Rheology and linear response of sheared granular flows
V. Kumaran

Department of Chemical Engineering Indian Institute of Science

Bangalore 560012

Kinetic theory - elastic hard spheres

- Velocity distribution $f(\mathbf{x}, \mathbf{u}) d \mathbf{x} d \mathbf{u}$.
- Fluctuating velocity $\mathbf{c}=\mathbf{u}-\mathbf{U}$

Boltzmann eq $\frac{\partial(\rho f)}{\partial t}+\frac{\partial\left(\rho c_{i} f\right)}{\partial x_{i}}+\frac{\partial\left(\rho a_{i} f\right)}{\partial c_{i}}-\frac{\partial U_{i}}{\partial x_{j}} \frac{\partial\left(\rho c_{j} f\right)}{\partial c_{i}}=\frac{\partial_{c}(\rho f)}{\partial t}$

Collision integral - molecular chaos approximation.
Boltzmann equation: $\frac{\partial(\rho f)}{\partial t}+\frac{\partial\left(\rho c_{i} f\right)}{\partial x_{i}}-\frac{\partial U_{i}}{\partial x_{j}} \frac{\partial\left(\rho c_{j} f\right)}{\partial x_{i}}=\frac{\partial_{c}(\rho f)}{\partial t}$
Equilibrium (no gradients)

$$
\frac{\partial_{c} f}{\partial t}=0
$$

Solution - Maxwell-Boltzmann distribution

$$
f=(2 \pi T)^{-3 / 2} \exp \left(-m u^{2} / 2 T\right)
$$

Non-equilibrium - Chapman-Enskog procedure:

$$
\begin{aligned}
& \frac{\partial(\rho f)}{\partial t}+ \frac{\partial\left(\rho c_{i} f\right)}{\partial x_{i}}-\frac{\partial U_{i}}{\partial x_{j}} \frac{\partial\left(\rho c_{j} f\right)}{\partial c_{i}}= \\
& \frac{\partial_{c}(\rho f)}{\partial t} \\
& L G_{x y} \rho f
\end{aligned}
$$

Asymptotic expansion in parameter $\epsilon=(\lambda / L) ; f=f_{0}+\epsilon f_{1}+\ldots$
Leading order $\frac{\partial_{c}(\rho f)}{\partial t}=0 \rightarrow f=f_{M B}$.
First correction

$$
\frac{\partial\left(\rho f_{0}\right)}{\partial t}+\frac{\partial\left(\rho c_{i} f_{0}\right)}{\partial x_{i}}-\frac{\partial U_{i}}{\partial x_{j}} \frac{\partial\left(\rho c_{j} f_{0}\right)}{\partial c_{i}}=\frac{\partial_{c}\left(\rho f_{1}\right)}{\partial t}
$$

Moments of Boltzmann equation

- 'Slow' Mass, Momentum \& Energy, conserved in collisions.
- Other 'fast' moments decay over time scales \sim collision time.

Linear response

- $f(\mathbf{c})=f_{0}(\mathbf{c})+\tilde{f}(\mathbf{c}) e^{(s t+\imath k x)}$
- Linearised Boltzmann equation $\left[s+\imath k c_{x}-G_{i j} \frac{\partial c_{i}}{\partial c_{j}}\right] \tilde{f}=L[\tilde{f}]$
- $\tilde{f}(\mathbf{c})=\sum_{i=1}^{N} A_{i} \psi_{i}(\mathbf{c})$
- $\left(s I_{i j}+\imath k X_{i j}-G_{i j}-L_{i j}\right) A_{j}=0$

Hydrodynamic modes for elastic system

- Number of eigenvalues depends on number of basis functions chosen.
- For $k \rightarrow 0$, Transverse momenta $s_{t}=$ $-(\mu / \rho) k^{2}$.
Energy $s_{e}=-D_{T} k^{2}$.
Mass \& longitudinal mom.
$s_{l}= \pm \imath k \sqrt{p_{\rho}}-\rho^{-1}\left(\mu_{b}+\right.$ $4 \mu / 3) k^{2}$.
- All other modes with neg-
 ative eigenvalues, indicating that other transients decay.

Calculation of Transport coefficients (dilute):

$$
\begin{aligned}
\sigma_{x y} & =-\rho\left\langle u_{x} u_{y}\right\rangle \\
& =-\rho \int d \mathbf{u} f_{1}(\mathbf{u}) u_{x} u_{y} \\
& =\eta G_{x y}
\end{aligned}
$$

Beyond molecular chaos - incorporate correlated collisions.
Two dimensions $\sigma_{x y}=\eta G_{x y}+\eta^{\prime} G_{x y} \log \left(G_{x y}\right)$
Three dimensions $\sigma_{x y}=\eta G_{x y}+\eta^{\prime} G_{x y}\left|G_{x y}\right|^{1 / 2}$

Green-Kubo formula (shear viscosity):

$$
\eta=\frac{\beta}{V} \lim _{k \rightarrow 0} \int_{0}^{\infty} d t\left\langle\sigma_{x y}(k, t) \sigma_{x y}(-k, 0)\right\rangle
$$

Microscopic stress:

$$
\sigma_{x y}(\mathbf{k})=\int_{\mathbf{k}^{\prime}} u_{x}\left(\mathbf{k}-\mathbf{k}^{\prime}\right) u_{y}\left(\mathbf{k}^{\prime}\right)
$$

Velocity fluctuations:

$$
\begin{gathered}
\partial_{t} u_{x}(\mathbf{k})=-\eta k^{2} u_{x}(\mathbf{k}) \\
u_{x}(\mathbf{k}, t)=\exp \left(-\eta k^{2}\right) u_{x}(\mathbf{k}, 0)
\end{gathered}
$$

Viscosity

$\eta=\frac{\beta}{V} \int d \mathbf{k}^{\prime} \int_{0}^{\infty} d t\left\langle u_{x}\left(\mathbf{k}^{\prime}, t\right) u_{x}\left(-\mathbf{k}^{\prime}, 0\right)\right\rangle\left\langle u_{y}\left(-\mathbf{k}^{\prime}, t\right) u_{y}\left(\mathbf{k}^{\prime}, 0\right)\right\rangle$

Time correlation - long time tail:

$$
\begin{aligned}
& \int d \mathbf{k}\left\langle u_{x}(\mathbf{k}, t) u_{x}(-\mathbf{k}, 0)\right\rangle \\
& \quad \sim \int d \mathbf{k} \exp \left(-\eta k^{2} t\right) \\
& \quad \sim t^{-d / 2}
\end{aligned}
$$

Sheared system:

$$
\begin{aligned}
& \left(\partial_{t}+G_{x y} k_{x} \frac{\partial}{\partial k_{y}}\right) u_{x}=-\eta k^{2} u_{x} \\
& u_{x}(t)=u_{x}(0) \exp \left[-D t\left(k^{2}-G_{x y} t k_{x} k_{y}+\frac{1}{3} G_{x y}^{2} t^{2} k_{x}^{2}\right)\right] \\
& \quad u_{x}(t) \sim \exp \left(-1 / 3 G_{x y}^{2} k_{x}^{2} t^{3}\right)
\end{aligned}
$$

'Turning' of wave vector due to shear:

'Turning' of wave vector due to shear:

Green-Kubo relation:

$$
\eta=\frac{\beta}{V} \int d \mathbf{k}^{\prime} \int_{0}^{G_{x y}^{-1}} d t t^{-d / 2}
$$

Two dimensions:

$$
\eta=\eta_{0}+\eta_{1} \log \left(G_{x y}\right)
$$

Three dimensions:

$$
\eta=\eta_{0}+\eta_{1}\left|G_{x y}\right|^{1 / 2}
$$

Beyond the Boltzmann equation:

One particle distribution
$f_{\alpha}\left(\mathbf{x}_{\alpha}, \mathbf{u}_{\alpha}\right)$.
Molecular chaos truncation:
$f_{\alpha \beta}=f_{\alpha} f_{\beta}$.
Ring kinetic truncation:
$f_{\alpha \beta}=f_{\alpha} f_{\beta}\left(1+g_{\alpha \beta}\right)$.
Two-particle distribution:
$f_{\alpha \beta}\left(\mathbf{x}_{\alpha}, \mathbf{u}_{\alpha}, \mathbf{x}_{\beta}, \mathbf{u}_{\beta}\right)$

$$
\begin{aligned}
f_{\alpha \beta \gamma}= & f_{\alpha} f_{\beta} f_{\gamma}\left(1+g_{\alpha \beta}+\right. \\
& \left.g_{\alpha \gamma}+g_{\beta \gamma}\right)
\end{aligned}
$$

Single particle distribution

$$
\frac{\partial\left(c_{\alpha i} f_{\alpha}\right)}{\partial x_{\alpha i}}-G_{i j} c_{\alpha j} \frac{\partial f_{\alpha}}{\partial x_{\alpha i}}=\frac{\partial_{c} f_{\alpha}}{\partial t}
$$

Ring kinetic equation:
$\partial_{t} f_{\alpha \beta}-G_{i j} x_{\alpha \beta j} \frac{\partial f_{\alpha \beta}}{\partial x_{i}}+c_{\alpha \beta i} \frac{\partial f_{\alpha \beta}}{\partial x_{i}}-G_{i j}\left(c_{\alpha j} \frac{\partial f_{\alpha \beta}}{\partial c_{\alpha i}}+c_{\beta j} \frac{\partial f_{\alpha \beta}}{\partial c_{\beta i}}\right)=\frac{\partial_{c} f_{\alpha \beta}}{\partial t}$

Propagator in ring kinetic equation:

Steady homogeneous shear flow of inelastic particles:

$$
-G_{i j} \frac{\partial\left(\rho c_{j} f\right)}{\partial c_{i}}=\frac{\partial_{c}(\rho f)}{\partial t}
$$

Nearly elastic collisions:
$e_{n} \ll 1 \rightarrow$ Dissipation \ll Particle energy
Expand in $\varepsilon_{n}=\left(1-e_{n}\right)^{1 / 2}$.
Leading order $\frac{\partial_{c}\left(\rho f_{0}\right)}{\partial t}=0 \rightarrow f=f_{M B}$.
Rate of energy production $\sim \mu G_{x y}^{2} \sim\left(T^{1 / 2} / d^{2}\right) G_{x y}^{2}$.
Rate of energy dissipation $\sim \rho^{2} T^{3 / 2}\left(1-e_{n}^{2}\right)^{1 / 2}$.
$\rightarrow G_{x y} \sim\left(1-e_{n}^{2}\right)^{1 / 2} T^{1 / 2} \sim \varepsilon_{n} T^{1 / 2}$.

Hydrodynamic modes for smooth inelastic spheres

- Energy not conserved.
- Source of energy.
- Rate of conduction $\left(\lambda_{M} T^{1 / 2} / L^{2}\right)$.
- Rate of dissipation $\left((1-e) T^{1 / 2} / \lambda_{M}\right)$.
- Conduction length $L_{c}=$ $\left(\lambda_{M} /(1-e)^{1 / 2}\right.$.
- Energy conserved $L \ll L_{c}$.
- Adiabatic approx. $L \gg L_{c}$. Local balance between source and dissipation.

Smooth nearly elastic particles

$$
O(1) \quad O\left(\varepsilon_{n}\right)
$$

$$
\begin{aligned}
\sigma_{i j}= & -p\left(\phi, S_{i j}, G_{i i}\right) \delta_{i j}+2 \mu\left(\phi, S_{i j} G_{i i}\right) S_{i j}+\mu_{b}\left(\phi, S_{i j}, G_{i i}\right) \delta_{i j} G_{k k} \\
& +\left(\mathcal{A}(\phi)\left(S_{i k} S_{k j}-\left(\delta_{i j} / 3\right) S_{k l} S_{l k}\right)+\mathcal{B}(\phi) \delta_{i j} G_{k k}^{2}+\mathcal{C}(\phi) S_{i j} G_{k k}\right. \\
& +\mathcal{D}(\phi)\left(S_{i k} A_{k j}+S_{j k} A_{k i}\right)+\mathcal{F}(\phi)\left(A_{i k} A_{k j}-\left(\delta_{i j} / 3\right) A_{k l} A_{l k}\right) \\
& -\frac{\mathcal{D}(\phi)}{2}\left(\frac{\partial}{\partial x_{i}}\left(\frac{1}{\rho} \frac{\partial p}{\partial x_{j}}\right)+\frac{\partial}{\partial x_{j}}\left(\frac{1}{\rho} \frac{\partial p}{\partial x_{i}}\right)-\frac{2 \delta_{i j}}{3} \frac{\partial}{\partial x_{k}}\left(\frac{1}{\rho} \frac{\partial p}{\partial x_{k}}\right)\right.
\end{aligned}
$$

$$
p=\rho T\left(1+\left(4-2 \epsilon^{2}\right) \phi \chi(\phi)\right)
$$

$$
\mu(\phi)=\frac{5 T^{1 / 2}}{16 \sqrt{\pi} \chi(\phi)}\left(1+\frac{8 \phi \chi(\phi)}{5}\right)^{2}+\frac{48 \phi^{2} \chi(\phi) T^{1 / 2}}{5 \pi^{3 / 2}}
$$

$$
\mu_{b}(\phi)=\frac{16 \phi^{2} \chi T^{1 / 2}}{\pi^{3 / 2}}
$$

Coefficients $\mathcal{A}-\mathcal{G}$ identical to Burnett expansion for $\varepsilon_{n} \rightarrow 0$.

Linear response $-L \ll L_{c}$

- Number of eigenvalues depends on number of basis functions chosen.
- For $k \rightarrow 0$, Transverse momenta $s_{t}=$ $-(\mu / \rho) k^{2}$.
Energy $s_{e}=-D_{T} k^{2}$.
Mass \& longitudinal mom.
$s_{l}= \pm \imath k \sqrt{p_{\rho}}-\rho^{-1}\left(\mu_{b}+\right.$ $4 \mu / 3) k^{2}$.
- All other modes with neg-
 ative eigenvalues, indicating that other transients decay.

Linear response

Infinite sheared granular material

- Mean flow $\bar{u}_{x}=\bar{G} y, \bar{u}_{y}=0, \bar{u}_{z}=0$.
- Small dissipation $\epsilon=\left(1-e_{n}\right)^{1 / 2} \ll 1$.
- Macroscopic length $L \gg L_{c}$.
- Mass conservation

$$
\partial_{t} \rho+\nabla \cdot(\rho \mathbf{u})=0
$$

- Momentum conservation

$$
\rho\left(\partial_{t} \mathbf{u}+\mathbf{u} . \nabla \mathbf{u}\right)=\nabla . \sigma
$$

- Perturbations

$$
\binom{\rho(\mathbf{x}, t)}{\mathbf{u}(\mathbf{x}, t)}=\binom{\tilde{\rho}(t)}{\tilde{\mathbf{u}}(t)} \exp (\imath k x+\imath l y+\imath m z)
$$

Linear response

- Infinite shear flow - not homogeneous.
- Time dependent wave vector $k=k_{0}, l=l_{0}-k_{0} \bar{G} t, m=m_{0}$.
- 'Linear' response equations

$$
\begin{gathered}
\partial_{t}\binom{\tilde{\rho}(t)}{\tilde{\mathbf{u}}(t)}+\left(\mathcal{L}_{0}+t \mathcal{L}_{1}+t^{2} \mathcal{L}_{2}\right)\binom{\tilde{\rho}(t)}{\tilde{\mathbf{u}}(t)}=0 \\
\binom{\tilde{\rho}(t)}{\tilde{\mathbf{u}}(t)}=\exp \left(-t \mathcal{L}_{0}-\left(t^{2} / 2\right) \mathcal{L}_{1}-\left(t^{3} / 3\right) \mathcal{L}_{2}\right)\binom{\tilde{\rho}(0)}{\tilde{\mathbf{u}}(0)}
\end{gathered}
$$

For $k_{0}=0, \mathcal{L}_{1}=0, \mathcal{L}_{2}=0$.

Linear response - flow plane

Linear response - flow plane transverse mode
Perturbations to \tilde{u}_{z} :

$$
\begin{aligned}
\tilde{u}_{z}(t) & =\tilde{u}_{z}(0) \exp \left(s_{0 z} t+\left(s_{1 z} t^{2} / 2\right)+\left(s_{2 z} t^{3} / 3\right)\right) \\
s_{0 z} & =-\frac{\left(\bar{\mu}+\overline{\mathcal{E}} \bar{G}^{2} / 8\right)}{\bar{\rho}}\left(k_{0}^{2}+l_{0}^{2}\right) \\
s_{1 z} & =\left(\frac{\overline{\mathcal{A}} \bar{G}^{2} k_{0}^{2}}{2}+\frac{2 \bar{G} k_{0} l_{0}}{\bar{\rho}}\left(\bar{\mu}+\left(\bar{\varepsilon} \bar{G}^{2} / 8\right)\right)\right) \\
s_{2 z} & =-\frac{\bar{G}^{2} k_{0}^{2}}{\bar{\rho}}\left(\bar{\mu}+\left(\overline{\mathcal{E}} \bar{G}^{2} / 8\right)\right)
\end{aligned}
$$

For $t \ll \bar{G}^{-1}, \tilde{u}_{z} \sim \exp \left(-\bar{\mu} k_{0}^{2} t\right)$.
For $t \gg \bar{G}^{-1}, \tilde{u}_{z} \sim \exp \left(-\bar{\mu} \bar{G}^{2} k_{0}^{2} t^{3}\right)$.

Linear response - flow plane
Short time $t \ll \bar{G}^{-1}$:

$$
\left(\begin{array}{c}
\tilde{\rho}(t) \\
\tilde{u}_{x}(t) \\
\tilde{u}_{y}(t)
\end{array}\right)=\exp \left(s_{\rho x y}\right)\left(\begin{array}{c}
\tilde{\rho}(0) \\
\tilde{u}_{x}(0) \\
\tilde{u}_{y}(0)
\end{array}\right)
$$

where

$$
s_{\rho x y}^{3}=-\bar{G}^{2} k_{0}^{2}\left(\bar{\mu}_{\rho}+\frac{\bar{G}^{2} \overline{\mathcal{E}}}{8}\right)+k_{0} l_{0} \bar{G}\left(\bar{p}_{\rho}-\frac{\bar{G}^{2}}{4}\left(\overline{\mathcal{A}}_{\rho}+2 \bar{C}_{\rho}\right)\right)
$$

- Three solutions - two propagating, one diffusive.
- For $l_{0}=0, s_{\rho x y} \propto-\left(-1,(-1)^{1 / 3},(-1)^{2 / 3}\right) \bar{G}^{2 / 3} k_{0}^{2 / 3} \bar{\mu}_{\rho}^{1 / 3}$.
- For $l_{0} \neq 0, s_{\rho x y} \propto\left(-1,(-1)^{1 / 3},(-1)^{2 / 3}\right) k_{0}^{1 / 3} l_{0}^{1 / 3} \bar{p}_{\rho}^{1 / 2}$

Linear response - flow plane

$$
\begin{gathered}
s_{\rho x y} \tilde{\rho}+\bar{\rho} l k_{0} \tilde{u}_{x}+\bar{\rho} \imath l_{0} \tilde{u}_{y}=0 \\
\bar{\rho}\left(s_{\rho x y} \tilde{u}_{x}+\bar{G} \tilde{u}_{y}\right)=0 \\
\bar{\rho} s_{\rho x y} \tilde{u}_{y}-\left(\imath \bar{G} k_{0} \bar{\mu}_{\rho} \tilde{\rho}+\imath l_{0} \bar{p}_{\rho}\right) \tilde{\rho}=0
\end{gathered}
$$

Summary - Flow direction:

		$k \ll \epsilon$	$k \gg \epsilon$
Propagating	$s_{p r}$	$-k^{2 / 3}$	$-k^{2}$
	$s_{p i}$	$\pm k^{2 / 3}$	$\pm k$
Diffusive	s_{d}	$+k^{2 / 3}$	$-k^{2}$
Transverse	s_{z}	$-k^{2}$	$-k^{2}$
Energy	s_{T}	$-k^{0}$	$-k^{2}$

Linear response - flow plane

Linear response - flow plane
Long time $t \gg \bar{G}^{-1}$:

$$
\begin{gathered}
\binom{\tilde{u}_{x}(t)}{\tilde{u}_{y}(t)}=\exp \left(-s_{x y} t^{3} / 3\right)\binom{\tilde{u}_{x}}{\tilde{u}_{y}} \\
s_{x y}=-\frac{\bar{G}^{2} k_{0}^{2}}{\bar{\rho}}\left(\frac{5 \bar{\mu}}{3}+\frac{\bar{\mu}_{b}}{2}+\frac{\bar{p} \bar{R}}{\bar{G}}\right. \\
\left. \pm\left(\frac{1}{9}\left(\bar{\mu}-\frac{3 \bar{\mu}_{b}}{2}\right)^{2}+\frac{4 \bar{\mu} \bar{p} \bar{R}}{3 \bar{G}}+\frac{\bar{\mu}_{b} \bar{p} \bar{R}}{\bar{G}}+\frac{\bar{p}^{2} \bar{R}^{2}}{\bar{G}^{2}}\right)^{1 / 2}\right)
\end{gathered}
$$

$$
s_{x y 1}=\left(-2 k_{0}^{2} \bar{G} \bar{p} \bar{R} / \bar{\rho}\right)
$$

$$
s_{x y 2}=\left(-\bar{G}^{2} k_{0}^{2} \bar{\mu} / \bar{\rho}\right)
$$

Linear response - gradient direction

Linear response - gradient direction

- Diffusive mode correct to $O\left(\epsilon^{3}\right)$

$$
\begin{aligned}
s_{d} & =\frac{8 \bar{\mu} \bar{p}_{\rho}-8 \bar{p} \bar{\mu}_{\rho}+2 \bar{G}^{2} \bar{\mu}_{\rho}(\overline{\mathcal{A}}+2 \overline{\mathcal{C}})-2 \bar{G}^{2} \bar{\mu}\left(\overline{\mathcal{A}}_{\rho}+2 \overline{\mathcal{C}}_{\rho}\right)^{2}}{-4 \bar{\rho} \bar{p}_{\rho}-8 \bar{p}+2 \bar{G}^{2}(\overline{\mathcal{A}}+2 \bar{C})+\bar{\rho} \bar{G}^{2}\left(\overline{\mathcal{A}}_{\rho}+2 \bar{C}_{\rho}\right)} l^{2} \\
& \approx \frac{2\left(\bar{p} \bar{\mu}_{\rho}-\bar{\mu} \bar{p}_{\rho}\right)}{2 \bar{p}+\bar{\rho} \bar{p}_{\rho}} l^{2}
\end{aligned}
$$

Qualitative difference $-\left(\bar{p} \bar{\mu}_{\rho}-\bar{\mu} \bar{p}_{\rho}\right)=0$ at low and high density.

- Propagating modes

$$
\begin{aligned}
s_{p i}= & \pm l l \sqrt{\bar{p}_{\rho}+(2 \bar{p} / \bar{\rho})} \\
& -l^{2}\left(\frac{\bar{p}_{\rho}\left(\bar{G}\left(4 \bar{\mu}+3 \bar{\mu}_{b}\right)+6 \bar{p} \bar{R}\right)+6 \bar{G} \bar{\mu}_{\rho} \bar{p}}{6 \bar{G}\left(2 \bar{p}+\bar{\rho} \bar{p}_{\rho}\right)}+\frac{5 \bar{\mu}}{3 \bar{\rho}}+\frac{\bar{\mu}_{b}}{2 \bar{\rho}}+\frac{\bar{p} \bar{R}}{\bar{G} \bar{\rho}}\right)
\end{aligned}
$$

Linear response - gradient direction

Linear response - vorticity direction

Linear response - vorticity direction
Decoupling $\rho-z$ and $x-y$.

$$
s_{\rho z}= \pm \imath m \sqrt{\bar{p}_{\rho}-\left(\bar{C}_{\rho} \bar{G}^{2} / 2\right)}-\frac{m^{2}}{2 \bar{\rho}}\left(\frac{4 \bar{\mu}}{3}+\bar{\mu}_{b}+\frac{2 \bar{p} \bar{R}}{\bar{G}}\right)
$$

For $\phi \ll 1, \bar{p}_{\rho}<0 \rightarrow$ unstable. For $\phi \rightarrow \phi_{c}, \bar{p}_{\rho}>0 \rightarrow$ stable.

$$
s_{x y}= \pm m \sqrt{\frac{\overline{\mathcal{G}} \bar{G}}{4 \bar{\rho}}}-m^{2} \frac{\bar{\mu}}{\bar{\rho}}
$$

One stable and one unstable mode.

Summary - vorticity direction

		$m \ll \epsilon$	$m \gg \epsilon$
Diffusive	$s_{\rho z}$	$+m$	$-m^{2}$
	$s_{\rho z}$	$-m$	$\pm m m$
Transverse	$s_{x y}$	$+m$	$-m^{2}$
	$s_{x y}$	$-m$	$-m^{2}$
Energy	s_{T}	$-m^{0}$	$-m^{2}$

Linear response - vorticity direction

Linear response - vorticity direction

Time correlation functions:

- $k \gg \varepsilon$

$$
\begin{aligned}
& \int_{\mathbf{k}}\left\langle u_{x}(\mathbf{k}, t) u_{x}(-\mathbf{k}, 0)\right\rangle \sim t^{-d /} \\
& \sigma_{x y}=\eta G_{x y}+\eta^{\prime} G_{x y} \log \left(\left|G_{x y}\right|\right)
\end{aligned}
$$

- $k \ll \varepsilon$

$$
\begin{aligned}
& \int_{\mathbf{k}}\left\langle u_{x}(\mathbf{k}, t) u_{x}(-\mathbf{k}, 0)\right\rangle \\
& \quad \sim \quad \int d \mathbf{k} \exp \left(-\eta k^{2 / 3} t\right) \\
& \quad \sim t^{-3 d / 2}
\end{aligned}
$$

$$
\sigma_{x y}=\eta G_{x y}+\eta^{\prime} G_{x y}^{3}+\ldots
$$

Conclusions

Linear response for shear flow:

- Perturbations grow at short times, decay at long times in the flow directions. Growth rate $\propto k^{2 / 3},(k l)^{1 / 3}$ at short times, $\propto k^{2 / 3}$ at long times.
- Perturbations stable in gradient direction. Diffusive mode $s_{d} \propto-l^{2}$, propagating modes $\propto \pm l l-l^{2}$.
- Diffusive mode in gradient direction not adequately described by Navier-Stokes approximation.
- Perturbations in vorticity directions $\propto \pm m$ at low density, $\propto \pm \imath m-m^{2}$ at high density.
- Not adequately described by Navier-Stokes approximation.

Conclusions

- Cautious conclusion: transport coefficients do not diverge in two dimensions, regular in three dimensions.
- However: transport coefficients could be different from their microscopic values.

