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m Thermodynamic Measurements in the QH Regime:

— Erobe of bulk Erogerﬁes and many-body effects

Magnetization
DC torque maghetometry Oscillator torsional magnetometry
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Gb Ultraclean suspended graphene

Exfoliate directly onto patterned electrodes




Gb Sample characterization for QHE measurements

G (KS)
400

SiO, (many groups) ~10M ~100
h-BN (Dean et al) ~4x1010 ~20

Suspended, under-etched ~1010 ~10

(Bolotin et al, Du et al)

Suspended, resist-free ~2x10° ~5-10

(This work, Bao et al)



Gb Energy gap in bilayer graphene
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« Gap of ~4-5 meV in bilayer samples, from non-linear transport
« Temperature dependence fits a simply activated gap ~2meV
* No top gate: cannot rule out built-in electric field (unlikely)



Graphene nanomechanical resonators -
electrical mixing readout (old work)
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Changyao Chen, Sami Rosenblatt, Kirill I. Bolotin, William Kalb, Philip Kim, Toannis Kymissis, Horst L.
Stormer, Tony F. Heinz & JH, Nature Nanotechnology (2009).
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See also: Deshmukh, Nanotechnology 2010



m Mechanical model to explain dispersion

1D string model
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Built-in tension Young's modulus
Equilibrium displacement: Spring constant:
Stiffening with V, /

Softening with V,



Mechanical model to explain dispersion

Calculate Cy, C', C" using finite element model.
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Mechanical model to explain dispersion
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T, = 782 nN (strain ~ 0.1%)

Static deflection ~ 10 nm at 10 V
Mass density ~ graphene density .
(low contamination)




Direct RF readout

The resonant channel transistor (RCT)
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GiD Working of the RCT
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Over two orders of magnitude faster than the mixing techniquel



GLD Purely Capacitive Readout
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= Reduce background using balance bridge technique (based on
work by Ekinci et al (2002) in Si NEMS)



Gb Graphene resonators in the quantum Hall regime

Frequency (MHZz)

B (T)
Mechanical response in the QH regime

» Hardening on QH plateaus (features 'H')
> Softening in partially filled LLs (features 'S’)



00,

Disorder dependence
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As fabricated
An ~ 1019¢cm-2
AEF ~ 10 meV

After anneal
An ~ 4x10%cm2
AEF ~ 5 meV

Note:

Features 'H become
taller and spike-like
with increasing B and
decreasing disorder
Fine-structure in
feature 'H' for lower
disorder



dﬂ Is the response governed by torque?

-l B Ideal \
' l With disprder

1\14 1\ 10 T v=6
MXB torque: .

0.0 0.2 0.4 0.6 0.8 1.0

Static: tends to flatten (softening) B8,
Dynamic: fends to stiffen Calculated dHvA for graphene

2
Z
U =-M-B=-MB(1-—-
mag ( 2[? = Compare with data Af~100 kHz
2 i.e. 3 orders of magnitude larger!
— Ak = AU g ~ MB = Also, torque magnhetometry does not
dz, r yield sharp spikes

Ak = Note: 7,+~10ns precludes eddy
Af = f| — | =100 Hz current induced spikes
2k



Gi? Electrostatic modulation of magnetization

Fmag:M-VB+VM-B LB
Usually, M is constant... but in this case.
dM _dM dn NN
dz dn dz M,
Because of the proximity to the gate,
M changes with displacement. Softening 'S’
A A 3 / Spikes 'H'
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Frequency (MHz)

Af (MHZz)

Data vs. Model
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Calculation matches data to
within a factor of a few and
simulates all features

Only fitting parameter:
disorder (~5 meV)



m Simpler Interpretation™

1. Static contribution:

QU 9U(n)on oC, LB
mag ~ = —‘UV
T 3% o oz T e e e

Obtain frequency shift directly . \l, J \]/ I
from gate tunability: M, F
J
Af =F,,, X —7L UA, where A= L
Cng an

Direct measure of chemical potential

* Thanks to 'referee 2' for useful insights...



Gb Ground state energy governed by electrostatics

1. Static contribution: LB
Af = pA T~e_e e =
2. Dynamic contribution: B ANAN ‘N/F
oF a‘u 2
_ mag /
Ny == 2= (v.c:) /eA

Spring stiffening is direct measure of compressibility du/dn

« Term 2 only appears on plateaus - du/dn small elsewhere.

* In devices with small built-in tension (large A), feature 'S’ measures
chemical potential.

« Feature 'H' always measures compressibility, independent of tension



Samples with different built-in tension
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GLD Overlay calculated chemical potential on data
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Chemical potential (mV)
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« Chemical potential referenced to N=0O (which has y =0)
* Calculated chemical potentials line up very well with feature 'S’
* Allows one to directly read-off quantum Hall gaps



dﬂ Why is this useful?

Allows one to measure gaps where single-particle picture does not predict any.
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1. pjumps to zero at v=2, at 5T v=2 gap is larger than room temperature.
2. Allows one to read-off v=1 gap. Much larger than Zeeman gap (~1mV).



dﬂ How about the hardening spikes 'H'?
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« Features 'H' allow one to estimate compressibility
* Of the order of 10° mVcm? for the largest gaps,
in accordance with Martin et al



Frequency (MHz)
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Fine structure

B(T)

Not broken symmetry states (don't appear at the right B)
Domains - unlikely, since they appear in the cleaner samples
Negative correction to compressibility, due to Hartree Fock terms
* Needs further work
Chemical potential contribution of edge (due to static term)
* Appears because bulk charge is governed by Cq and dCy/dz =0,
while edge charge is always governed by C,



Frequency (MHz)

Af (MHZz)

Magnetomety Applications?
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*Moment sensitivity of 10-3 p,/e/
(Hz)¥2: competitive with the best
magnhetometers

*Flux sensitivity of 10-20 Wb/(Hz)Y2:
two orders of magnitude off from
state-of-the-art flux sensors

Plenty of scope for improving signal
and sensitivity
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