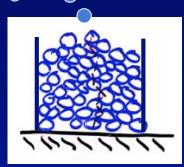
Topology of Stress Transmission in Isostatic Assemblies

David Wu Colorado School of Mines KITP Granular Physics Program June 1, 2005

Holy Grail of Granular Statics

Specify Preparation

 Grain sizes, shapes, interactions
 Prep history

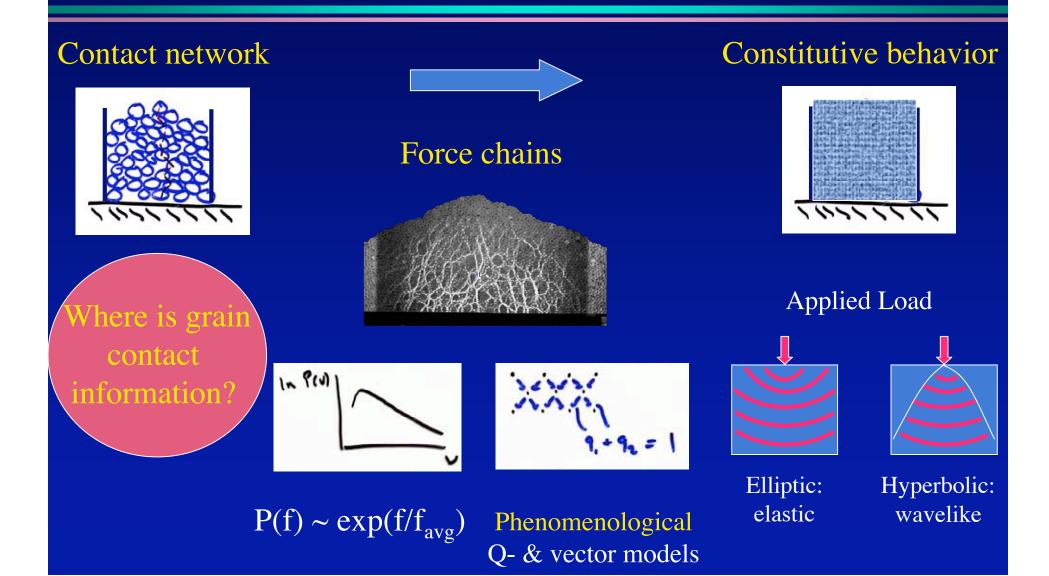


Statistical (micro)mechanics?

- Predict Macroscopic Properties

 Elastic (?) Continuum (?)
 Yield (stress distribution)

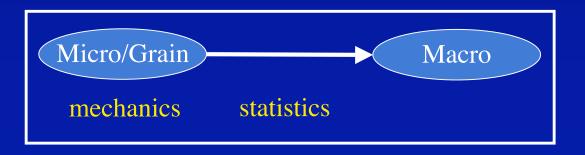
Key Issues in Granular Statics



Statistical Mechanics

- Mechanics: Static Stresses T. Kangsadan (MS '00)
 - (Isostatic) Piles of frictionless hard disks
 - Force chain hierarchy (directed topology)
 - Implications
- Statistics: Averages J

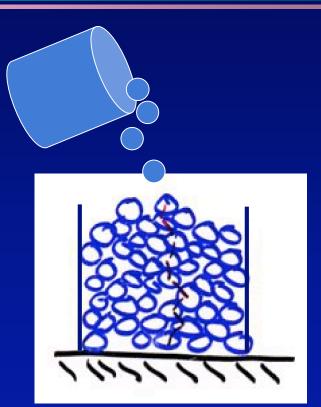
- Simple model of pile formation
- Force scattering
- Fluctuations
- Correlations



I. Mechanics How does it all stack up?

Microscopic Mechanical Analysis

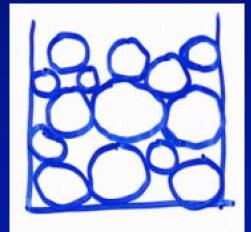
- Basic model
 - Hard, frictionless particles
 - Choice of Ensemble:
 - Under some ambient load (gravity, confinement)
 - Explicit boundary
 - Isostatic packing



• Examine force response function

Review of Isostatic Packings

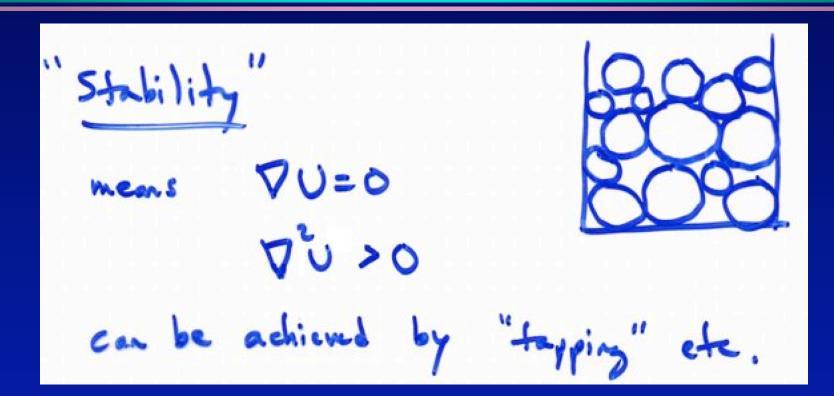
- Isostatic means
 - minimum number of contacts to provide rigidity
 - any applied stress is uniquely resolved
- Maxwell-Cremona count is satisfied
 - # of constraints = # of degrees of freedom
- For random sized disks, probability of accidental extra contacts is zero.
 - Isostatic graphs with generic lengths are infinitesimally rigid



$$2 N_{\text{particles}} = N_{\text{contacts}}$$

For more on rigidity theory: R. Connelly, W. Whiteley

Stability of Packs



- => Response function is well-defined
- => Response is linear for small perturbations (under load)
- Accommodates softness and adhesion

Force Response Functions

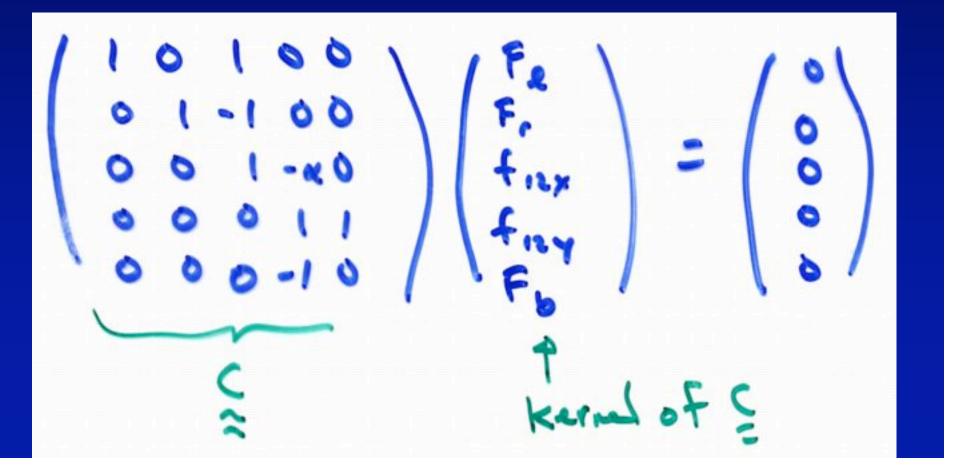
Apply a perturbation here F(c)Obtain a "response" in the compressive stresses everywhere

Linear Set of Constraint Eqⁿs

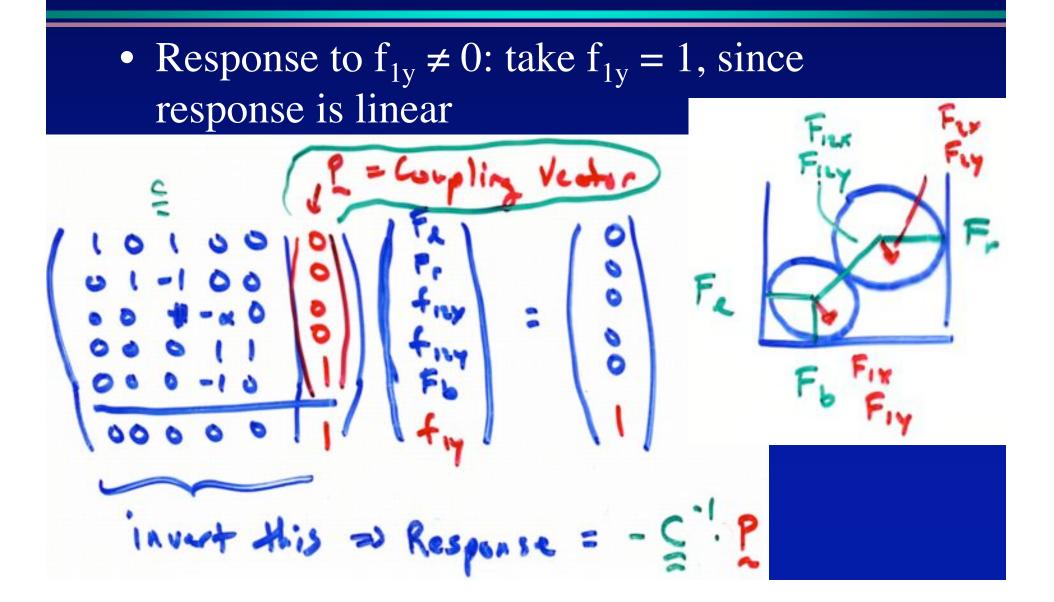
E.g. $f_{xy} + f_{nx} + F_{z=0}$ $f_{1x} + f_{ny} + F_{r} = 0$ $f_{xy} + f_{ny} + F_{b} = 0$ $f_{yy} - f_{ny} = 0$

Rigidity Matrix, C

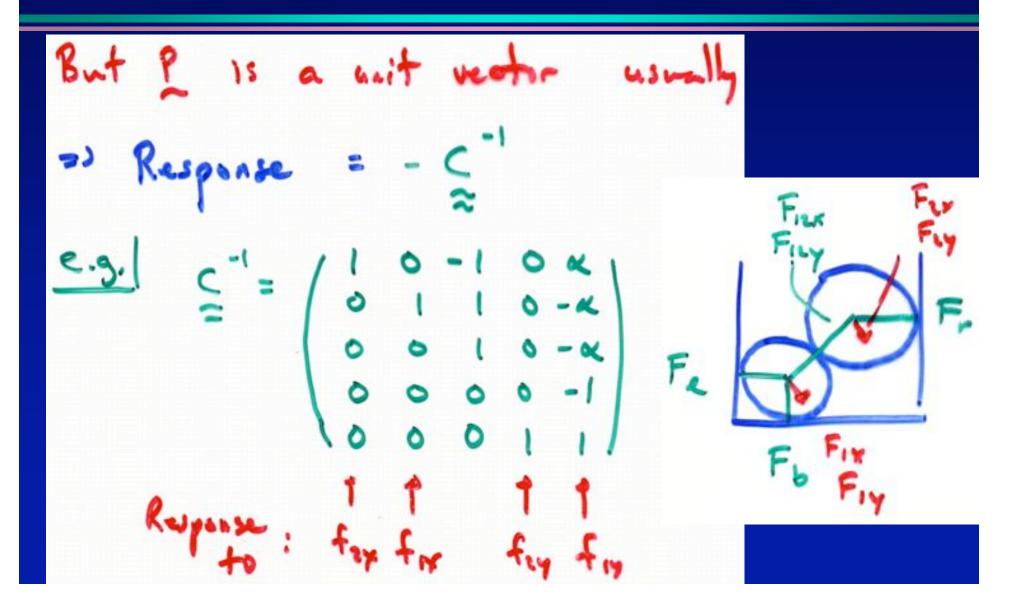
- Encodes contact geometry
- For no external forces:



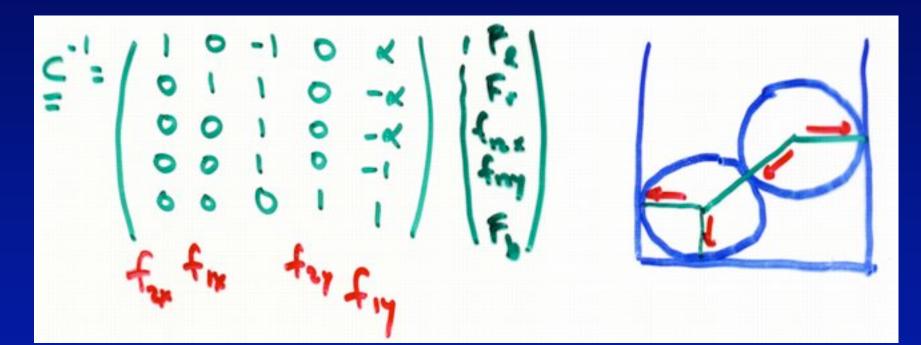
Response to a Perturbation



Response Function for Rigid Packs



Force Response Hierarchy

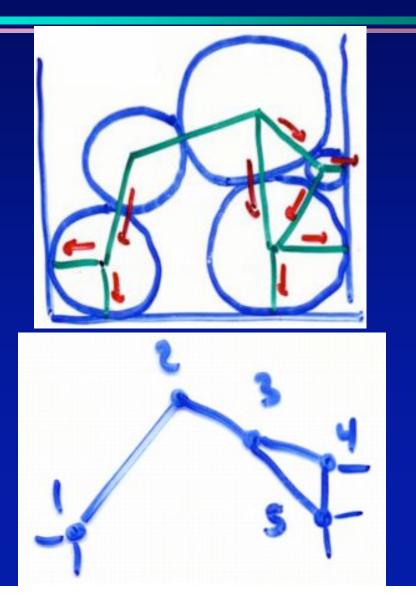


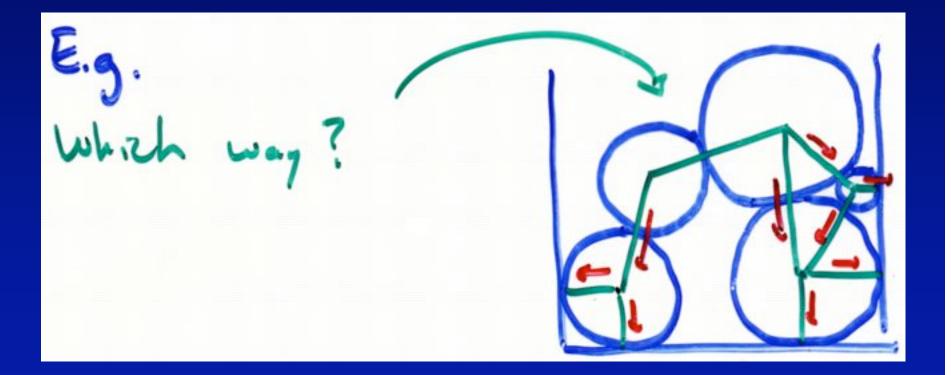
• Why is there a directionality?

- Note: Not related to gravity!
- Purely topological

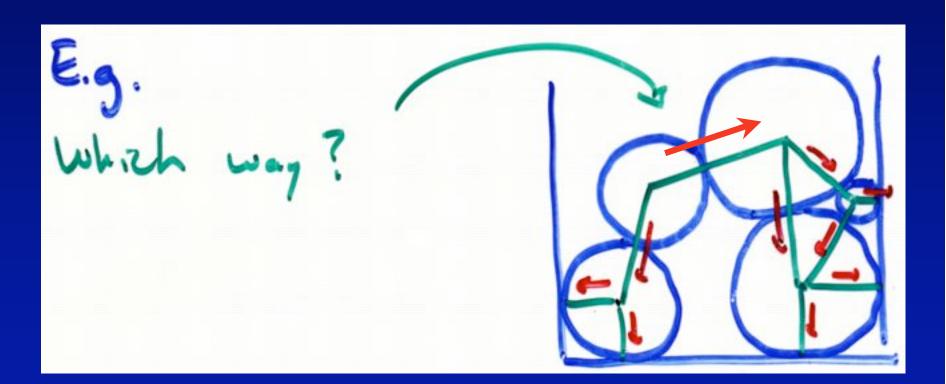
Sequential Hierarchy of Rigidity

- Rigidity starts at the boundary
- A particle (group) needs
 2 (3) non-colinear bonds
 to be stabilized
- Once stabilized, its response function is "resolved" into that of the supporting particles
- The particle (group) effectively becomes part of the rigid boundary.



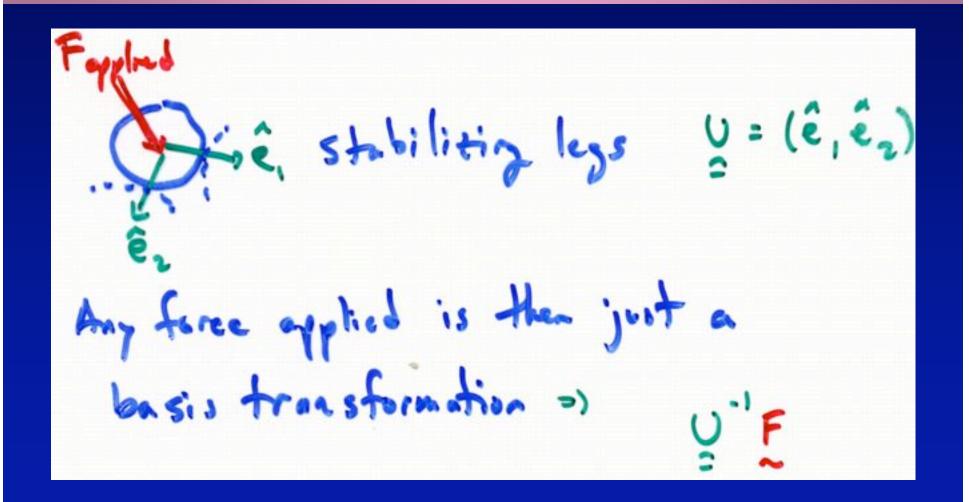


Answer

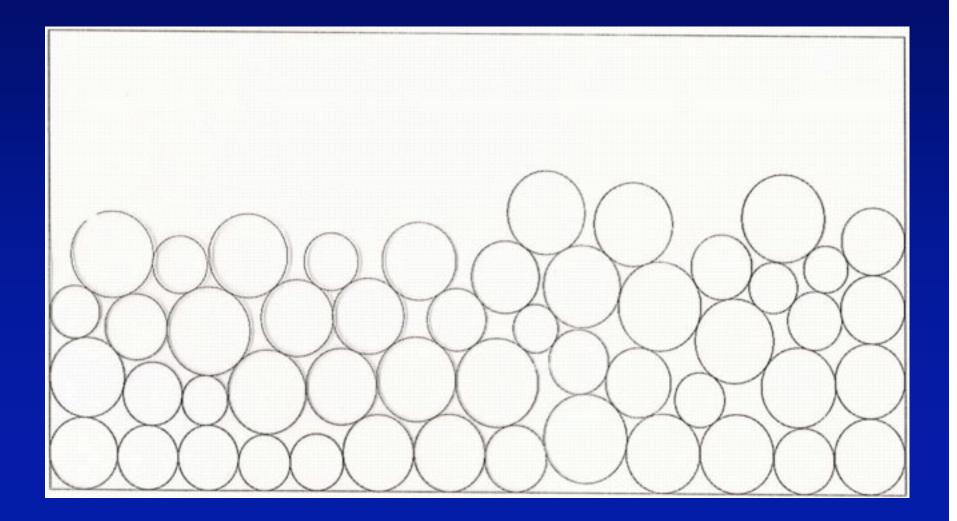


Every particle has exactly 2 outgoing bonds!

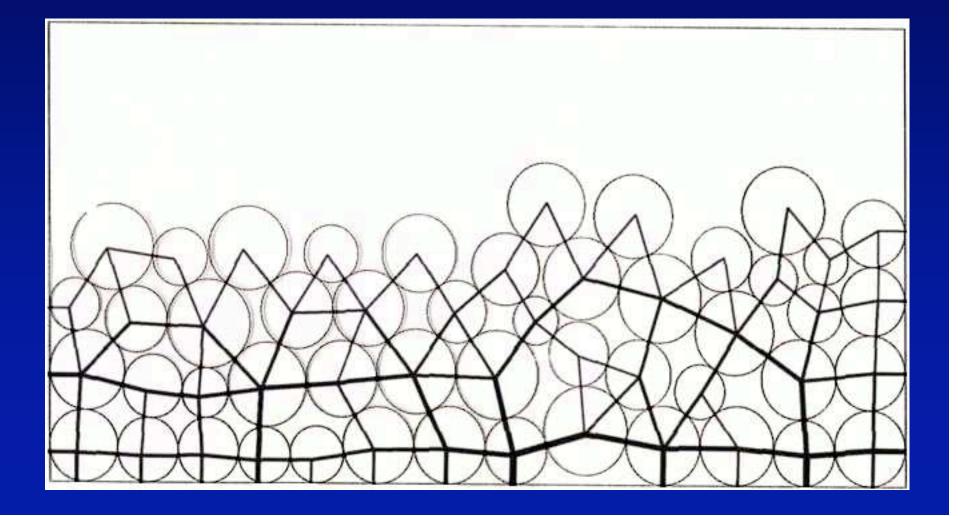
Force Resolution at a Particle



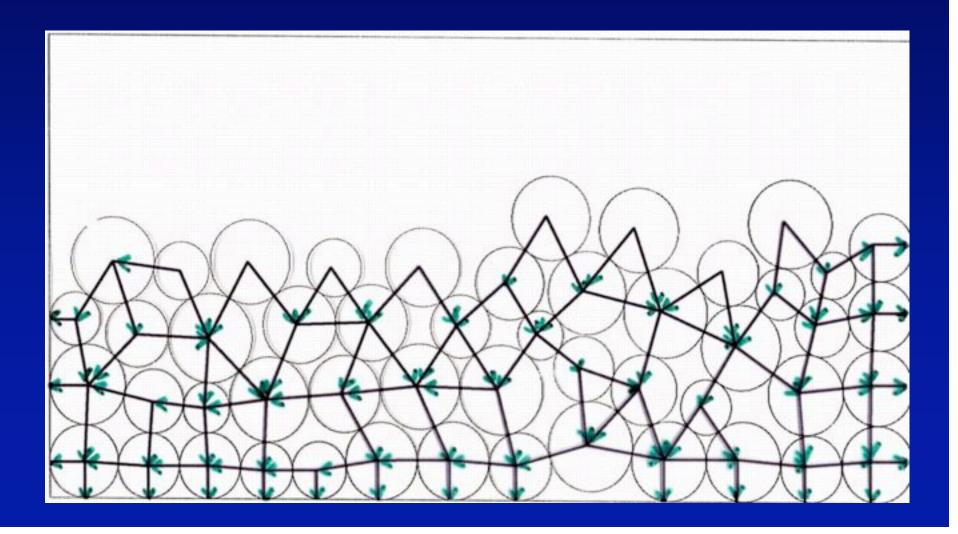
Particle Pile in a Box



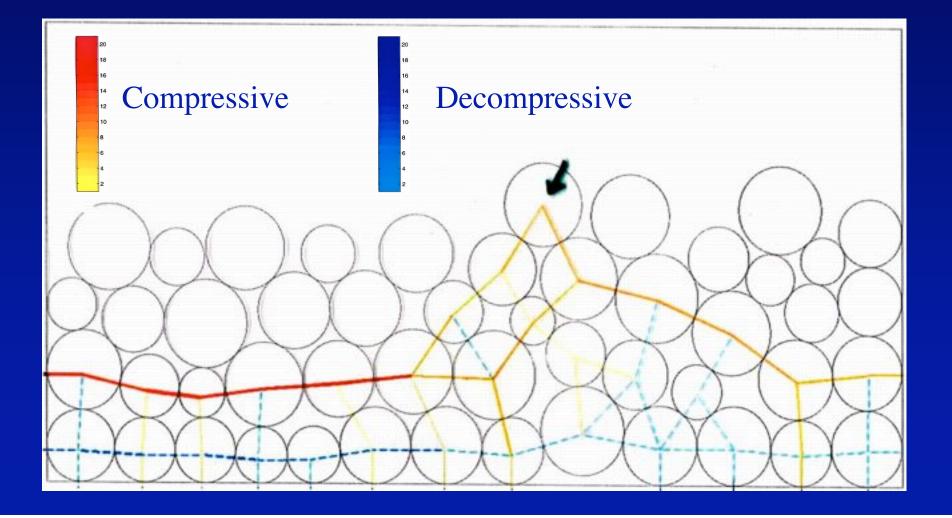
Conventional Force Chain Picture



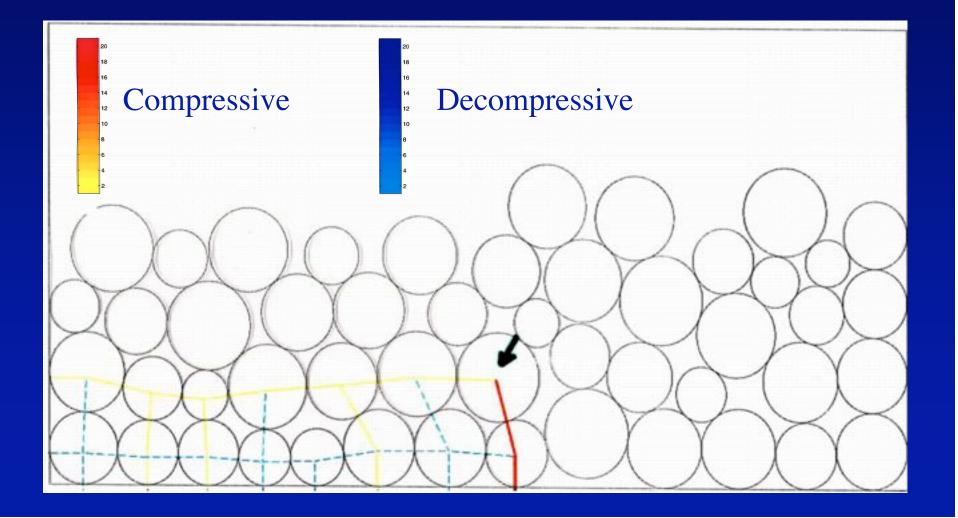
Underlying Directed Topology



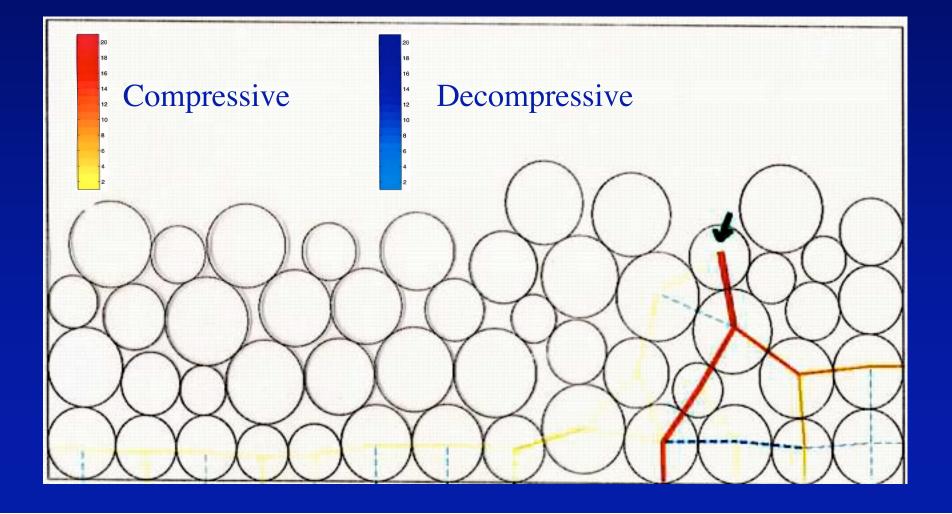
Response to a Force



Response to a Force II

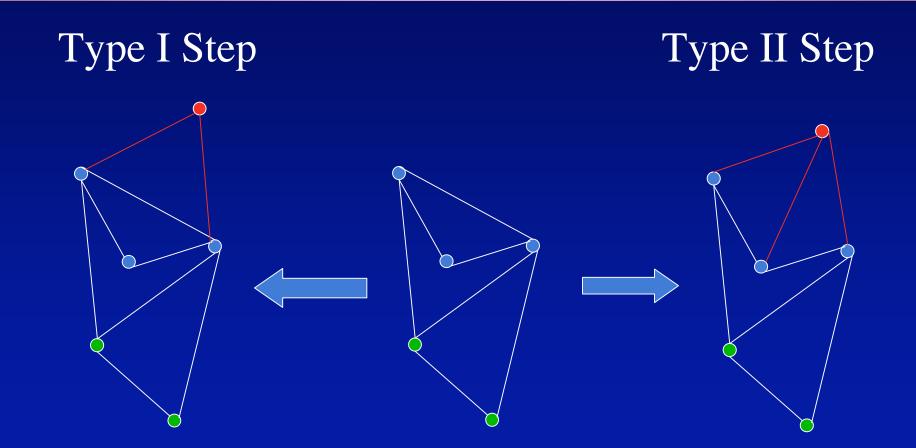


Response to a Force III

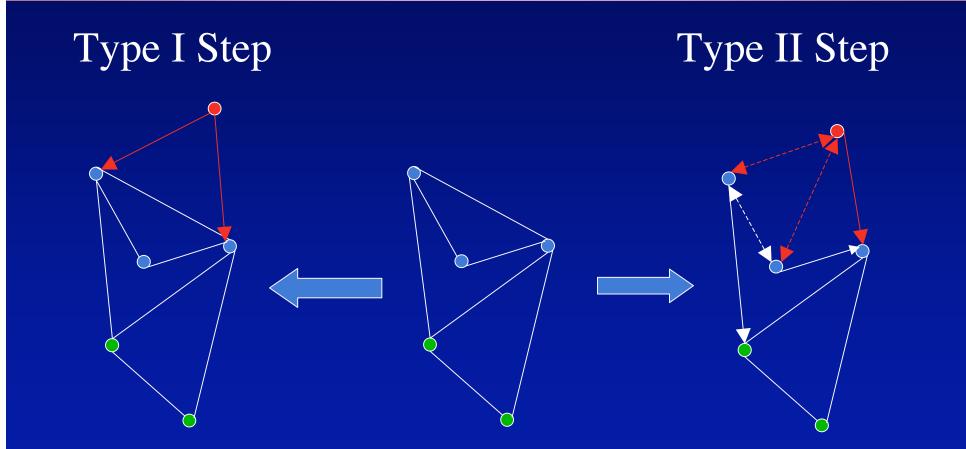


Rigidity Analysis

- Laman's theorem for isostatic graphs: every subgraph has less than or equal to 2 n - 3 edges
- Henneberg construction: every Laman graph can be inductively constructed from Type I and Type II additions of vertices.
 - Type I : add a new node and connect it to 2 existing nodes
 - Type II: subdivide an edge by a new node, and connect it to yet a different node

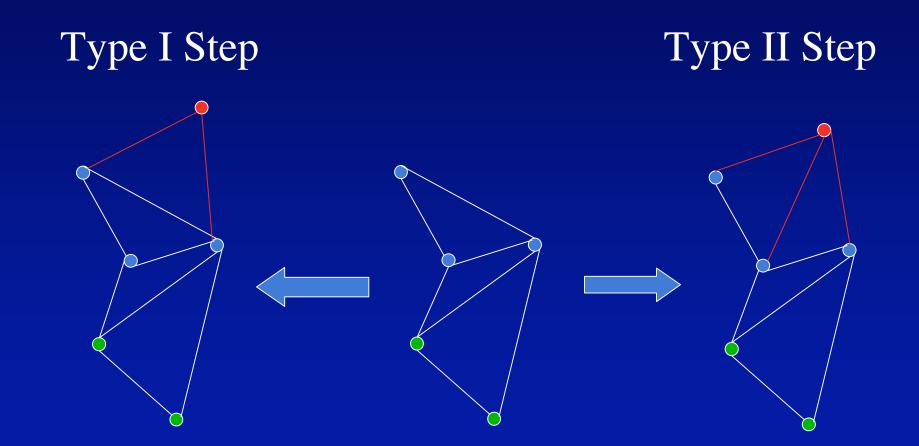


Green circles are pinned (further towards the boundary in the hierarchy)

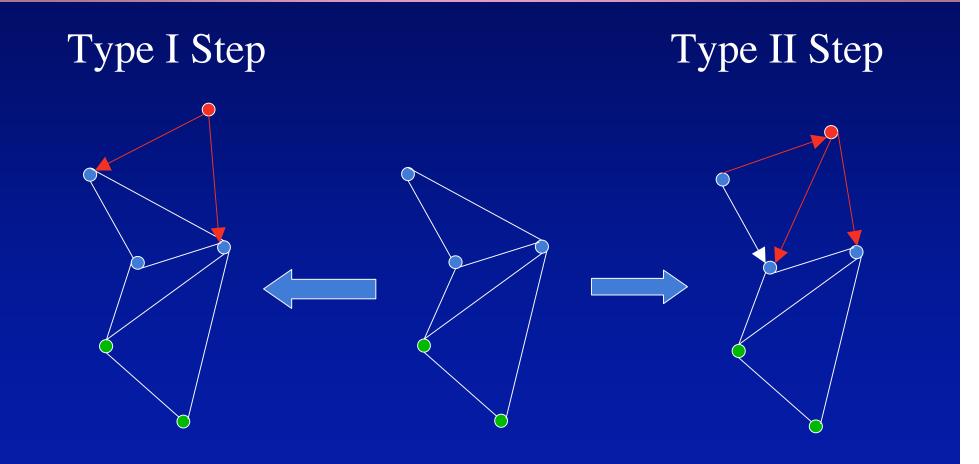


Leads to directed edges

Leads to a rigid group (hypervertex) with directed edges coming from it



Green circles are pinned (further towards the boundary in the hierarchy)



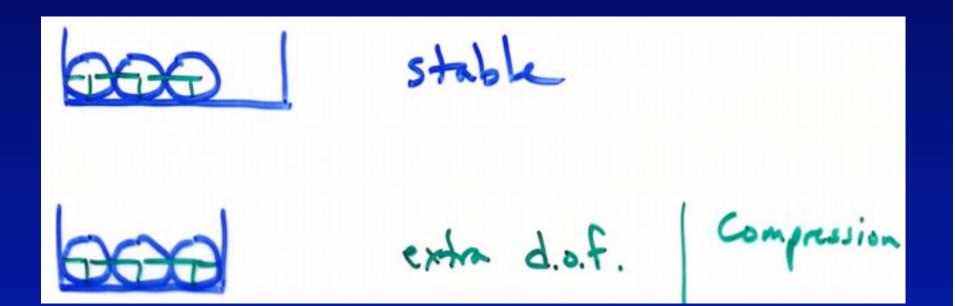
Leads to directed edges

Still leads to directed edges

Rigidity Decomposition

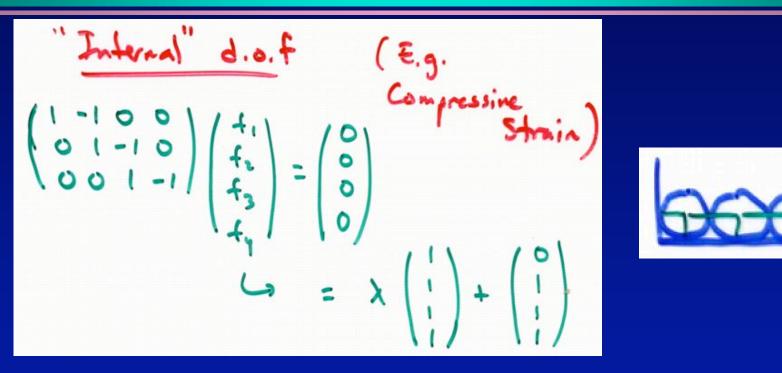
- Rigidity decomposes into particles (vertices) and groups of particles (hypervertices).
- In our gravity settled piles, only Type I steps are needed in the vast majority of Henneberg steps.
- We proceed with the approximation that we only consider graphs that are Type I constructable.

Soft or compressed packings: extra contacts



For this latter rigid configuration, while the internal stress is controlled by the external wall stress the force response function is not statically determinate.

Appearance of Elastic Modes



- The elastic mode (1,1,1,1) appears in an amount λ
 - $-\lambda$ depends on particle rigidities, etc.,
- The response is a linear superposition of (left & right) directed response functions

Conclusions for Force Chain Hierarchy

- Isostatic response function have a hierarchical topology that depends only on packing network
- This hierarchy can be built recursively from the boundary, with irreducible rigidity groups usually consisting of a single particle
- In this case, force chain links are directional
- Boundaries play a role--compare with continuum advanced & retarded Green's functions
- Each particle will have exactly 2 outgoing bonds & not just in sequential deposition.

Consequences of Force Chain Hierarchy

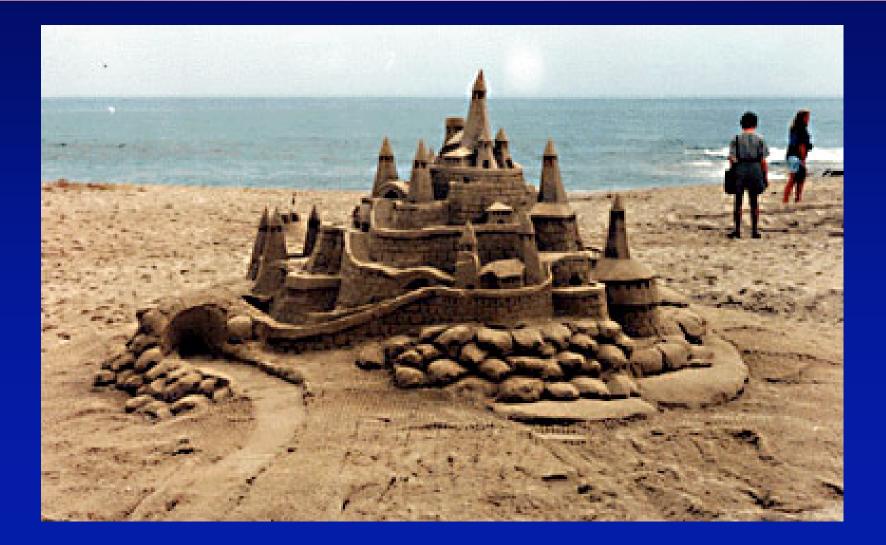
- Stress or force propagation occurs as a series of "scattering" events
 - Results in a non-phenomenological "Q-model" or Boltzmann eqⁿ that depends on outgoing pair geometries
 - Response functions, not force chains (their sum), are fundamental quantity in scattering theory
- Stress-field is localized and directed
 - signature of hyperbolicity
- Stress-indeterminacy leads to elastic modes that appear gradually with increasing contacts
 - sum of random amplitudes explains transition from exponential to Gaussian distribution of forces

Experiment or Toy?

Suggested Experiments

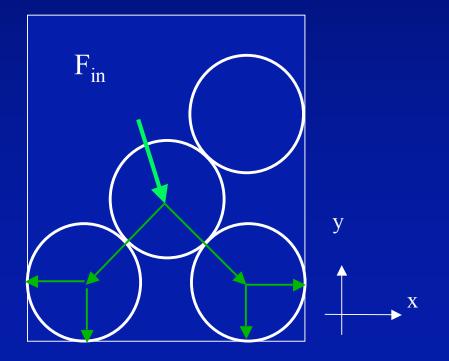
- Topological analysis of contact networks in experimental packs
 - gravity stabilized
 - compression stabilized
- Examine transition from hyperbolicity to elasticity with extra contacts by compression or softness
 - force distribution changes
- Measure force scattering kernel
 - relate correlation lengths to topological features

II. Statistics Let me count the ways....

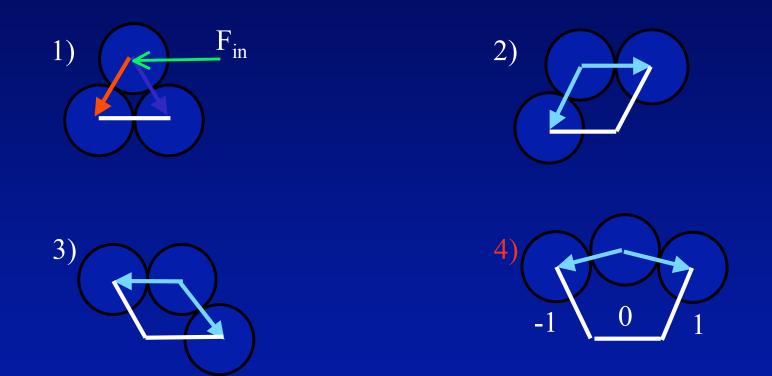


Simple Model: Random Sequential Deposition of Smooth Hard Disks

- Each particle deposited is a little larger than the previous one-> well defined contact geometry
- Approximately a lattice



Analytic Theory: Response Function

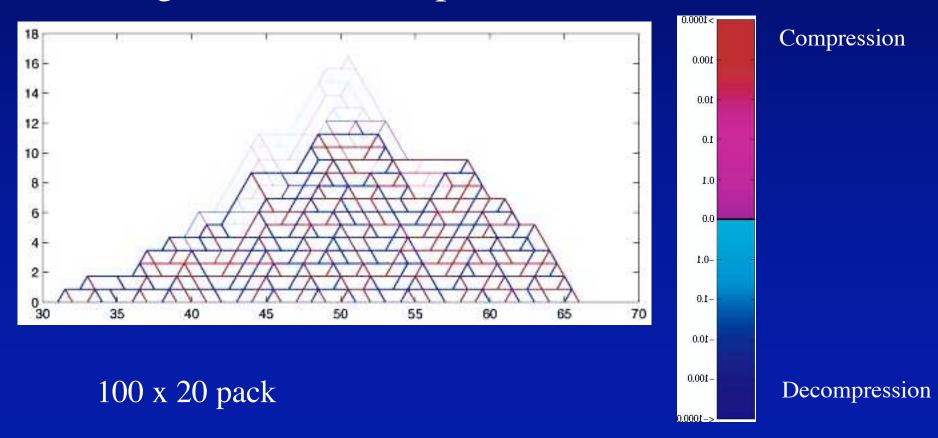


The four support geometries (types of scattering center)

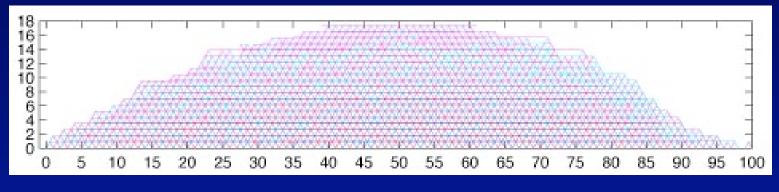
The steady-state pack surface growth statistics can also be calculated.

Direct Simulation of Pack

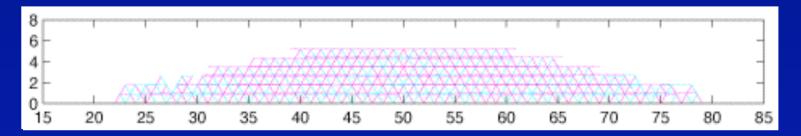
Single Instance Response Function



Ensemble Average: Large Fluctuations



100,000 instances

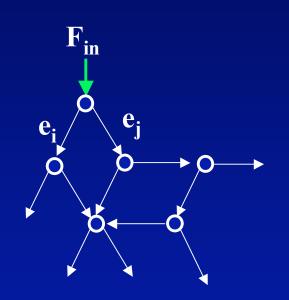


1,000,000 instances

Force Scattering: Boltzmann Equation on Quenched Fields

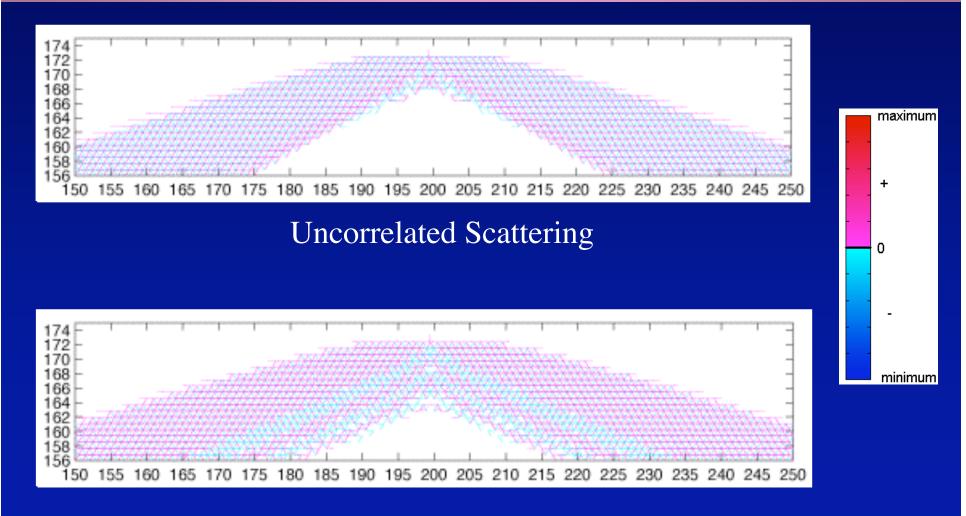
A force applied in the system is thus resolved sequentially by "scattering centers" fixed in space:

Correlated Boltzmann Equation on Quenched Fields



Analogous to wave scattering in inhomogeneous media, except "sequentially" doesn't correspond to any time: Summing over sequential events gives force response function

Average Response Function (Analytic Approximations)



Correlated Scattering

Conclusions for Lattice Model

- A simple exactly enumerable case was studied
- Fluctuations are exponentially large
 - consistent with random multiplicative process Moukarzel J. Phys
 '02
 - but stably formed packs likely reorganize to avoid large stresses
- Off-axis bimodal response function was found
- Spatial correlations can significantly alter the response function
- Nearest neighbor correlation was inadequate for matching experiment beyond a couple of layers

Acknowledgements

Tawiwan Kangsadan & Jeremy Lechman

 Particle Science & Technology Group, CSM

Research Corporation
 – Research Innovation Award RI0161, 1997

