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used in previous experiments18 can create structural de-
fects which irreversibly affect the electronic properties of
graphene. The suspension of the graphene samples is
then accomplished by standard wet-etching of 150nm of
SiO2 in a solution of buffered HF (Fig. 1e and f).
Special care has to be taken during the final drying

process of the sample since the surface tension of the liq-
uids and the capillary forces can easily cause the collapse
of the nano-structures. A common solution to this prob-
lem is to dry the samples in a critical point dryer (CPD)
-making use of the zero surface tension in the supercriti-
cal transition of CO2. However, after being dried in the
CPD, the graphene surface is often covered by contami-
nants present in the liquids and/or the CO2 gas used in
the process. These contaminants dope the graphene, de-
grade its electrical properties such as the charge carrier
mobility and they are also very difficult to anneal. Here
we undertake an alternative route to dry the samples
after etching, making use of the fact that both surface
tension and capillary forces are temperature dependent
-i.e. they decrease when approaching the boiling point
of the liquids. Simply warming up the IPA at 50◦C re-
duces significantly the surface tension of this liquid, mak-
ing it possible to suspend the double-gated structures by
just leaving them to dry in atmosphere. This procedure
invariably delivers suspended double-gated graphene de-
vices with flakes as large as 3µm wide and up to 2µm
long. Fig. 2a shows a false colour Scanning electron mi-
croscope (SEM) micrograph of a typical suspended and
double gated graphene device taken under a shallow an-
gle to highlight the multi-level structure comprising the
air-gap top-gate and the suspended flake.
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FIG. 2: (a) False colour SEM micrograph of a suspended and
double gated graphene device. (b) Resistance versus back-
gate voltage (Vbg) before and after current annealing for a
double gated trilayer graphene device.

We have characterized the electrical properties of these
suspended and double-gated devices measuring the resis-
tance with standard lock-in technique in a current- or
voltage-biased configuration and in the linear regime -
i.e. the excitation current (voltage) was varied to ensure
that the voltage drop across the sample was smaller than
the temperature broadening of the Fermi distribution.
All the devices are current annealed in situ -i.e. in high
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FIG. 3: (a) Resistance vs. back-gate voltage (Vbg) measured
at T = 0.3K and for different values of fixed top-gate voltage
(Vtg) as indicated in the graph. (b) 2D-Raman peak measured
with a 532nmn laser, 5mW power and a spot size of 1.5 µm.
The dots are the experimental data points, whereas the red
continuous line is a fit to 6 Lorentzians (continuous blue lines).
(c) Measurements of the on/off ratio of the current (Ion/Ioff )
as a function of the average electric displacement D.

vacuum (10−6 mbar) and at low temperature T = 4K
with current densities as high as 1.4mA/µm2. Upon an-
nealing the residual doping of the samples is reduced to
zero and the charge carrier mobility typically increases
by at least one order of magnitude, see Fig. 2b. In total
we have studied more than 5 double gated FLG devices,
and in this letter we discuss the representative data of an
ABC-stacked trilayer graphene.
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FIG. 4: Conductance vs. back-gate voltage measured at
Vtg=0V for different values of perpendicular magnetic field
from 0.5T up to 1.9T in steps of 0.2T.

Both the stacking-order and the number of layers were
reliably identified by means of Raman spectroscopy as
previously reported10,11,21,22. In particular the peak at
2700cm−1 (2D-peak) in the Raman spectra of graphene
depends on the band structure of the material. In tri-
layer graphene experimentally a minimum number of 6
Lorentzian functions can be used to describe the shape of
the 2D peak, whereas the asymmetry of this peak (with a
pronounced shoulder) identifies the rhombohedral stack-
ing order (see Fig. 3b). Fig. 3a shows the 2-terminal
resistance measured at T=0.3K as a function of back-
gate voltage (Vbg) for different fixed values of top-gate

2



Questions  

Flexural phonons VS in-plane ones?

How do phonons affect transport? Resistivity vs. T?

Deformations in mono- and bilayer membranes?

3



Questions  

Flexural phonons VS in-plane ones?

How do phonons affect transport? Resistivity vs. T?

Deformations in mono- and bilayer membranes?
3

FIG. 3: (color online) T -dependence of the resistivity in sam-
ple S2 (!) and S1 (", shifted for clarity) at several different
gate voltages. Inset: Density dependence of slope of ∆ρ/∆T
defined as ∆ρ/∆T = [ρ(200 K)− ρ(100 K)]/100 K for sample
S1 and S2 before (dotted line) and after (solid line) current
annealing. Since ρ(T ) is linear only for n > 0.5×1011cm−2,
the definition of ∆ρ/∆T is only meaningful outside of the
dotted region.

stems from the external sources, such as remote inter-
face phonons [11] or static ripples [7]. In fact, suspended
graphene shows only a modest increase of the resistiv-
ity from T ∼5 K to 240 K maintaining a mobility of
µ = 120, 000 cm2/Vs at T=240 K and at our highest
density of n = 2×1011 cm−2. This value considerably ex-
ceeds the highest reported room-temperature mobility for
a semiconducting material (InSb, 77,000 cm2/Vs [21]).

In order to quantify the linear rise of ρ(T ) in Fig. 3
we define the slope in the high-T range as ∆ρ/∆T =
[ρ(200K) − ρ(100K)]/100 K . The inset to Fig. 3 shows
∆ρ/∆T as a function of n in samples S1 and S2 before
(dotted lines) and after (solid lines) current annealing.
Several features stand out. First, the high mobility states
reached in S1 and S2 after current annealing exhibit very
similar ∆ρ/∆T (n) dependencies, in spite of a mobility
difference of a factor of 2. Second, in the large n limit,
the slope ∆ρ/∆T (n) is similar for the samples before and
after the annealing process, indicating that the slope in
this limit is rather insensitive to the sample mobility.
Finally, for all devices ∆ρ/∆T is consistently larger for
negative Vg than for positive Vg.

We separately consider the two density regimes, |n| >
n∗ and |n| < n∗. At high densities, the linearly in-
creasing ρ(T ) suggests electron-phonon interaction as the
dominant source of carrier scattering [8, 9, 10, 11]. In-
deed, within a Boltzmann model and for sufficiently high
T > TBG = 2!vphkF /kB ∼ 23 K (BG=Bloch-Gruneisen)
at n = 2 × 1011 cm−2, the resistivity is linear in T

∆ρ =
πD2kBT

4e2!ρmv2
F v2

ph

(2)

where D is the deformation potential, ρm = 7.6 ×
10−8 g/cm2 is the graphene mass density, vph = 2 ×
104 m/s is the LA phonon velocity [25] and vF = 1 ×
106 m/s is the Fermi velocity [1]. While our data in
Fig. 3 show clearly such a linear T -dependence, indica-
tive of phonon scattering, the slope of ρ(T ) displays an
unexpected density dependence, not captured by Eq. (1).
The origin of this density dependence is unclear. It
may point to additional contributions from a different
T -dependent scattering mechanisms at lower densities,
such as screened Coulomb scattering [23]. Further ex-
perimental and theoretical work is needed to resolve this
issue. However, for large |n|, when ∆ρ/∆T (n) in Fig. 3b
reaches a roughly n-independent value (at least for pos-
itive Vg) we may identify this limiting behavior with ex-
clusively phonon scattering and derive an upper bound
value for D. For n = +2 × 1011 cm−2 (electrons) Eq.
(1) yields D ∼ 29 eV, consistent with D = 10 − 30 eV
in graphite [8, 25] and comparable to D ∼ 17 eV, re-
ported for unsuspended graphene [11]. In contrast, for
n = −2 × 1011 cm−2 (holes) we obtain D ∼ 50 eV. This
value may be overestimated, since ∆ρ/∆T (n) is not fully
saturated even at Vg ≈-5 V, the experimental limit of
hole density. Nevertheless, this large asymmetry is un-
usual and presently unresolved and, together with the
observed n dependence, may point to a scattering be-
havior in suspended graphene that is more complex than
simple electron-phonon interaction.

We now turn to the low density regime, |n| < n∗, and
address the T -dependence of the minimum conductivity,
σmin. Figure 4 shows σmin(T )/σmin(5K) in samples S1,
S2 and S3 before and after annealing. Before annealing,
σmin(T ) varies only slightly from 5 K to 240 K (< 30%).
The variation is similar to σmin(T ) in unsuspended sam-
ples of similar mobilities [20]. This is in a sharp contrast
to the current-annealed devices, where σmin acquires a
strong T -dependence, as large as a factor of 1.5 − 3 for
T = 5 K to 250 K. This confirms that the T -independence
of σmin observed in low mobility samples [7, 20] is not
an intrinsic property of graphene.

The remarkable property of graphene to exhibit
σmin ∼ e2/h even at vanishing charge density has been
the subject of several experimental and theoretical inves-
tigations [4, 5, 7, 18, 22]. In a high mobility sample, a
T -dependence is only expected for kBT > εF = !vF kF =
!vF

√

πCg(Vg − VNP )/e [23, 24], when Vg → VNP . How-
ever, in a realistic sample charged impurities [4, 6, 11, 13]
or structural disorder [12] break up the carrier system
into puddles of electrons and holes for Vg → VNP . As a
result, the combined (electron plus hole) carrier density
in ”dirty” graphene never drops below a value ñ , referred
to as inhomogenity density (Fig. 2, Inset).

Estimating the rms chemical potential in the pud-
dle regime to be εF ∼ !vF

√
πñ , we expect a signifi-

cant T -dependence of σmin(T ) only for kBT ' !vf

√
πñ.

For unsuspended samples ñ ∼ 1011 cm−2 [4, 17] corre-

Bolotin et al, PRL 08

See also Morozov 08 and Chen 08 in non-suspended samples

3
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In-plane modes

Flexural modes Soft to excite
Weak coupling to electrons

Hard to excite
Good coupling to electrons

Phonons in graphene
Woods ’00

Katsnelson ‘07
Castro-Neto ‘07

How do they couple to electrons?

What is their dispersion?
Q?
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He−ph =

(

g1(uxx + uyy) g2(2uxy − i(uxx − uyy))
g2(2uxy + i(uxx − uyy)) g1(uxx + uyy)

)

Electron Phonon Coupling

Tr[uij ] =
δS

S

relative area 
variationfictitious gauge field

g1 ! 30 eV

g2 ! 1.5 eV

Woods & Mahan 00
Suzuura & Ando ’02

Vozmediano review 2010
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In-plane vs Flexural phonons
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Temperature-dependent Resistivity

Flexural modes should dominate 
in-plane ones at present dopings

E. Mariani and F. von Oppen, Phys. Rev. Lett. 100, 076801 (2008)
Phys. Rev. Lett. 100, 249901 (2008)

Phys. Rev. B 82, 195403 (2010)

ρ

∼ T
5/2

ρ

T

∼ T
4

∼ T

T

In-plane Flexural

???

Hwang & Das Sarma, PRB 2008
ρ !

3 · 10−3 T 2[K]

ñ
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Role of tension?
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FIG. 1: (a) SEM image of a typical suspended six-probe

graphene device taken at 15
◦

with respect to the sample plane.

(b) AFM image of the suspended device #1 before the mea-

surements. (c) AFM image of the device #1 after the mea-

surements with graphene removed by a short oxygen plasma

etch (same z scale). (d) Device schematic, side-view. Degen-

erately doped silicon gate (blue), partly etched SiO2 (green),

suspended single-layer graphene (pink) and Au/Cr electrodes

(orange).

image of a finished device taken at 15◦ angle with respect
to the sample plane. The graphene is apparent as a thin
sheet suspended above the surface of the remaining SiO2.
The sheet is supported by six gold electrodes attached to
SiO2, which have been slightly undercut during the BOE
etching step (see Fig. 1d). Atomic force microscopy
(AFM) (Figs. 1b,c) demonstrates convincingly the in-
tegrity of the graphene sheet, its suspension above the
oxide and the flatness of the substrate below it. Fig. 1b
clearly indicates a flat graphene surface ∼150 nm above
the surface of SiO2. The single layer of carbon atoms,
which makes up graphene, is remarkably robust and is
not damaged by repeated AFM imaging. Fig. 1c show
the same device after completion of the electrical mea-
surement and after removal of the suspended graphene
via an oxygen plasma etch [15]. It reveals the previ-
ously hidden SiO2 substrate below the graphene. The
height variation of the substrate is less than 20 nm, with
a slight bowing towards the center of the device. We thus
conclude that our fabrication process results in graphene
devices suspended ∼150 nm above SiO2 substrate (Fig.
1d).

Electrical measurements on suspended graphene de-
vices are performed in a sample-in-vacuum cryostat with
a pressure of less than 5 × 10−5 mtorr. A total of one
four-probe and two six-probe devices were measured. Be-
fore cooling the cryostat to its base temperature of ∼5 K
the devices are thermally annealed in situ to 400 K, as

this has been shown to reduce spurious doping in un-
suspended samples [5, 21]. Four-probe measurements
are performed using standard low-frequency lock-in tech-
niques with the excitation current less than I = 100 nA.
A typical measurement consists of sending the current
between electrodes labeled 1 and 4 in Fig. 1a and record-
ing the voltages Vxx ( Vxy ) between electrodes 2 and 3
( 2 and 6 ) respectively. The resistance is calculated as
Rxx = Vxx/I and the Hall resistance as Rxy = Vxy/I.
To convert resistance to resistivity we estimate the ra-
tio of sample width to spacing between voltage probes
from images such as shown in Fig. 1. Following the
general approach for extended voltage probes we use
the center-to-center distance along the current path (L)
as the sample length and the distance between voltage
probes perpendicular to the current path as the sample
width (W ). The sheet resistivity ρxx is then calculated
as ρxx = Rxx(W/L). The uncertainty in actual current
and voltage distribution within our specimens may place
an error on the estimated value of ρxx of less than 30%.

The resistivity is measured as a function of gate voltage
Vg applied between graphene and the degenerately doped
silicon substrate. Special care is taken not to collapse the
devices electrostatically, as applying gate voltage Vg of ei-
ther sign leads to an attractive force between the flexible
suspended graphene [9, 13] and the gate. The observa-
tion of graphene collapse at Vg = 20 V in similar samples
leads us to limit the range of applied gate voltages to
±5 V throughout our experiments. Following Bunch et
al. [13], we estimate the force acting on our typical de-
vice #1 at Vg = ±5 V as F = �0�2LWV 2

g

2(d0+d1�)2 ∼ 3 × 10−8 N,
where d0, d1 = 150 nm are thicknesses of the remain-
ing and etched SiO2 and L,W ∼ 3 µm are the length
and the width of the device. Using simple mechanics,
we estimate the maximum strain ε in graphene to be in
the range Vg = ±5 V as ε ∼ 0.5( F

EtW )2/3 ∼ 5 × 10−4,
assuming a Young modulus E=1 TPa and a thickness
t =0.34 nm [13]. We deduce that this strain level does
not significantly affect electronic transport in graphene.

The blue line of Fig. 2a shows the low temperature
resistivity ρxx of sample #1, measured as a function of
the gate voltage Vg. We observe the Dirac peak, indi-
cated by a maximum in the resistivity, at the gate voltage
VD close to zero. The small reproducible fluctuations in
ρxx(Vg) are consistent with universal conductance fluctu-
ation, typically seen in mesoscopic devices [16, 17]. The
carrier density n is determined via Hall effect measure-
ments as n(Vg) = B/eρxy(Vg, B), where B is the applied
magnetic field. The gate capacitance of the device is cal-
culated as Cg = n(Vg)e/(Vg − VD) ∼ 60 aFµm−2. [1, 2]
The measured capacitance is close to the value Cg ∼
47±5 aFµm−2 expected for graphene suspended 150±20
nm above 150±20 nm of residual SiO2, as calculated us-
ing the serial capacitor model. This provides an inde-
pendent verification that the device is suspended during

T
5/2

T
2

Fbend →
1

2

∫

drκ
(

∇
2
h
)2

E. Mariani and F. von Oppen, Phys. Rev. B 82, 195403 (2010)
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erately doped silicon gate (blue), partly etched SiO2 (green),

suspended single-layer graphene (pink) and Au/Cr electrodes

(orange).

image of a finished device taken at 15◦ angle with respect
to the sample plane. The graphene is apparent as a thin
sheet suspended above the surface of the remaining SiO2.
The sheet is supported by six gold electrodes attached to
SiO2, which have been slightly undercut during the BOE
etching step (see Fig. 1d). Atomic force microscopy
(AFM) (Figs. 1b,c) demonstrates convincingly the in-
tegrity of the graphene sheet, its suspension above the
oxide and the flatness of the substrate below it. Fig. 1b
clearly indicates a flat graphene surface ∼150 nm above
the surface of SiO2. The single layer of carbon atoms,
which makes up graphene, is remarkably robust and is
not damaged by repeated AFM imaging. Fig. 1c show
the same device after completion of the electrical mea-
surement and after removal of the suspended graphene
via an oxygen plasma etch [15]. It reveals the previ-
ously hidden SiO2 substrate below the graphene. The
height variation of the substrate is less than 20 nm, with
a slight bowing towards the center of the device. We thus
conclude that our fabrication process results in graphene
devices suspended ∼150 nm above SiO2 substrate (Fig.
1d).

Electrical measurements on suspended graphene de-
vices are performed in a sample-in-vacuum cryostat with
a pressure of less than 5 × 10−5 mtorr. A total of one
four-probe and two six-probe devices were measured. Be-
fore cooling the cryostat to its base temperature of ∼5 K
the devices are thermally annealed in situ to 400 K, as

this has been shown to reduce spurious doping in un-
suspended samples [5, 21]. Four-probe measurements
are performed using standard low-frequency lock-in tech-
niques with the excitation current less than I = 100 nA.
A typical measurement consists of sending the current
between electrodes labeled 1 and 4 in Fig. 1a and record-
ing the voltages Vxx ( Vxy ) between electrodes 2 and 3
( 2 and 6 ) respectively. The resistance is calculated as
Rxx = Vxx/I and the Hall resistance as Rxy = Vxy/I.
To convert resistance to resistivity we estimate the ra-
tio of sample width to spacing between voltage probes
from images such as shown in Fig. 1. Following the
general approach for extended voltage probes we use
the center-to-center distance along the current path (L)
as the sample length and the distance between voltage
probes perpendicular to the current path as the sample
width (W ). The sheet resistivity ρxx is then calculated
as ρxx = Rxx(W/L). The uncertainty in actual current
and voltage distribution within our specimens may place
an error on the estimated value of ρxx of less than 30%.

The resistivity is measured as a function of gate voltage
Vg applied between graphene and the degenerately doped
silicon substrate. Special care is taken not to collapse the
devices electrostatically, as applying gate voltage Vg of ei-
ther sign leads to an attractive force between the flexible
suspended graphene [9, 13] and the gate. The observa-
tion of graphene collapse at Vg = 20 V in similar samples
leads us to limit the range of applied gate voltages to
±5 V throughout our experiments. Following Bunch et
al. [13], we estimate the force acting on our typical de-
vice #1 at Vg = ±5 V as F = �0�2LWV 2

g

2(d0+d1�)2 ∼ 3 × 10−8 N,
where d0, d1 = 150 nm are thicknesses of the remain-
ing and etched SiO2 and L,W ∼ 3 µm are the length
and the width of the device. Using simple mechanics,
we estimate the maximum strain ε in graphene to be in
the range Vg = ±5 V as ε ∼ 0.5( F

EtW )2/3 ∼ 5 × 10−4,
assuming a Young modulus E=1 TPa and a thickness
t =0.34 nm [13]. We deduce that this strain level does
not significantly affect electronic transport in graphene.

The blue line of Fig. 2a shows the low temperature
resistivity ρxx of sample #1, measured as a function of
the gate voltage Vg. We observe the Dirac peak, indi-
cated by a maximum in the resistivity, at the gate voltage
VD close to zero. The small reproducible fluctuations in
ρxx(Vg) are consistent with universal conductance fluctu-
ation, typically seen in mesoscopic devices [16, 17]. The
carrier density n is determined via Hall effect measure-
ments as n(Vg) = B/eρxy(Vg, B), where B is the applied
magnetic field. The gate capacitance of the device is cal-
culated as Cg = n(Vg)e/(Vg − VD) ∼ 60 aFµm−2. [1, 2]
The measured capacitance is close to the value Cg ∼
47±5 aFµm−2 expected for graphene suspended 150±20
nm above 150±20 nm of residual SiO2, as calculated us-
ing the serial capacitor model. This provides an inde-
pendent verification that the device is suspended during
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image of a finished device taken at 15◦ angle with respect
to the sample plane. The graphene is apparent as a thin
sheet suspended above the surface of the remaining SiO2.
The sheet is supported by six gold electrodes attached to
SiO2, which have been slightly undercut during the BOE
etching step (see Fig. 1d). Atomic force microscopy
(AFM) (Figs. 1b,c) demonstrates convincingly the in-
tegrity of the graphene sheet, its suspension above the
oxide and the flatness of the substrate below it. Fig. 1b
clearly indicates a flat graphene surface ∼150 nm above
the surface of SiO2. The single layer of carbon atoms,
which makes up graphene, is remarkably robust and is
not damaged by repeated AFM imaging. Fig. 1c show
the same device after completion of the electrical mea-
surement and after removal of the suspended graphene
via an oxygen plasma etch [15]. It reveals the previ-
ously hidden SiO2 substrate below the graphene. The
height variation of the substrate is less than 20 nm, with
a slight bowing towards the center of the device. We thus
conclude that our fabrication process results in graphene
devices suspended ∼150 nm above SiO2 substrate (Fig.
1d).

Electrical measurements on suspended graphene de-
vices are performed in a sample-in-vacuum cryostat with
a pressure of less than 5 × 10−5 mtorr. A total of one
four-probe and two six-probe devices were measured. Be-
fore cooling the cryostat to its base temperature of ∼5 K
the devices are thermally annealed in situ to 400 K, as

this has been shown to reduce spurious doping in un-
suspended samples [5, 21]. Four-probe measurements
are performed using standard low-frequency lock-in tech-
niques with the excitation current less than I = 100 nA.
A typical measurement consists of sending the current
between electrodes labeled 1 and 4 in Fig. 1a and record-
ing the voltages Vxx ( Vxy ) between electrodes 2 and 3
( 2 and 6 ) respectively. The resistance is calculated as
Rxx = Vxx/I and the Hall resistance as Rxy = Vxy/I.
To convert resistance to resistivity we estimate the ra-
tio of sample width to spacing between voltage probes
from images such as shown in Fig. 1. Following the
general approach for extended voltage probes we use
the center-to-center distance along the current path (L)
as the sample length and the distance between voltage
probes perpendicular to the current path as the sample
width (W ). The sheet resistivity ρxx is then calculated
as ρxx = Rxx(W/L). The uncertainty in actual current
and voltage distribution within our specimens may place
an error on the estimated value of ρxx of less than 30%.

The resistivity is measured as a function of gate voltage
Vg applied between graphene and the degenerately doped
silicon substrate. Special care is taken not to collapse the
devices electrostatically, as applying gate voltage Vg of ei-
ther sign leads to an attractive force between the flexible
suspended graphene [9, 13] and the gate. The observa-
tion of graphene collapse at Vg = 20 V in similar samples
leads us to limit the range of applied gate voltages to
±5 V throughout our experiments. Following Bunch et
al. [13], we estimate the force acting on our typical de-
vice #1 at Vg = ±5 V as F = �0�2LWV 2
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2(d0+d1�)2 ∼ 3 × 10−8 N,
where d0, d1 = 150 nm are thicknesses of the remain-
ing and etched SiO2 and L,W ∼ 3 µm are the length
and the width of the device. Using simple mechanics,
we estimate the maximum strain ε in graphene to be in
the range Vg = ±5 V as ε ∼ 0.5( F

EtW )2/3 ∼ 5 × 10−4,
assuming a Young modulus E=1 TPa and a thickness
t =0.34 nm [13]. We deduce that this strain level does
not significantly affect electronic transport in graphene.

The blue line of Fig. 2a shows the low temperature
resistivity ρxx of sample #1, measured as a function of
the gate voltage Vg. We observe the Dirac peak, indi-
cated by a maximum in the resistivity, at the gate voltage
VD close to zero. The small reproducible fluctuations in
ρxx(Vg) are consistent with universal conductance fluctu-
ation, typically seen in mesoscopic devices [16, 17]. The
carrier density n is determined via Hall effect measure-
ments as n(Vg) = B/eρxy(Vg, B), where B is the applied
magnetic field. The gate capacitance of the device is cal-
culated as Cg = n(Vg)e/(Vg − VD) ∼ 60 aFµm−2. [1, 2]
The measured capacitance is close to the value Cg ∼
47±5 aFµm−2 expected for graphene suspended 150±20
nm above 150±20 nm of residual SiO2, as calculated us-
ing the serial capacitor model. This provides an inde-
pendent verification that the device is suspended during
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  What experiments tell us  

The linear T-dependence implies the presence of tension

Crossover to      would allow to know the strength of tension T
2

3

FIG. 3: (color online) T -dependence of the resistivity in sam-
ple S2 (!) and S1 (", shifted for clarity) at several different
gate voltages. Inset: Density dependence of slope of ∆ρ/∆T
defined as ∆ρ/∆T = [ρ(200 K)− ρ(100 K)]/100 K for sample
S1 and S2 before (dotted line) and after (solid line) current
annealing. Since ρ(T ) is linear only for n > 0.5×1011cm−2,
the definition of ∆ρ/∆T is only meaningful outside of the
dotted region.

stems from the external sources, such as remote inter-
face phonons [11] or static ripples [7]. In fact, suspended
graphene shows only a modest increase of the resistiv-
ity from T ∼5 K to 240 K maintaining a mobility of
µ = 120, 000 cm2/Vs at T=240 K and at our highest
density of n = 2×1011 cm−2. This value considerably ex-
ceeds the highest reported room-temperature mobility for
a semiconducting material (InSb, 77,000 cm2/Vs [21]).

In order to quantify the linear rise of ρ(T ) in Fig. 3
we define the slope in the high-T range as ∆ρ/∆T =
[ρ(200K) − ρ(100K)]/100 K . The inset to Fig. 3 shows
∆ρ/∆T as a function of n in samples S1 and S2 before
(dotted lines) and after (solid lines) current annealing.
Several features stand out. First, the high mobility states
reached in S1 and S2 after current annealing exhibit very
similar ∆ρ/∆T (n) dependencies, in spite of a mobility
difference of a factor of 2. Second, in the large n limit,
the slope ∆ρ/∆T (n) is similar for the samples before and
after the annealing process, indicating that the slope in
this limit is rather insensitive to the sample mobility.
Finally, for all devices ∆ρ/∆T is consistently larger for
negative Vg than for positive Vg.

We separately consider the two density regimes, |n| >
n∗ and |n| < n∗. At high densities, the linearly in-
creasing ρ(T ) suggests electron-phonon interaction as the
dominant source of carrier scattering [8, 9, 10, 11]. In-
deed, within a Boltzmann model and for sufficiently high
T > TBG = 2!vphkF /kB ∼ 23 K (BG=Bloch-Gruneisen)
at n = 2 × 1011 cm−2, the resistivity is linear in T

∆ρ =
πD2kBT

4e2!ρmv2
F v2

ph

(2)

where D is the deformation potential, ρm = 7.6 ×
10−8 g/cm2 is the graphene mass density, vph = 2 ×
104 m/s is the LA phonon velocity [25] and vF = 1 ×
106 m/s is the Fermi velocity [1]. While our data in
Fig. 3 show clearly such a linear T -dependence, indica-
tive of phonon scattering, the slope of ρ(T ) displays an
unexpected density dependence, not captured by Eq. (1).
The origin of this density dependence is unclear. It
may point to additional contributions from a different
T -dependent scattering mechanisms at lower densities,
such as screened Coulomb scattering [23]. Further ex-
perimental and theoretical work is needed to resolve this
issue. However, for large |n|, when ∆ρ/∆T (n) in Fig. 3b
reaches a roughly n-independent value (at least for pos-
itive Vg) we may identify this limiting behavior with ex-
clusively phonon scattering and derive an upper bound
value for D. For n = +2 × 1011 cm−2 (electrons) Eq.
(1) yields D ∼ 29 eV, consistent with D = 10 − 30 eV
in graphite [8, 25] and comparable to D ∼ 17 eV, re-
ported for unsuspended graphene [11]. In contrast, for
n = −2 × 1011 cm−2 (holes) we obtain D ∼ 50 eV. This
value may be overestimated, since ∆ρ/∆T (n) is not fully
saturated even at Vg ≈-5 V, the experimental limit of
hole density. Nevertheless, this large asymmetry is un-
usual and presently unresolved and, together with the
observed n dependence, may point to a scattering be-
havior in suspended graphene that is more complex than
simple electron-phonon interaction.

We now turn to the low density regime, |n| < n∗, and
address the T -dependence of the minimum conductivity,
σmin. Figure 4 shows σmin(T )/σmin(5K) in samples S1,
S2 and S3 before and after annealing. Before annealing,
σmin(T ) varies only slightly from 5 K to 240 K (< 30%).
The variation is similar to σmin(T ) in unsuspended sam-
ples of similar mobilities [20]. This is in a sharp contrast
to the current-annealed devices, where σmin acquires a
strong T -dependence, as large as a factor of 1.5 − 3 for
T = 5 K to 250 K. This confirms that the T -independence
of σmin observed in low mobility samples [7, 20] is not
an intrinsic property of graphene.

The remarkable property of graphene to exhibit
σmin ∼ e2/h even at vanishing charge density has been
the subject of several experimental and theoretical inves-
tigations [4, 5, 7, 18, 22]. In a high mobility sample, a
T -dependence is only expected for kBT > εF = !vF kF =
!vF

√

πCg(Vg − VNP )/e [23, 24], when Vg → VNP . How-
ever, in a realistic sample charged impurities [4, 6, 11, 13]
or structural disorder [12] break up the carrier system
into puddles of electrons and holes for Vg → VNP . As a
result, the combined (electron plus hole) carrier density
in ”dirty” graphene never drops below a value ñ , referred
to as inhomogenity density (Fig. 2, Inset).

Estimating the rms chemical potential in the pud-
dle regime to be εF ∼ !vF

√
πñ , we expect a signifi-

cant T -dependence of σmin(T ) only for kBT ' !vf

√
πñ.

For unsuspended samples ñ ∼ 1011 cm−2 [4, 17] corre-
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Quadratic temperature dependence observed!
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where the index i label the phonon mode. Results for the
resistivity in different regimes are shown in Fig. 2.

Experimental results.—We have fabricated two-terminal
suspended devices following the procedures introduced in
Refs. [5,6]. Typical changes in the resistance R as a func-
tion of the gate-induced concentration n are shown in
Fig. 3(a). The as-fabricated devices exhibited !!
1 m2=Vs but, after their in situ annealing by electric
current, ! could reach above 100 m2=V s at low T. To
find !, we have used the standard expression R ¼ R0 þ
ðl=wÞð1=ne!Þ, where R0 describes the contact resistance
plus the effect of neutral scatterers, and both R0 and ! are
assumed n independent [3,4]. Supplementary material pro-
vides examples of using this formula to analyze our ex-
perimental data [23]. Our devices had the length
l & 1–2 !m and the channel width w of 2–4 !m [see
the inset in Fig. 3(b)]. At T > 100 K, the above expression
describes well the functional form of the experimental
curves, yielding a constant ! over the wide range of
accessible n, if we allow R0 to be different for electrons
and holes [23]. This is expected because of an n' p
barrier that appears in the regime of electron doping due
to our p-doping contacts [5,6]. At T < 100 K, the range of
n over which the expression fits the data rapidly narrows.
Below 20 K, we can use it only for n <(1010 cm'2

because at higher n we enter into the ballistic regime (the
mean free path, proportional to !n1=2, becomes compa-
rable to l). In the ballistic regime, graphene’s conductivity
" is no longer proportional to n [5,6] and the use of ! as a
transport parameter has no sense. To make sure that !
extracted over such a narrow range of n is also correct, we
have crosschecked the found ! against the quantum mobi-
lities inferred from the onset of Shubnikov–de Haas oscil-
lations at low T [5,6,24] (also, see [23]). For all our devices
with! ranging from!1–100 m2=Vs, we find good agree-
ment between transport and quantum mobilities at liquid-
helium T, in agreement with earlier conclusions [6,24].

Figure 3(b) shows the T dependence of !. It is well
described by the quadratic dependence 1=! ¼ 1=!ðT !
0Þ þ #T2. Surprisingly, we find the coefficient # to vary by
a factor of !2 for different devices [we measured eight
suspended devices; data for three of them studied in detail
are shown in Fig. 3(b)], which is unexpected for an intrin-
sic phonon contribution. Such variations are however ex-
pected if strain modifies electron-phonon scattering as
discussed below. Note that ! falls down to 4–7 m2=V s
at 200 K [see Fig. 3(b)] and the extrapolation to room T
yields ! of only 2–3 m2=Vs, which is significantly lower
than the values reported in Ref. [6] but in agreement with
Ref. [5]. The disagreement between these two reports can
also be reconciled by a strain suppressing the electron-
phonon scattering.
Discussion.—The density independent ! ) 1=%en in-

dicates that experiments are in the nonstrained regime
where FPs dominate. From Eq. (6) 1=$F ! T2=kF, and
using Eq. (10) %! T2=n. The coefficient # is readily

seen to be given by # & D2k2B
64%e@&2v2

F
lnðkBT@!c

Þ, where the infra-
red cutoff is the only free parameter [25]. Experiment gives
# & 6:19* 10'6 V s=ðmKÞ2 for the sample with lower
mobility and # & 3:32* 10'6 V s=ðmKÞ2 for the higher
mobility one. Neglecting the logarithmic correction of
order unity, the analytic expression gives # & 3*
10'6 V s=ðmKÞ2 without adjustable parameters.
The difference between samples may be understood as

due to a different cutoff under the logarithm due to strain.
In nonstrained samples there is a natural momentum cutoff
qc & 0:1 !A'1 below which the harmonic approximation
breaks down [22]. Strain increases the validity range for the
harmonic approximation, making qc strain dependent, thus
explaining different cutoff at different strain. A rough
estimate of the expected strains is obtained by comparing
qc & 0:1 !A'1 with q+ ¼ vL

ffiffiffi
"u

p
=', which gives "u!

10'4 ' 10'3, consistent with the strain reported in
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FIG. 2 (color online). (a) Contribution to the resistivity from
flexural phonons (blue full line) and from in-plane phonons (red
dashed line). (b) Resistivity for different strain. The in-plane
contribution (broken red line) shows a crossover from a low to a
high—T regime. In both cases, the electronic concentration is
n ¼ 1012 cm'2.

FIG. 3 (color online). (a) Electron transport in suspended
graphene. Graphene resistivity % ¼ Rðw=lÞ as a function of
gate-induced concentration n for T ¼ 5, 10, 25, 50, 100, 150,
and 200 K. (b) Examples of !ðTÞ. The T range was limited by
broadening of the peak beyond the accessible range of n. The
inset shows a scanning electron micrograph of one of our
suspended device. The darker nearly vertical stripe is graphene
suspended below Au contacts. The scale is given by graphene
width of about 1 !m for this particular device.
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FIG. 2. Schematic description of the effect of deformations
on bond lengths. This side view, taken along the direction
ej , shows the atoms involved in intra and interlayer hopping
processes in a unit cell. a) Bilayer under flexural deforma-
tions h(S) and −h(S). The difference between the hopping
lengths 3� and 3�� (as well as between 4� and 4��) breaks the
symmetry with respect to the plane and is responsible for the
appearance of a linear coupling with h(S) in the gauge field
F (τ)
3 (and F (τ)

4 ). The fact that 3� = 4�� leads to the symmetry

h(S) → −h(S) between F (τ)
3 and F (τ)

4 . b) same as in a), but
for in-plane antisymmetric deformations u(A) and−u(A). The
equality 4� = 3�� accounts for the symmetry u(A) → −u(A)

between F (τ)
3 and F (τ)

4 .

H
(+)∗
0

��
p→−p

+ δH(+)∗
, together with F

(−)
j = F

(+)∗
j re-

veals that the fictitious gauge fields have opposite signs

in the two valleys, as in the monolayer case. As a conse-

quence, the fictitious magnetic fields generated by elastic

deformations are also opposite in the two valleys, as re-

quested by the fact that elastic deformations do not break

time-reversal invariance.

B. Explicit form of the fictitious vector potential

In order to express the effect of deformations on the

electronic momenta in terms of a vector potential, we

can rewrite the total Hamiltonian H
(+)
0 + δH(+)

in the

language of Pauli matrices acting on the layer space (Σα,

with α ∈ {0, x, y, z}) and on the sublattice space (σα) as

H
(+)
0 + δH(+)

= H
(+)
p +Hγ +HD

H
(+)
p = H

(+)
0,p + δH(+)

p (9)

Hγ = −
γ − Fγ

2

�
Σx ⊗ σx + Σy ⊗ σy

�

HD = D
(S)Σ0 ⊗ σ0 −D

(A)Σz ⊗ σ0 ,

with Σ0 and σ0 the identity matrices in the corresponding

spaces. The term H
(+)
0,p collects all contributions linear

in vjp and δH(+)
p the corrections Fj (with j = 1, ..., 4),

while Hγ collects the terms involving γ and Fγ , and HD
those related to the deformation potentials. In the latter

we introduced the symmetric and antisymmetric compo-

nents D
(S)

= (D1 + D2)/2 and D
(A)

= (D2 − D1)/2,

corresponding to different variations of areas in the two

layers. In analogy with the monolayer case, the Hamil-

tonian H
(+)
p can be written as

H
(+)
p = V(+) · (p+ eA(+)

) (10)

with H
(+)
0,p ≡ V(+) · p expressed in terms of the vector of

velocity matrices

V(+)
= (V

(+)
x , V

(+)
y ) , with (11)

V
(+)
x =

v1 + v2

2
Σ0 ⊗ σx +

v1 − v2

2
Σz ⊗ σx

+
v3

2

�
Σx ⊗ σx − Σy ⊗ σy

�
+ v4Σx ⊗ σ0

V
(+)
y =

v1 + v2

2
Σ0 ⊗ σy +

v1 − v2

2
Σz ⊗ σy

−v3

2

�
Σx ⊗ σy + Σy ⊗ σx

�
+ v4Σy ⊗ σ0 .

In parallel, for the term δH(+)
p , by direct inspection one

finds

δH(+)
p ≡ eV(+) ·A(+)

= δH(+)
Re,p + δH(+)

Im,p , with (12)

δH(+)
Re,p = Re[F

(+)
1 ]

Σ0 + Σz

2
⊗ σx +Re[F

(+)
2 ]

Σ0 − Σz

2
⊗ σx

+Re[F
(+)
3 ]

Σx ⊗ σx − Σy ⊗ σy

2
+ Re[F

(+)
4 ]Σx ⊗ σ0

δH(+)
Im,p = Im[F

(+)
1 ]

Σ0 + Σz

2
⊗ σy + Im[F

(+)
2 ]

Σ0 − Σz

2
⊗ σy

−Im[F
(+)
3 ]

Σx ⊗ σy + Σy ⊗ σx

2
+ Im[F

(+)
4 ]Σy ⊗ σ0 ,

leading to the vector potential

eA(+)
=

�
eA

(+)
x , eA

(+)
y

�
, (13)
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Temperature-dependent resistivity
(new interlayer gauge field contribution)
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Summary

Electron-phonon resistivity in suspended bilayers

ρ ∝ T T ! T
(in)
BGfor

ρ ∝

T

n2

ρ ∝

T

n

q
∗
! 2kF

q
∗
! 2kF

Flex

Flex

In

if

if

Tension

strain ∼ 5 · 10
−5

ñ

ρ ∝ T

strain ∼

3 · 10−3

ñ
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Conclusions

In-plane VS flexural phonons

Flexural modes dominate 
the resistivity at low tension

ρ ∝

T 2

n

Monolayers

Bilayers

Fictitious gauge fields for 
generic deformations

New linear coupling 
for flexural modes

Resistivity linear in T: 
density dependence reveals tension

ρ ∝

T

nα
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Thank you!

E.Mariani@exeter.ac.uk
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!III" For q!!qT
!h" the relevant dispersion is "#q2, yield-

ing qT
!h"#$T and 1 /#kF

#T7/2 /kF
4.

!IV" For qT
!h"!q! the relevant dispersion is "#q, yielding

qT
!h"#T and 1 /#kF

#T9 /kF
4.

Finally, in the high-temperature limit T$TBG
!h" , corre-

sponding to qT
!h"$2kF, large angle scattering is possible for

q1, q2%kF, which yield the dominant contribution to the
scattering rate. In this regime &=1 and the total wave vector
Q is cut off at 2kF due to the on-shell condition while q is
limited by qT

!h". In the case of strong tension q!$qT
!h" the

suppression of the phononic DOS at low energy shifts the
dominant momenta to large values of order q#qT

!h". In con-
trast, small tension q!!qT

!h" tends to favor low momenta
down to q! or kF, whichever is smaller. We identify three
regimes.

!V" For q!!2kF!qT
!h" the relevant dispersion is "#q2,

yielding a dominant contribution for small wave numbers
down to q#kF resulting in 1 /#kF

#T2 /kF.
!VI" For 2kF!q!!qT

!h" the relevant dispersion is "#q2,
yielding a dominant contribution for small wave numbers
down to q#q! resulting in 1 /#kF

#T2kF.
!VII" For 2kF!qT

!h"!q! the relevant dispersion is "#q,
yielding qT

!h"#T and 1 /#kF
#T4kF.

It has to be noted that the T2 scaling in regime V stems
from the relevant q2 dispersion of flexural modes with low
tension and is not trivially obtained from the high-
temperature expansion of the two Bose distributions, unlike
in the case of in-plane phonons. In this case, in fact, the q1
and q2 momenta are still limited by qT

!h".
The corresponding dependence of the resistivity on tem-

perature and electron density in the seven regions above is
summarized in the diagram of Fig. 2.

By a more explicit evaluation of Eq. !28" we calculate the
scattering rate due to electron-phonon coupling for flexural
modes in the seven regimes above, yielding

1
#kF

% CG
!kBT"5/2

!'("1/2(4!2kF"2 in region I,

1
#kF

% CG
!kBT"7

!')"5)4!2kF"2 in region II,

1
#kF

% C
!kBT"7/2

!'("3/2(4!2kFQTF"2 in region III,

1
#kF

% C
!kBT"9

!')"7)4!2kFQTF"2 in region IV,

1
#kF

% C
!kBT"2

(42kF
in region V,

1
#kF

% C
!kBT"22kF

(4q!
2 in region VI,

1
#kF

% C
!kBT"42kF

)4!')"2 in region VII

with C%g1
2 / !2*"3+0

2'2v and CG%Cg2
2 /g1

2, up to numerical
prefactors of order one.

C. In-plane vs flexural phonons

Our analysis allows us to compare the contribution to the
resistivity of in-plane and flexural modes. In order to quan-
tify the importance of these two contributions at a given
temperature, it has to be pointed out that the Bloch-
Grüneisen temperatures for in-plane and flexural phonons
can be significantly different, in particular in the low-tension
regime where out-of-plane modes have a soft quadratic dis-
persion. For graphene one finds TBG

!l" %50ñ1/2 K and TBG
!t"

%0.7TBG
!l" while !in the absence of tension" TBG

!h" %0.4ñ K
with ñ=n /1012 cm−2 the rescaled electron density. In paral-
lel, with QGD%0.2·2kF, one has TGD

!l,t"%0.2TBG
!l,t" and TGD

!h"

%0.04TBG
!h" . In the absence of tension at T=TBG

!l" the estimates
above yield a ratio between the scattering rate due to flexural
and in-plane phonons of 2.5ñ−1/2 and for higher temperatures
the flexural modes will be even more dominant.

In practice, at the present electron concentrations for sus-
pended graphene samples, in the absence of tension the
flexural-phonon contribution to the resistivity should domi-
nate over the in-plane one at any temperature, showing a
crossover between a T5/2 to a T7/2 dependence around TGD

!h" ,
and between T7/2 and T2 around TBG

!h" . The main reason why
the effect of flexural modes does not appear in experiments is
due to the suppression of the flexural phonon contribution to
the resistivity by the sample-specific tension. Actually, due to
the negative thermal-expansion coefficient of graphene,35

tension is itself a temperature-dependent quantity. This sup-
pression leaves the in-plane contribution as the dominant
scattering mechanism, yielding a linear-T dependence com-
patible with experiments.
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FIG. 2. The dependence of the resistivity due to scattering off
flexural modes on temperature T and electron density n. The gray
area identifies the region q!%qT

!h" where the relevant flexural pho-
non dispersion is dominated by tension and "q

!h"%)q.
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When tension is present, in the experimentally relevant
regimes q!!2kF!qT

!h" and 2kF!q!!qT
!h" the contribution to

the resistivity from flexural phonons is approximated by

"#flex #
h

e210−9 g̃1
2

ñ + $̃
T̃2 !31"

with the rescaled tension $̃=$ /2%10−2 Kg s−2. The value
$̃=1 corresponds to the condition q!=2kF at the density ñ
=1. Comparing Eq. !25" and !31" we thus get

"#flex

"#in
#

1
20

T̃

ñ + $̃
. !32"

We can then estimate the minimal tension needed to suppress
the flexural contribution by imposing the ratio in Eq. !32" to
be smaller than unity at room temperature. Considering that
in typical current suspended samples ñ&1, this results in a
tension $̃#15, corresponding to a strain of about 10−3.
These estimates are reliable as long as we do not enter the
regime of very high tension 2kF!qT

!h"!q!, i.e., for $̃&3T̃,
which is usually easily fulfilled for T'TBG

!l" .
Thus rather weak tension is sufficient to suppress the flex-

ural contribution in favor of the in-plane one. This is true for
temperatures up to T̃c#20!ñ+ $̃" where the crossover be-
tween the in-plane-dominated to the flexural-phonon-
dominated resistivity takes place. The observation of the

crossover between these two regimes would provide infor-
mation about the otherwise unknown value of tension in the
sample. This prediction could be tested, for example, in
graphene samples mounted on break junctions where tension
can be controllably tuned or in flakes clamped on a single
side with an STM tip as a drain contact.

In Fig. 3 we plot the temperature-dependent component of
the resistivity "#="#in+"#flex according to Eqs. !25" and
!31". The combined contributions of in-plane and flexural
phonons are shown for different densities in the experimen-
tally relevant range. Even in the presence of tension on the
order of $̃=1, the contribution from flexural phonons can
still significantly affect the value of the resistivity. This re-
sults in a slight deviation from the purely linear-T depen-
dence due to in-plane modes. In this case, a residual density
dependence is observable, stemming from the regime q!

!2kF!qT
!h", in qualitative agreement with experiments on

suspended graphene.19 In contrast, the inset in Fig. 3 shows
the density-independent T-linear resistivity at larger tension
!$̃=20".

A quantitative understanding of the density dependence
observed in experiments would require the knowledge of the
sample-specific tension, as well as the inclusion of
temperature-dependent screening of charged impurities,29 of
Altshuler-Aronov corrections,30 and possibly of further non-
intrinsic electron-phonon coupling mechanisms !e.g., capaci-
tive coupling to a backgate as well as buckling". These issues
are beyond the scope of the present paper.

IV. CONCLUSIONS

In summary, the interplay between the electronic and
phononic degrees of freedom in suspended graphene mem-
branes offers a rich scenario which can be addressed in cur-
rent transport measurements.

Here we analyzed the contribution to the resistivity of
suspended graphene due to electron-phonon scattering. We
discussed the competition between acoustic in-plane and
flexural distortions in various temperature regimes. We fo-
cused on the intrinsic electron-phonon coupling in graph-
ene due to the interaction of electrons with elastic de-
formations, taking into account both the !screened" deforma-
tion potential and the fictitious !or synthetic" gauge-field
coupling. This should be appropriate when the graphene
membrane is flat on scales of the wavelength of those
phonons which dominate the temperature-dependent resis-
tivity. Further nonuniversal coupling mechanisms exist,
e.g., via the capacitive interaction of the membrane with
a back gate or the breaking of the reflection symmetry
!e.g., due to buckling". While we do not discuss these
in the present work, they yield a sample-specific linear
coupling for those flexural phonons whose wavelength
exceeds the typical length scale over which the mem-
brane deviates from a planar configuration. In the pre-
sence of tension, these phonons would result in a
T-dependent contribution to the resistivity analogous to in-
plane modes.

We find that, for the electron densities achievable in sus-
pended graphene, flexural phonons should dominate over in-
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FIG. 3. !Color online" The combined contributions to the resis-
tivity due to in-plane and flexural-phonons "# as a function of the
temperature T for three different electron densities ñ
=0.05,0.15,0.3 !dashed-dotted, dashed, and continuous line, re-
spectively". Here we assume a tension $̃=1 and a deformation po-
tential coupling g̃1=10. Inset: same plot as in the main figure but
for stronger tension $̃=20. Notice the almost perfect linear-T scal-
ing, independent of density.
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