

Scanning tunneling spectroscopy of graphene on BN

Outline

Scanning tunneling microscopy

Topography Moiré patterns

Spectroscopy
Charged impurities
Scattering from edges
Periodic potentials

Conclusions

Scanning Tunneling Microscope

Spatial Resolution 1 $^{\text{A}}$ Pressure < 3 \times 10⁻¹¹ mbar Temperature 4.5 K

Scanning Tunneling Microscopy

Topography

$$I \propto e^{-Z/Z_0} \int_0^{eV} dE \, LDOS(E, r)$$

Spectroscopy

$$\partial I/\partial V \propto LDOS(eV,r)$$

Outline

Scanning tunneling microscopy

Topography Moiré patterns

Spectroscopy
Charged impurities
Scattering from edges
Periodic potentials

Conclusions

Why use hBN?

h-BN: hexagonal lattice, with ~same lattice constant as graphene (1.8% mismatch) atomically smooth surface no dangling bonds / charge traps insulator, with bandgap ~6eV

Boron nitride substrates for high-quality graphene electronics

C. R. Dean^{1,2}*, A. F. Young³, I. Meric¹, C. Lee^{4,5}, L. Wang², S. Sorgenfrei¹, K. Watanabe⁶, T. Taniguchi⁶, P. Kim³, K. L. Shepard¹ and J. Hone²*

Dean et al, Nature Nano **5**, 722 (2010)

It has been proposed that a bandgap would be induced in graphene aligned to an h-BN substrate²⁰. In our experiment the graphene had a random crystallographic orientation to the substrate, and thus we did not expect the necessary sublattice symmetry breaking to occur. Indeed, the temperature dependence of σ_{\min} observed here does not follow the simply activated behaviour that would be indicative of an energy gap. Although we cannot rule out the possibility of locally gapped regions resulting from symmetry breaking over finite length scales, we see no evidence from transport measurements that an appreciable gap is present in this randomly stacked graphene on h-BN.

AFM topography, h(r)

Weakly shifted away from $V_g=0$

Topography Measurements hBN SiO₂

Standard deviations are: SiO_2 : 224.5±0.9 pm BN: 30.2 ± 0.2 pm

Xue et al., Nat. Mater. 10, 282 (2011)

Atomic Resolution

Atomic resolution image shows hexagonal lattice

Topography Measurements

Large scale images show moiré pattern Different areas of the same graphene flake

Moiré Patterns

Moiré patterns arise from rotation between graphene and hBN

Fourier Transforms

Different size moiré patterns Graphene lattice rotated between two images Moiré Wavelength

$$\lambda = \frac{(1+\delta)\alpha}{\sqrt{2(1+\delta)(1-\cos\phi)+\delta^2}}$$

- a: graphene lattice constant
- δ : mismatch of h-BN
- φ: Angle between lattices

Outline

Scanning tunneling microscopy

Topography Moiré patterns

Spectroscopy
Charged impurities
Scattering from edges
Periodic potentials

Conclusions

Consequence of moiré pattern: No energy gap

Previous theoretical prediction¹

No moiré pattern.

Broken symmetry of A-B carbon atoms.

50 meV energy gap.

Experimental observation:

Has moiré pattern.

Symmetry of A-B carbon atoms is restored.

No energy gap.

1: G. Giovannetti et al., PRB (2007)

Spectroscopy Measurements

Calculated dispersion relations for three different configurations.

Spectroscopy measured by STM No energy gap.

Gate Dependence

dI/dV curves

Dirac point follows expected energy for linear dispersion

Spectroscopy Map

- Spectroscopy performed on a 1 nm x 1 nm grid
- Measure tip voltage corresponding to Dirac point

Spectroscopy Map

Potential fluctuations much smaller on hBN Spatial extent of puddles is larger on hBN

Spectroscopy Comparison

 SiO_2 : 55.6 ± 0.7 meV

BN: 5.4±0.1 meV

Distribution on hBN is 10 times narrower Extra bump in distribution observed in most samples

Xue et al., Nat. Mater. 10, 282 (2011)

Outline

Scanning tunneling microscopy

Topography Moiré patterns

Spectroscopy
Charged impurities
Scattering from edges
Periodic potentials

Conclusions

Topography of step edge

Step is about 0.6 nm high

Graphene lattice has the same orientation above and below the step

Density of States Versus Energy

Step edge running vertically through images Series of gap voltages (energies)

Xue et al., PRL 108, 016801 (2012)

Density of States Images

Step edge running horizontally through images
Series of gap voltages (energies)

Wavelength increases with decreasing energy

Density of States Images All data in x-direction (along step edge) averaged

Color scale is change in density of states

Distance Dependence

Barrier

Constant Energy
Contour

Assume barrier along x-axis

$$k_x = k_x' \qquad k_y = -k_y'$$

$$\rho(E, y) \propto \oint_{CEC} \left| \psi(k_x, k_y) + r \, \psi(k_x, -k_y) \right|^2 dk$$

$$\delta \rho(E, y) \propto \oint_{CEC} \cos(2k_{\mu}y) \sin\theta_{k} dk \qquad \tan\theta_{k} = \frac{k_{x}}{k_{y}}$$

$$\delta \rho(E, y) \propto \frac{\cos(2ky - 3\pi/4)}{(ky)^{3/2}}$$

Faster decay than normal metal

Energy Dependence

Distance Dependence

$$\delta\rho(E,y) \propto \frac{\cos(2ky-3\pi/4)}{(ky)^{3/2}}$$

Analysis

Dispersion Relation

 $v_F = 0.50 \pm 0.05 \times 10^6 \text{ m/s}$

Amplitude of oscillations

Xue et al., PRL 108, 016801 (2012)

Outline

Scanning tunneling microscopy

Topography Moiré patterns

Spectroscopy
Charged impurities
Scattering from edges
Periodic potentials

Conclusions

Graphene in Periodic Potential

Schrödinger

Band gap opens

Dirac

New superlattice Dirac point

$$E = \hbar v_F G / 2$$

Park et al., *Nat. Phys.* **4**, 213 (2008); *PRL* **101**, 126804 (2008); Barbier et al., *PRB* **77**, 115446 (2008) Brey and Fertig, *PRL* **103**, 046809 (2009); Barbier et al., *PRB* **80**, 205415 (2009); Sun et al., *PRL* **105**, 156801 (2010); Burset et al., *PRB* **83**, 195434 (2011); Ortix et al., arXiv:1111:0399 (2011)

Graphene on hBN

- \triangleright Calculate interlayer hopping from μ =A,B carbon sites to ν =Boron, Nitrogen sites
- >Keep nearest neighbors and next n.n. -> four different hoppings

$$V_{\mu\nu}(m,n) = \gamma_{\perp} \exp[-|\mathbf{r}_{1\mu}(m,n) - \mathbf{r}_{2\nu}(m',n')|/\xi]$$

Graphene experiences periodic potential given by moiré pattern

Spectroscopy

Dips in density of states due to superlattice potential

Gate Dependence

9.0 nm moiré

Dips move together with Fermi energy

Superlattice Dirac Point

Energy of superlattice Dirac points determined by wavelength of potential

$$E = \hbar v_F G / 2 = 2\pi \hbar v_F / \sqrt{3}\lambda$$
$$v_F = 1.1 \times 10^6 \text{ m/s}$$

Superlattice Dirac Point

13.5 nm moiré

Superlattice Dirac point has reduced Fermi velocity

$$v_F^* / v_F = 0.5 - 0.7$$

Conclusions

Moiré pattern observed for graphene on hBN

Electron and hole puddles reduced on hBN

LDOS oscillations near step edges

Superlattice Dirac point due to periodic potential

www.physics.arizona.edu/~leroy

Acknowledgements

LeRoy group

Dr. Aparna Deshpande (Post-doc)
Daniel Cormode (Ph.D. Student)
Jiamin Xue (Ph.D. Student)
Matthew Yankowitz (Ph.D. Student)

Kyle Merry (Undergrad)
Collin Reynolds (Undergrad)
Sam Silva (Undergrad)
Pam Tautz (High School Teacher)
Reilly Bello (High School Student)
Braden Smith (High School Student)

NIMS

K. Watanabe T. Taniguchi

Arizona

Prof. Philippe Jacquod Prof. Arvinder Sandhu Adam Roberts Ty Newhouse-Illige

UC Riverside

Prof. Jeanie Lau Wenzhong Bao Feng Miao Zeng Zhao

MIT

Prof. Pablo Jarillo-Herrero Javier Sanchez-Yamagishi Danny Bulmash

Conclusions

Moiré pattern observed for graphene on hBN

Electron and hole puddles reduced on hBN

LDOS oscillations near step edges

Superlattice Dirac point due to periodic potential

www.physics.arizona.edu/~leroy