbol{t}_{c}(l,P) \sim \left(\frac{l}{d}\right)^{2} \boldsymbol{t}_{nnc} = \frac{\boldsymbol{r}l^{2}\boldsymbol{\dot{g}}}{P} f(\boldsymbol{e})$$

$$\widetilde{a} \, \frac{\boldsymbol{r} l_e^2 \boldsymbol{\dot{g}}}{P} f(\boldsymbol{e}) = \boldsymbol{\dot{g}}^{-1}$$

(

• We postulate that apart from finite-size corrections, the viscosity length scale is set by the characteristic correlation length:

$$l_{\mathbf{n}}^2 = l_e^2 (1 + \widetilde{b} \, \frac{d}{l_e} + \dots)$$

• Solving for l_e and $\dot{\boldsymbol{g}}$

$$l_e = \frac{\widetilde{b} d \tan \boldsymbol{q}_R}{\tan \boldsymbol{q} - \tan \boldsymbol{q}_R} \sim \frac{d}{\boldsymbol{q} - \boldsymbol{q}_R}, \quad \tan \boldsymbol{q}_R = [\widetilde{a} f(\boldsymbol{e})]^{-1}$$

and

$$\dot{\boldsymbol{g}} = A_{Bag}\sqrt{z}, \quad A_{Bag} = \frac{\sqrt{g\sin\boldsymbol{q}_R}}{l_e} \sim \frac{\sqrt{g}}{d}(\boldsymbol{q}-\boldsymbol{q}_R)$$

Phase Diagram

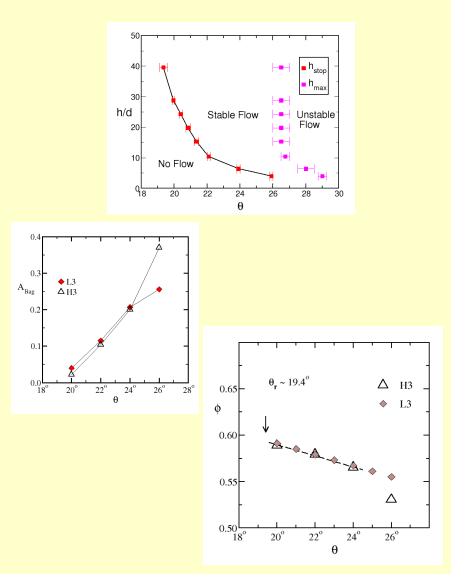
- Expect rheology to break down if cluster size is comparable to total flow depth (flow arrest), or size of one particle (unstable flow)
- Predicts Pouliquen flow rule with

$$h_{stop} \propto \frac{d \tan \boldsymbol{q}_R}{\tan \boldsymbol{q} - \tan \boldsymbol{q}_R}$$

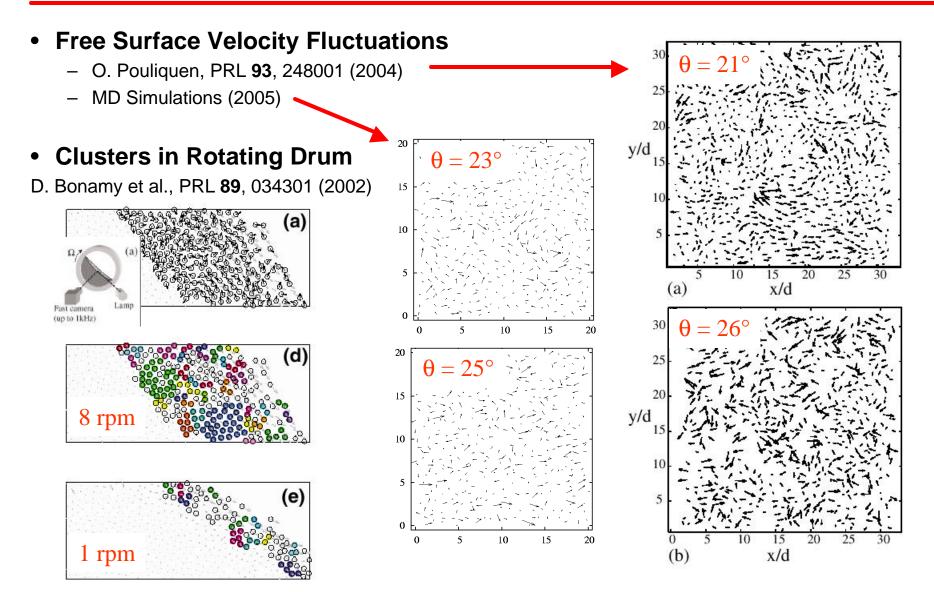
 Also predicts depth-independent unstable flow criterion-correlated motion a <u>necessity</u> for stable flow

 $\mathbf{r}_{c}-\mathbf{r}\sim l_{e}^{-1}$

- Predicts A_{Bag} linear in tilt angle
- Consistent with



Evidence of Correlated Motion



Summary

- Chute flow obeys "Granular Liquid" kinematics with Bagnold rheology
- Hypothesis of correlated motion accounts semi-quantitatively for notable aspects of phenomenology
 - ✓ Velocity profile with depth, tilt angle
 - ✓ Pouliquen flow rule
 - ✓ Phase diagram
- Recent hints on the nature of the correlated motions
 - **? Kinetic theory incorporating velocity correlations**
- Next Challenge: Underwater flows through implementation of lubrication forces