Dissipation-driven quantum phase transition in superconductor-graphene systems

Roman Lutchyn

Collaboration: V. Galitski (UMD), G. Refael (Caltech) and S. Das Sarma (UM

KITP 04/15/09

Outline

- Superconductor-insulator quantum phase transition in Josephson junction arrays
- Dissipation-driven quantum phase transition in superconductor-graphene systems
- Potential applications

R. Lutchyn, V. Galitski, G. Refael and S. Das Sarma, PRL 101, 106402 (2008)

Introduction

Classical phase transitions vs. Quantum phase transitions

- Second order phase transitions
- Spontaneous symmetry breaking
- order parameter
- thermal fluctuations
- competition between energy and entropy
- varying T

- quantum fluctuations
- competition between H_1 and $H = H_1 + gH_2, \ [H_1, H_2] \neq 0$
- varying g, T = 0

paramagnet - ferromagnet

superfluid - insulator

Superconductor-Insulator transition

Markovic et al PRL 81 5217(1998)

FIG. 1. Evolution of the temperature dependence sheet resistance R(T) with thickness for a Bi film of onto Ge. Fewer than half of the traces actually acq shown. Film thicknesses shown range from 4.36 to 74.

Courtogy of A Coldman (Minno

Superconductor-Insulator transition

Simplest model for thin films is Josephson junction array mimicking 2D SC islands connected via weak links

2D Josephson junction array Courtesy of A. Goldman

JJA array: Superconductor-Insulator transition

• Competition between the charging and Josephson energies

$$\hat{H} = \sum_{i} E_C \hat{n}_i^2 - \sum_{\langle ij \rangle} E_J \cos(\Delta \hat{\varphi}_{ij})$$

$$[\hat{n}, \hat{\varphi}] = -i$$
 Anderson (1964)

At $E_J \gg E_C$ phases φ_i are aligned: global superconductor

At $E_J \ll E_C$ phases φ_i are random: no phase coherence

• Superconductor-Insulator phase transition at

Effect of the dissipation on S-I transition

Influence of Dissipation on Quantum Tunneling in Macroscopic Systems

A. O. Caldeira and A. J. Leggett

School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH, Sussex, United Kingdon (Received 28 July 1980)

New materials: graphene

Graphene - massless electrons in two dimensions

Graphene is an atomic-scale honeycomb lattice made of carbon atoms

low energy Hamiltonian

$$H = \hbar \gamma \boldsymbol{\sigma} \cdot \boldsymbol{p}$$

chiral massless Dirac fermions

Band structure - linear spectrum

Ş

Dissipation-Driven Quantum Phase Transition in Superconductor-Graphene Systems

Roman M. Lutchyn,¹ Victor Galitski,¹ Gil Refael,² and S. Das Sarma¹

¹Joint Quantum Institute and Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA ²Department of Physics, California Institute of Technology, MC 114-36, Pasadena, California 91125, USA

Proposal: use graphene as a substrate to engineer the dissipation and tune quantum phase transition

Delft experiment: Vandersypen et al., Nature(

More experiments:

Xu Du, I. Skachko, and Eva Y. Andrei, PRE

Effective action for JJA due to graphene dissipation

$$H = H_{\rm JJA} + H_{\rm Graphene} + H_{\rm tunneling}$$

1. Trace out fermionic degrees of freedom

 E_C

e

Cost of having unpaired electron is large: $\Delta \gg E_C, E_J$

Only two-electon correlated (Andreev) tunneling processes conti

$$S_A \propto t^4 \int_A \prod_{i=1..4} dx_i \operatorname{Re} \left[F^*(x_1, x_2) G^{(g)}(x_2, x_4) F(x_4, x_3) G^{(g)}(x_3, x_4) F(x_4, x_3) F(x_4, x_3) G^{(g)}(x_3, x_4) F(x_4, x_3) F(x_4, x_3) F(x_4, x_3) F(x_4, x_4) F(x_4, x_3) F(x_4, x_4) F(x_4$$

Mesoscopic grain - coherent backscattering effect

F. Hekking and Yu. Nazarov, PRB(

Coherent backscattering effect

Coherent backscattering effect: spatial correlations are importa-

Effective action for JJA due to graphene dissipation

close to Dirac point

away from Dirac poi

 $K(\tau - \tau') \approx \frac{1}{k_F^2 \gamma^2 (\tau - \tau')^4} \qquad K(\tau - \tau') \approx \frac{(eV_G)^2}{k_F^2 \gamma^2 (\tau - \tau')^4}$

tunable Ohmic dissipa

Superconductor-insulator transition

Imaginary time action for JJA: $S = S_0 + S_J$

$$S_{0} = \sum_{i} \left[\int_{0}^{\beta} d\tau \frac{\dot{\varphi}_{i}(\tau)^{2}}{E_{c}} - \frac{G(eV_{G})^{2}}{k_{F}^{2}\gamma^{2}} \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' \frac{\cos\left[\varphi_{i}(\tau) - \varphi_{i}(\tau')\right]}{(\tau - \tau')^{2}} \right]$$

$$S_{J} = \sum_{\langle ij \rangle} \int_{0}^{\beta} d\tau E_{J} \cos[\varphi_{i}(\tau) - \varphi_{j}(\tau)]$$
M.V. Eigel'man and A. I. La

M. V. Feigel'man and A. I. Larkin

Superconductor-Insulator transition in 2D

Mean-Field theory:

$$r \propto \frac{1}{zE_J} - \int_0^\beta d\tau \left\langle e^{i\varphi_i(\tau) - i\varphi_i(0)} \right\rangle_0 = 0$$

Calculate correlation function for the single grain problem

Superconductor-insulator transition

$$S = \int d\tau \frac{\dot{\varphi}^2(\tau)}{E_c} -\eta \int d\tau d\tau' \frac{\cos\left[\varphi(\tau) - \varphi(\tau')\right]}{(\tau - \tau')^2} \qquad \eta = \frac{G(eV_G)^2}{k_F^2 \gamma^2}$$

 $\eta = 0$ $\langle e^{i\varphi(\tau) - i\varphi(0)} \rangle \propto e^{-E_C \tau}$ phases are uncorrelated at $\tau > E_C^-$

$$\eta \gg 1 \qquad \langle e^{i\varphi(\tau) - i\varphi(0)} \rangle_0 \sim \begin{cases} \left(\frac{\tau_c}{\tau}\right)^{\frac{1}{2\pi^2\eta}}, & \Lambda^{-1} \ll \tau \ll \tau_c \\ \left(\frac{\tau_c}{\tau}\right)^2, & \tau \gg \tau_c, \end{cases}$$

Phase correlations decay much slower, *i.e.* phase fluctuations are suppresse

Partition function for ferromagnetic spin chain

$$S(x) = \{\sqrt{1 - \pi(x)^2}, \pi(x)\}$$

Ronormalization group analyzig

$$Z = \exp\left(-\frac{1}{T}\int dxdx'\frac{\mathbf{S}(x)\mathbf{S}(x')}{(x-x')^2}\right)$$

Polyakov(1975) Kosterlitz(1976) Brezin and Zinn-Justin (1976) Hofstottor and Zworger (1998)

Superconductor-insulator transition

Superconductor-Insulator phase boundary

$$r \propto \frac{1}{zE_J} - \int_0^\beta d\tau \left\langle e^{i\varphi_i(\tau) - i\varphi_i(0)} \right\rangle_0 = 0 \qquad \Box \Rightarrow \qquad E_J \approx E_C^*$$

Effective charging energy

$$E_C^* \sim E_C \left(\frac{V_G}{V_0}\right)^4 \exp\left[-2\pi^2 \frac{V_G^2}{V_0^2}\right]$$

F. Guinea and G. Schon, EPL (1986)
Panyukov and Zaikin, PRL (1991)
Falci, Schon and Zimanyi, PRL (1995)
Lukyanov and Werner, J of Stat Mech (2006)

Low temperature current switching devices

Conclusions

- Dissipation driven QPT
- Engineering dissipation using graphene

• Low temperature current switching devices

Thank you

RL, V. Galitski, G. Refael and S. Das Sarma, PRL 101, 106402 (2008)