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Holy Grail of Granular Statics

e Specily Preparation
— Grain sizes, shapes, interactions

— Prep history

Statistical
(micro)mechanics?

* Predict Macroscopic Properties
— Elastic (?7) Continuum (?)
— Yield (stress distribution)




Key Issues in Granular Statics

Contact network Constitutive behavior
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Statistical Mechanics

e Mechanics: Static Stresses
— (Isostatic) Piles of frictionless hard disks
— Force chain hierarchy (directed topology)

— Implications

e Statistics: Averages
— Simple model of pile formation

— Force scattering

— Fluctuations @

— Correlations

mechanics statistics




I. Mechanics
How does 1t all stack up?




Microscopic Mechanical Analysis

e Basic model
— Hard, frictionless particles

— Choice of Ensemble:

e Under some ambient load
(gravity, confinement)

e Explicit boundary
— Isostatic packing

 Examine force response function




Review of Isostatic Packings

e [sostatic means
— minimum number of contacts to provide rigidity
— any applied stress 1s uniquely resolved
e Maxwell-Cremona count 1s satisfied
— # of constraints = # of degrees of freedom
e For random sized disks, probability of
accidental extra contacts 1s zero.

— Isostatic graphs with generic lengths are
infinitesimally rigid

2N =\

contacts

particles

For more on rigidity theory: R. Connelly, W. Whiteley




Stability of Packs
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=> Response function is well-defined
=> Response 1s linear for small perturbations (under load)

Accommodates softness and adhesion




Force Response Functions
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Linear Set of Constraint Eq"s




Rigidity Matrix, C

* Encodes contact geometry
* For no external forces:




Response to a Perturbation

* Response to f;, #0: take f;, = 1, since
response 1s linear
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Response Function for Rigid Packs
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Force Response Hierarchy

* Why 1s there a directionality?
— Note: Not related to gravity!
— Purely topological




Sequential Hierarchy ot Rigidity

Rigidity starts at the
boundary

A particle (group) needs
2 (3) non-colinear bonds
to be stabilized

Once stabilized, its
response function 1s
“resolved” into that of
the supporting particles

The particle (group)
effectively becomes part
of the rigid boundary.







Answer

Every particle has exactly 2 outgoing bonds!




Force Resolution at a Particle
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Conventional Force Chain Picture




Underlying Directed Topology




Decompressive

QO
@)
—
@
[
aw
®
=
O
N
-
@
Q.
N
P
aZ

.ll:___ -




=
=
QO
@)
et
@
[
aw
®
=
O
N
-
@
Q.
N
QO
aZ

Decompressive




Response to a Force 111




Rigidity Analysis

 Laman’s theorem for 1sostatic graphs: every
subgraph has less than or equal to 2 n - 3
edges

 Henneberg construction: every Laman
graph can be inductively constructed from
Type I and Type II additions of vertices.

— Type I : add a new node and connect it to 2
existing nodes

— Type II: subdivide an edge by a new node, and
connect it to yet a different node




Henneberg Construction

Type I Step Type II Step
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Henneberg Construction

Type I Step Type II Step
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Leads to directed edges Leads to a rigid group (hypervertex)
with directed edges coming from it




Henneberg Construction

Type I Step Type II Step
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Henneberg Construction

Type I Step Type II Step
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Leads to directed edges Still leads to directed edges




Rigidity Decomposition

e Rigidity decomposes into particles (vertices)
and groups of particles (hypervertices).

* In our gravity settled piles, only Type I
steps are needed in the vast majority of
Henneberg steps.

* We proceed with the approximation that we
only consider graphs that are Type I
constructable.




Soft or compressed packings:
extra contacts

For this latter rigid configuration,
while the internal stress 1s controlled by the external wall stress
the force response function is not statically determinate.




Appearance of Elastic Modes

* The elastic mode (1,1,1,1) appears in an amount A
— A depends on particle rigidities, etc.,

e The response 1s a linear superposition of (left & right)
directed response functions




Conclusions for Force Chain Hierarchy

Isostatic response function have a hierarchical
topology that depends only on packing network

This hierarchy can be built recursively from the
boundary, with irreducible rigidity groups usually
consisting of a single particle

In this case, force chain links are directional

Boundaries play a role--compare with continuum
advanced & retarded Green’s functions

Each particle will have exactly 2 outgoing bonds
& not just in sequential deposition.




Consequences of Force Chain Hierarchy

» Stress or force propagation occurs as a series of
“scattering” events

— Results in a “Q-model” or
Boltzmann eq” that depends on outgoing pair geometries

— Response functions, not force chains (their sum), are
fundamental quantity in scattering theory

e Stress-field 1s localized and directed
— signature of hyperbolicity

e Stress-indeterminacy leads to elastic modes that
appear gradually with increasing contacts

— sum of random amplitudes explains transition from
exponential to Gaussian distribution of forces




Experiment or Toy?




Suggested Experiments

* Topological analysis of contact networks in
experimental packs

— gravity stabilized
— compression stabilized

 Examine transition from hyperbolicity to
elasticity with extra contacts by
compression or softness

— force distribution changes

* Measure force scattering kernel
— relate correlation lengths to topological features




II. Statistics

Let me count the ways....




Simple Model: Random Sequential
Deposition of Smooth Hard Disks

e Each particle deposited 1s a little larger than the previous
one-> well defined contact geometry

 Approximately a lattice




Analytic Theory: Response Function
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The four support geometries (types of scattering center)

The steady-state pack surface growth statistics can also be calculated.




Direct Simulation of Pack

e Single Instance Response Function

Compression

100 x 20 pack . Decompression




Ensemble Average:
Large Fluctuations

1,000,000 instances




Force Scattering:
Boltzmann Equation on Quenched Fields

A force applied in the system 1s
thus resolved sequentially
by “scattering centers” fixed
In space:

Correlated Boltzmann Equation
on Quenched Fields

Analogous to wave scattering in inhomogeneous media,
except “‘sequentially” doesn’t correspond to any time:
Summing over sequential events gives force response function




Average Response Function
(Analytic Approximations)
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Conclusions for Lattice Model

A simple exactly enumerable case was studied

Fluctuations are exponentially large
— consistent with random multiplicative process Moukarzel J. Phys
‘02
— but stably formed packs likely reorganize to avoid large stresses
Off-axis bimodal response function was found

Spatial correlations can significantly alter the response
function

Nearest neighbor correlation was inadequate for matching
experiment beyond a couple of layers
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