

Electromechanical properties of suspended graphene membranes

Eros Mariani

Centre for Graphene Science University of Exeter (UK)

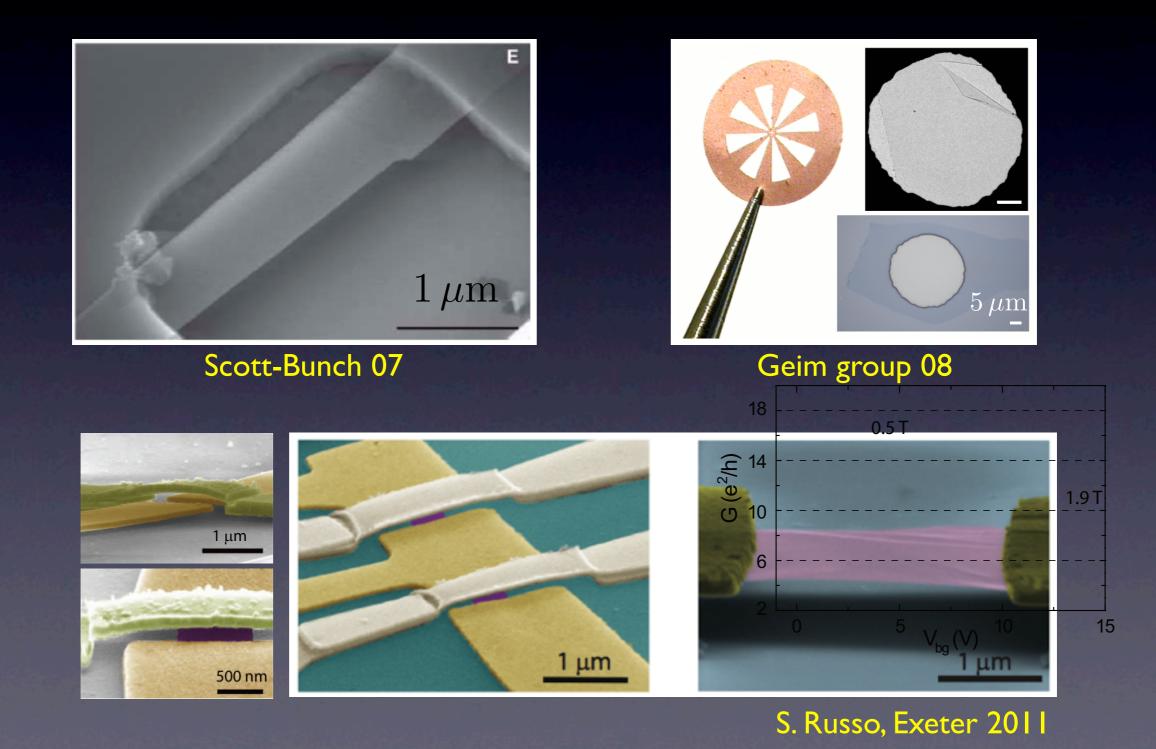
in collaboration with Felix von Oppen (FU Berlin) and Alex Pearce (Exeter)

Suspended graphene membranes

Graphene in between QED, hard and soft condensed matter

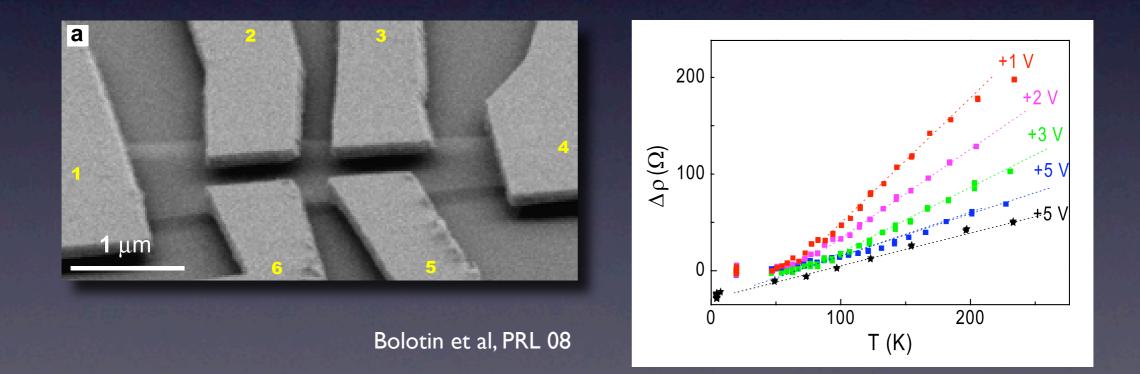
Suspended graphene membranes

Graphene in between QED, hard and soft condensed matter



Flexural phonons VS in-plane ones? How do phonons affect transport? Resistivity vs.T? Deformations in mono- and bilayer membranes?

Flexural phonons VS in-plane ones? How do phonons affect transport? Resistivity vs.T? Deformations in mono- and bilayer membranes?



See also Morozov 08 and Chen 08 in non-suspended samples

Техтвоок

 ρ

In-plane Phonon resistivity (in 2D)

ne² τ_{tr}

m

 $au_{
m tr}$

$$= \frac{2\pi}{\hbar} \int d\mathbf{q} |M_{\rm FI}|^2 (1 - \cos\theta) \,\delta\left(\epsilon_{\mathbf{k}+\mathbf{q}} - \epsilon_{\mathbf{k}} \pm \hbar\omega_{\mathbf{q}}\right) \\ d\mathbf{q} \sim q^2 \\ |M_{\rm FI}|^2 \sim q \,N_q^{(\rm Bose)} \sim q \,\frac{T}{\omega_q} \\ \delta(\dots) \sim \frac{1}{q} \\ (1 - \cos\theta) \sim q^2$$

$$T_{\rm BG}=\omega_{2k_{\rm F}}$$

Техтвоок

In-plane Phonon resistivity (in 2D)

 $= \frac{m}{ne^2 \tau_{\rm tr}} \qquad \frac{1}{\tau_{\rm tr}} = \frac{2\pi}{\hbar} \,.$

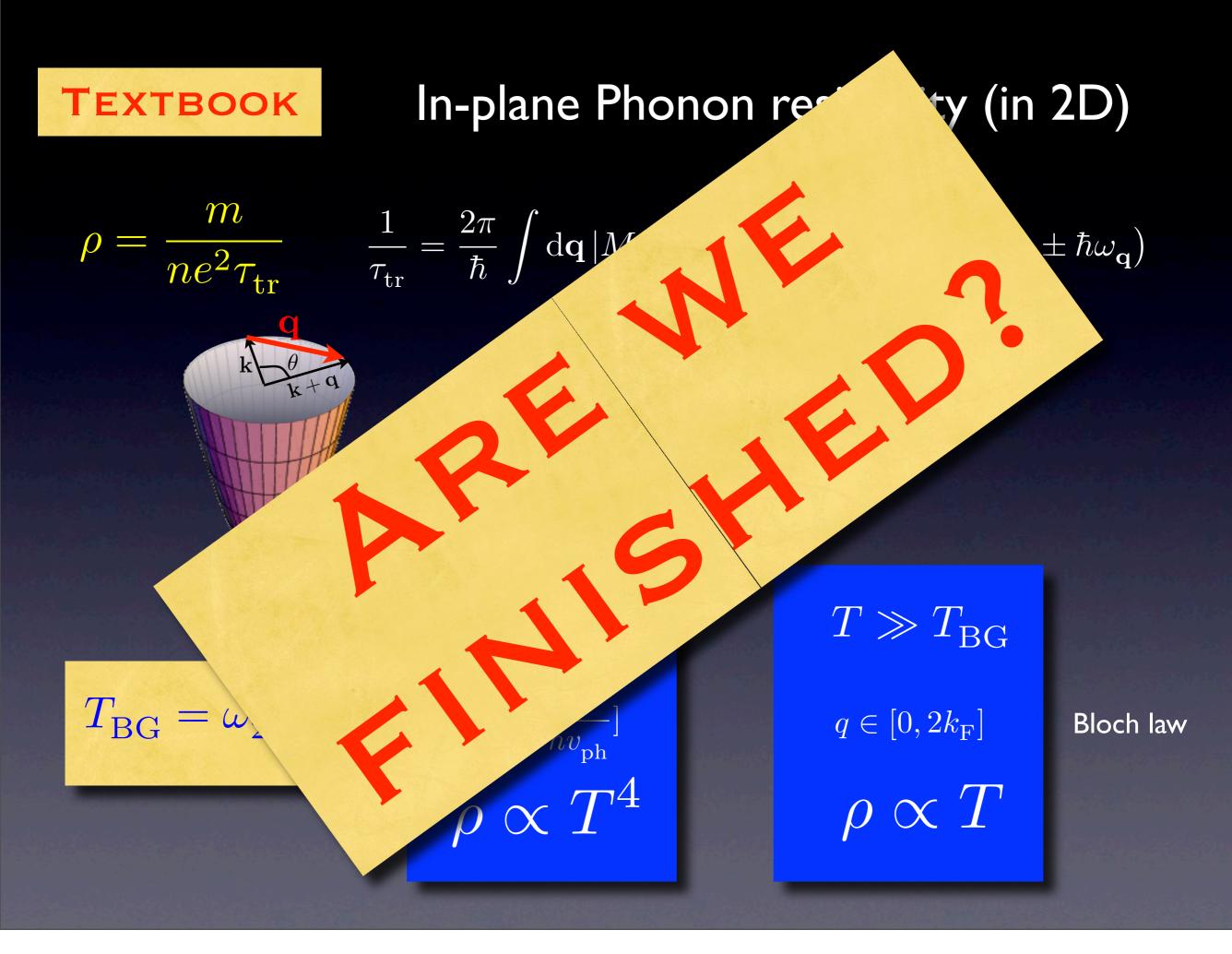
 $T_{\rm BG} = \omega_{2k_{\rm F}}$

$$\int d\mathbf{q} |M_{\rm FI}|^2 (1 - \cos\theta) \,\delta\left(\epsilon_{\mathbf{k}+\mathbf{q}} - \epsilon_{\mathbf{k}} \pm \hbar\omega_{\mathbf{q}}\right)$$
$$\frac{d\mathbf{q} \sim q^2}{|M_{\rm FI}|^2 \sim q \, N_q^{(\rm Bose)} \sim q \, \frac{T}{\omega_q}}$$
$$\delta(\dots) \sim \frac{1}{q}$$
$$(1 - \cos\theta) \sim q^2$$

 $T \ll T_{
m BG}$ $q \in [0, rac{T}{\hbar v_{
m ph}}]$ $ho \propto T^4$

 $T \gg T_{
m BG}$ $q \in [0, 2k_{
m F}]$ $ho \propto T$

Bloch law

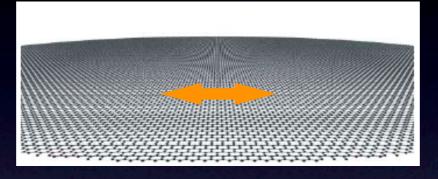


Phonons in graphene

Woods '00 Katsnelson '07 Castro-Neto '07

In-plane modes

Flexural modes



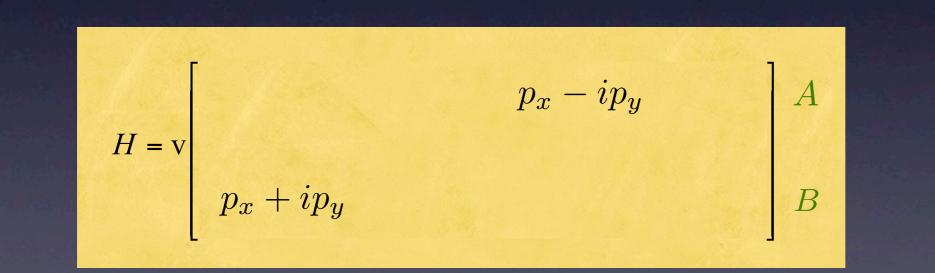
Hard to excite Good coupling to electrons

Soft to excite Weak coupling to electrons

Q?

How do they couple to electrons? What is their dispersion?

Electron-phonon coupling (basic mechanism)



Electron-phonon coupling

(basic mechanism)

variation of areas (and density) $ho
ightarrow
ho + \delta
ho$

 $\blacktriangleright \begin{array}{c} \textbf{Diagonal coupling} \\ H_{\rm e-ph}^{\rm (Def)} = \delta t_{\rm on-site} \, c_j^{\dagger} c_j \end{array}$

Membrane Distortions

Electron-phonon coupling

(basic mechanism)

variation of areas

(and density) $ho
ightarrow
ho + \delta
ho$

Diagonal coupling $H_{e-ph}^{(Def)} = \delta t_{on-site} c_j^{\dagger} c_j$

Membrane Distortions

Modified bond lenght, correction to hopping $t
ightarrow t + \delta t$

 $\blacktriangleright \begin{array}{l} \textbf{Off-diagonal coupling} \\ H_{\rm e-ph}^{\rm (Gauge)} = \delta t_{\rm hop} \, c_A^{\dagger} c_B \end{array}$

$$H = \mathbf{v} \begin{bmatrix} \delta t_{\text{on-site}} & p_x - ip_y + \delta t_{\text{hop}} \end{bmatrix} A \\ p_x + ip_y + \delta t_{\text{hop}} & \delta t_{\text{on-site}} \end{bmatrix} B \\ B \\ H = \Pi_z \otimes \sigma \cdot (\mathbf{p} - \frac{e}{-}\mathbf{A}) + V(\mathbf{r}) \end{bmatrix}$$
Bond-length variation (like a gauge field)
Deformation potential (screened)

C

Electron Phonon Coupling

Woods & Mahan 00 Suzuura & Ando '02 Vozmediano review 2010

$$\begin{split} H_{e-ph} &= \left(\begin{array}{cc} g_1(u_{xx}+u_{yy}) & g_2(2u_{xy}-i(u_{xx}-u_{yy})) \\ g_2(2u_{xy}+i(u_{xx}-u_{yy})) & g_1(u_{xx}+u_{yy}) \end{array} \right) \\ g_1 &\simeq 30 \, eV \\ g_2 &\simeq 1.5 \, eV \end{split} \begin{array}{c} f \\ \text{fictitious gauge field} & \text{Tr}[u_{ij}] = \frac{\delta S}{S} \end{array} \begin{array}{c} \text{relative area} \\ \text{variation} \end{array} \end{split}$$

Electron Phonon Coupling

Woods & Mahan 00 Suzuura & Ando '02 Vozmediano review 2010

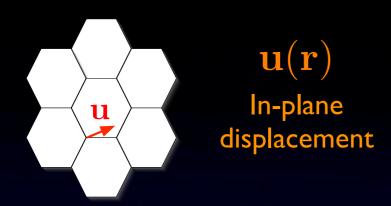
ιj

Electron Phonon Coupling

Woods & Mahan 00 Suzuura & Ando '02 Vozmediano review 2010

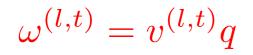
h

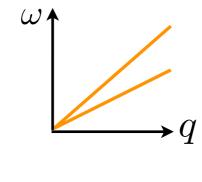
In-plane vs Flexural phonons



In-plane phonons

Linear dispersion





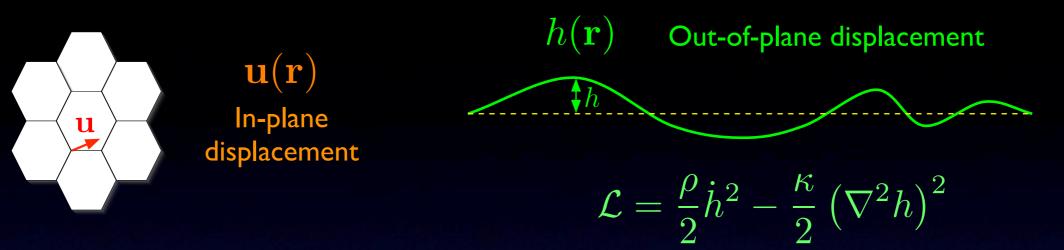
 ∇u

Linear coupling

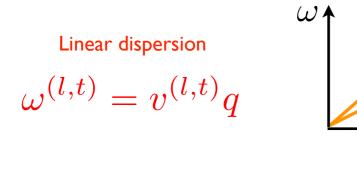
 $H_{e-ph} \propto u_{ij} \sim \nabla u$

Small DOS, Good coupling

In-plane vs Flexural phonons



In-plane phonons



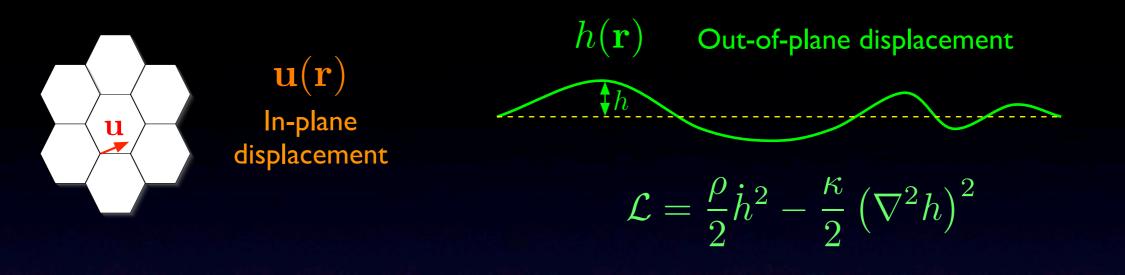
Linear coupling

 $H_{e-ph} \propto u_{ij} \sim \nabla u$

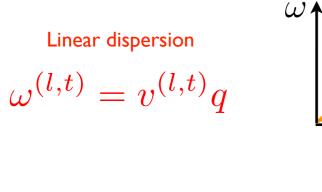
Small DOS, Good coupling

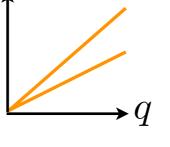
 ∇u

In-plane vs Flexural phonons



In-plane phonons



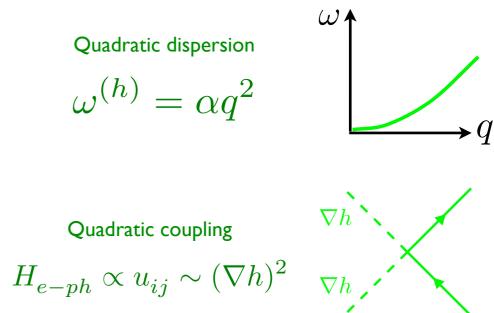


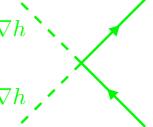
Linear coupling

 $H_{e-ph} \propto u_{ij} \sim \nabla u$

Small DOS, Good coupling

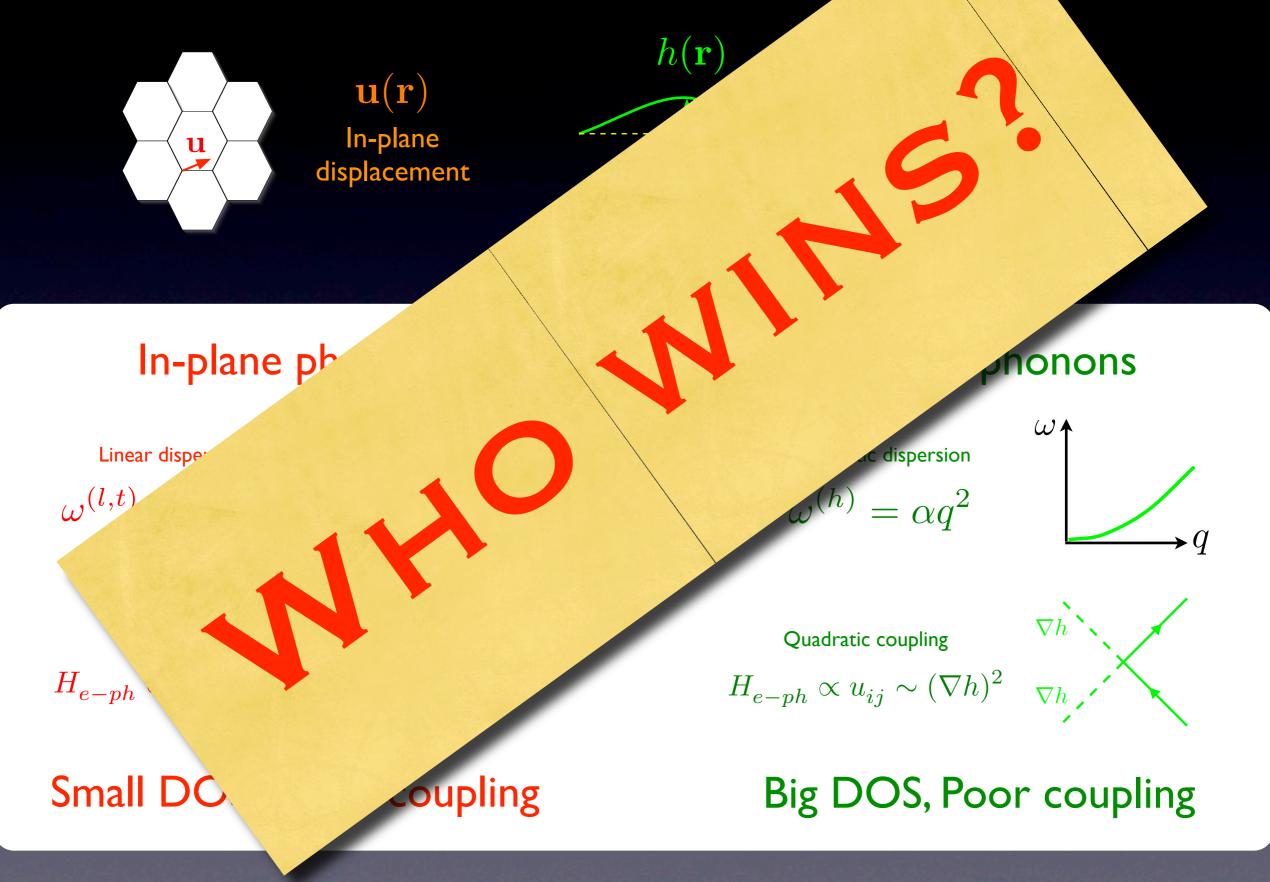
Flexural phonons



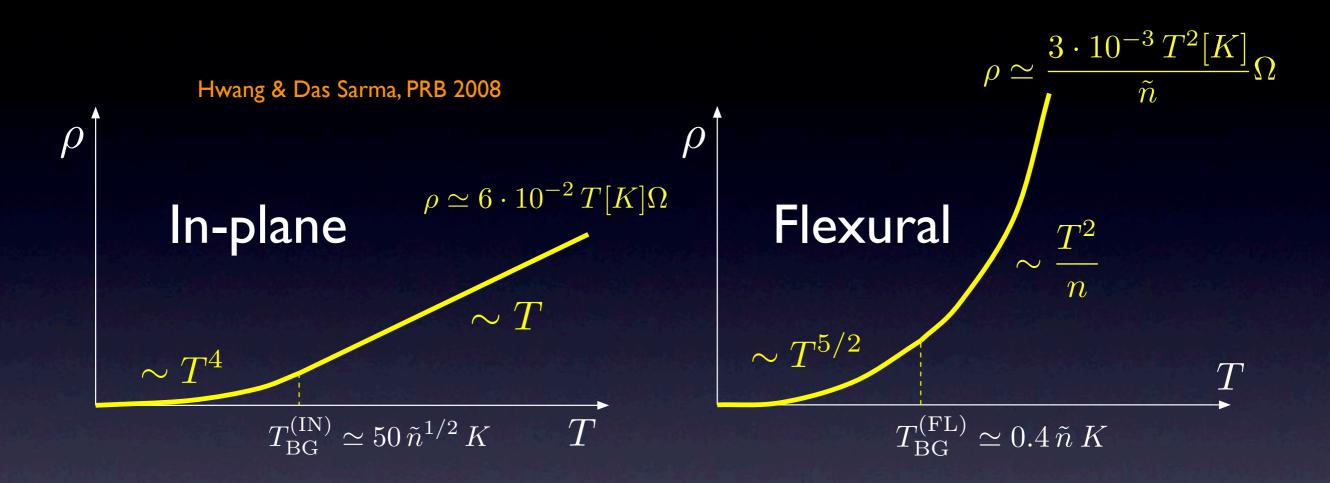


Big DOS, Poor coupling

In-plane vs Flexural phone



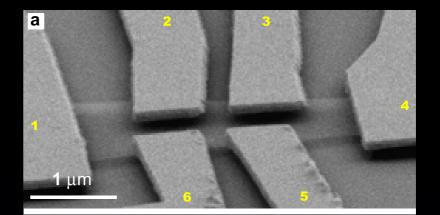
Temperature-dependent Resistivity



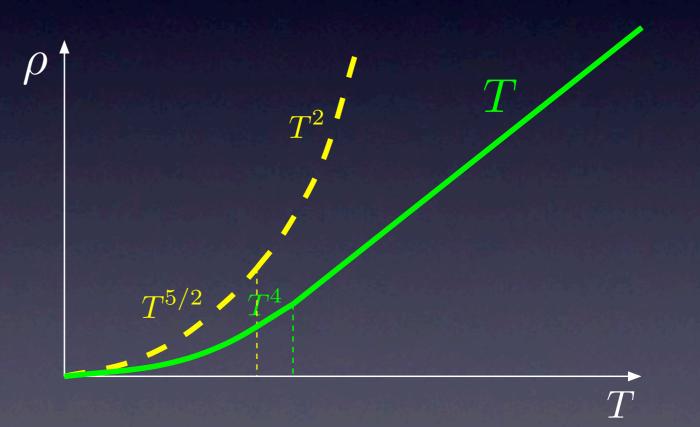
Flexural modes should dominate in-plane ones at present dopings

E. Mariani and F. von Oppen, Phys. Rev. Lett. **100**, 076801 (2008) Phys. Rev. Lett. **100**, 249901 (2008) Phys. Rev. B **82**, 195403 (2010)

Role of tension?

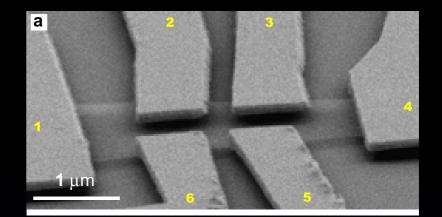


 $F_{\rm bend}
ightarrow rac{1}{2} \int {
m d} {f r} \, \kappa \, ($



E. Mariani and F. von Oppen, Phys. Rev. B 82, 195403 (2010)

Role of tension?

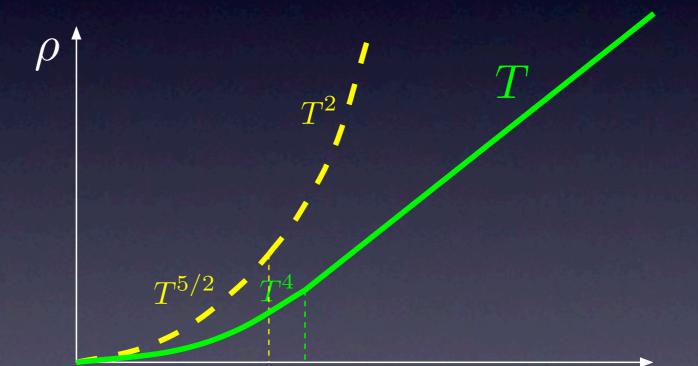


$$F_{\rm bend}
ightarrow rac{1}{2} \int \mathrm{d}\mathbf{r} \left[\kappa \left(\nabla^2 \rho^2 \mathbf{r}^2 \mathbf{r$$

Flexural dispersion stiffening

$$\omega_q \sim q^2 \to q$$

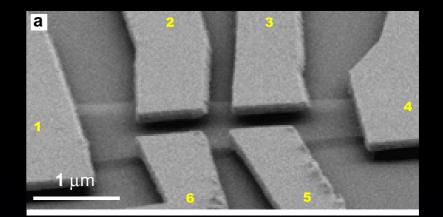
Reduced DOS



E. Mariani and F. von Oppen, Phys. Rev. B 82, 195403 (2010)

T

Role of tension?

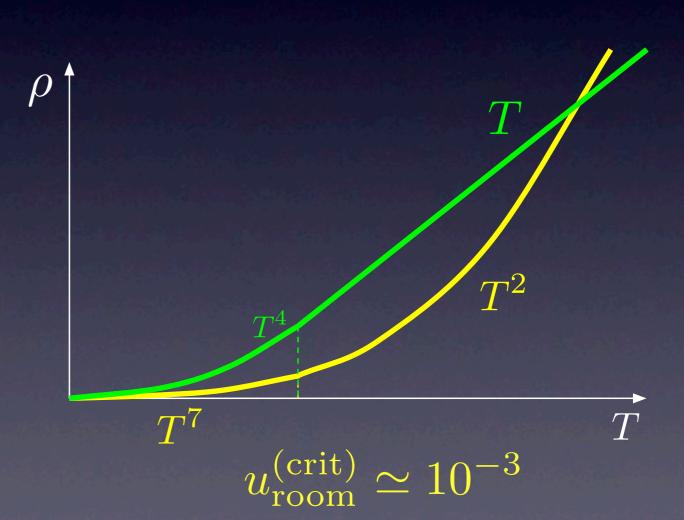


$$F_{\rm bend} \to \frac{1}{2} \int \mathrm{d}\mathbf{r} \left[\kappa \left(\nabla^2 \rho^2 \mathbf{r}^2 \mathbf$$

Flexural dispersion stiffening

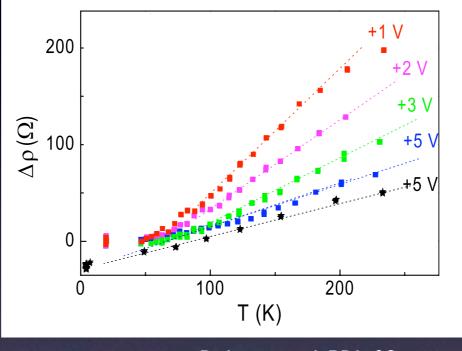
$$\omega_q \sim q^2 \to q$$

Reduced DOS



E. Mariani and F. von Oppen, Phys. Rev. B 82, 195403 (2010)

What experiments tell us



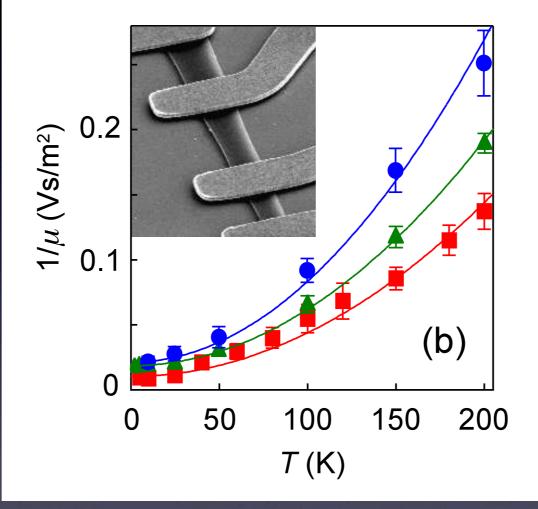
Bolotin et al, PRL 08

The linear T-dependence implies the presence of tension Crossover to T^2 would allow to know the strength of tension

E. Mariani and F. von Oppen, Phys. Rev. B 82, 195403 (2010)

One more thing...

One more thing...



E. Castro et al., Phys. Rev. Lett. 105, 266601 (2010)

Quadratic temperature dependence observed!

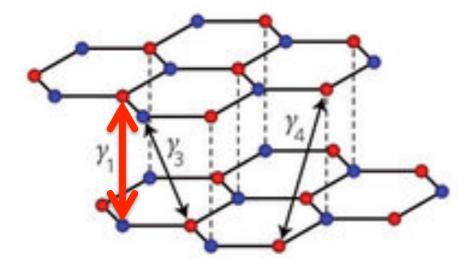
...and what about deformations in Bilayer Graphene Membranes?

EM, A. Pearce and F. von Oppen, arXiv:1110.2769

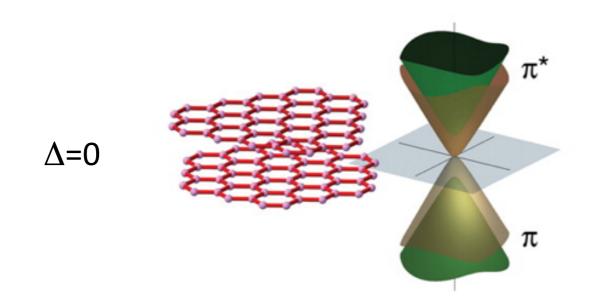
Electronic Properties of Graphene

(McCann PRL 2006)

Bilayer Graphene (dominant hopping)



$$\begin{aligned} \mathcal{H} &= \frac{1}{2m} \begin{bmatrix} 0 & (p^{\dagger})^2 \\ p^2 & 0 \end{bmatrix} + \frac{\Delta}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \\ \epsilon_{\vec{p}} &= \pm \frac{1}{2m} (p_x^2 + p_y^2) \end{aligned}$$



Massive Dirac Fermions

Tuneable bandgap Berry Phase of parabolic bands φ=2π

Electronic Properties of Graphene

(McCann PRL 2006)

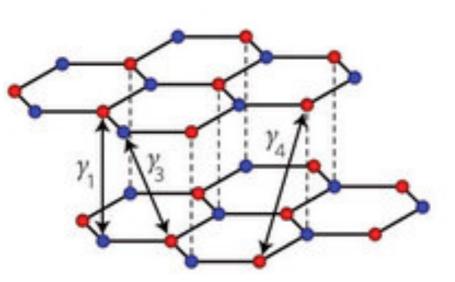
Bilayer Graphene (dominant hopping)



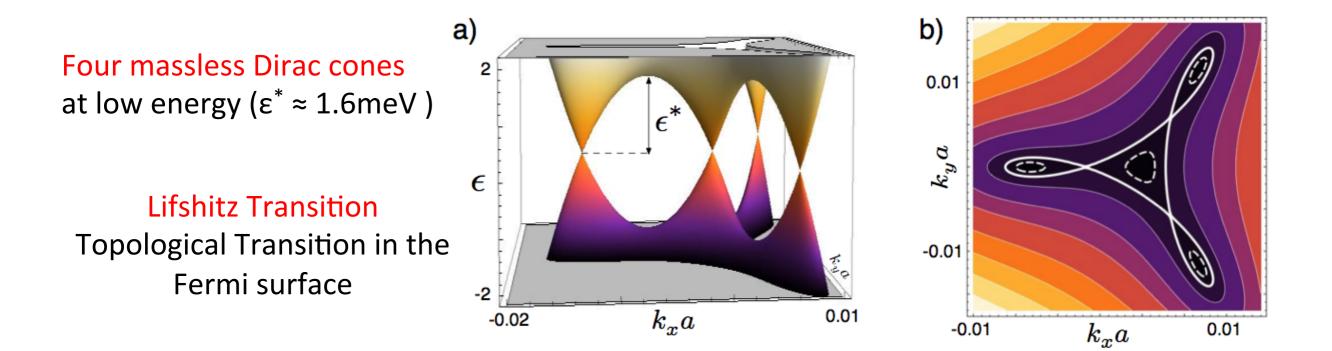
Low Energy bandstructure of Bilayer Graphene

Bilayer Graphene (subdominant hoppings) Trigonal warping

$$\mathcal{H} = rac{1}{2m} \left[egin{array}{cc} 0 & (p^{\dagger})^2 \ p^2 & 0 \end{array}
ight] + v_3 \left[egin{array}{cc} 0 & p \ p^{\dagger} & 0 \end{array}
ight]$$

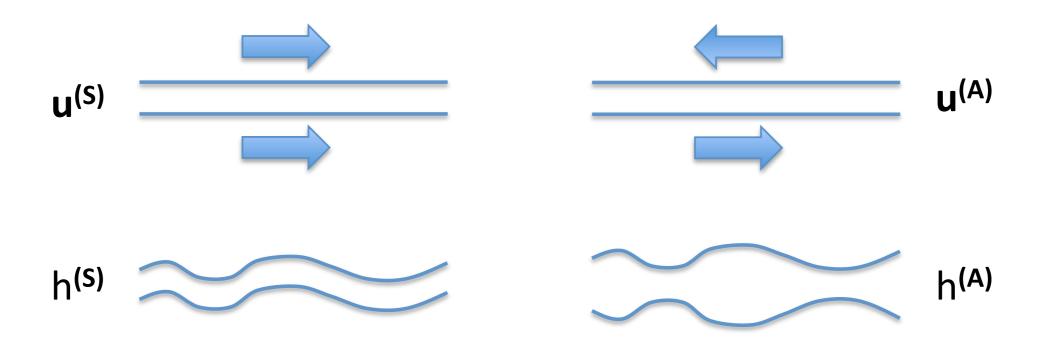


(McCann PRL 2006)



Effects in compressibility and transport measurements

Generic elastic deformations decomposed into symmetric and antisymmetric In-plane and Flexural deformations



(symmetric and antisymmetric in-plane and flexural channels)

$$H_{\rm eff}^{(+)} = \begin{pmatrix} D^{(S)} - D^{(A)} + \frac{\Delta}{2} & v_3 P_3^{(+)} \\ v_3 P_3^{(+)\dagger} & D^{(S)} + D^{(A)} - \frac{\Delta}{2} \end{pmatrix} + \frac{1}{\gamma} \begin{pmatrix} v_1 v_4 \left(P_4^{(+)\dagger} P_1^{(+)} + P_1^{(+)\dagger} P_4^{(+)} \right) & v_4^2 \left(P_4^{(+)\dagger} \right)^2 + v_1 v_2 P_1^{(+)\dagger} P_2^{(+)\dagger} \\ v_4^2 \left(P_4^{(+)} \right)^2 + v_1 v_2 P_2^{(+)} P_1^{(+)} & v_2 v_4 \left(P_2^{(+)} P_4^{(+)\dagger} + P_4^{(+)} P_2^{(+)\dagger} \right) \end{pmatrix}$$

$$\begin{split} & \text{Where } \mathsf{P}_{\mathsf{j}} = \mathsf{p} + \mathsf{F}_{\mathsf{j}} / \mathsf{v}_{\mathsf{j}} \\ & D_{l=1,2} = g \operatorname{Tr}[u_{ij}^{(l)}] \\ & F_{l=1,2}^{(\tau)} = \frac{3}{4} a \frac{\partial t_{l}}{\partial a} \left[u_{xx}^{(l)} - u_{yy}^{(l)} - i\tau \left(u_{xy}^{(l)} + u_{yx}^{(l)} \right) \right] \\ & F_{l=1,2}^{(\tau)} = \frac{3}{2\tilde{c}} \frac{\partial \gamma_{4}}{\partial a} \left[u_{xx}^{(l)} - u_{yy}^{(l)} - i\tau \left(u_{xy}^{(l)} + u_{yx}^{(l)} \right) \right] \\ & + \frac{a^{2}}{2} \left(u_{xx}^{(S)} - u_{yy}^{(S)} - i\tau \left(u_{xy}^{(S)} + u_{yx}^{(S)} \right) \right) \\ & + 2a \left(u_{y}^{(A)} - i\tau u_{x}^{(A)} \right) \\ & + 2a \left(u_{y}^{(A)} - i\tau u_{x}^{(A)} \right) \\ & F_{4}^{(\tau)} = \frac{3}{2\tilde{c}} \frac{\partial \gamma_{4}}{\partial \tilde{c}} \mathcal{F}[\mathbf{u}^{(S)}, -\mathbf{u}^{(A)}, -h^{(S)}, h^{(A)}] \\ & F_{\gamma} = -2 \frac{\partial \gamma}{\partial c} \left[h^{(A)} + \frac{\mathbf{u}^{(A)2}}{c} \right] . \end{split}$$

(symmetric and antisymmetric in-plane and flexural channels)

$$H_{\rm eff}^{(+)} = \begin{pmatrix} D^{(S)} - D^{(A)} + \frac{\Delta}{2} & v_3 P_3^{(+)} \\ v_3 P_3^{(+)\dagger} & D^{(S)} + D^{(A)} - \frac{\Delta}{2} \end{pmatrix} + \frac{1}{\gamma} \begin{pmatrix} v_1 v_4 \left(P_4^{(+)\dagger} P_1^{(+)} + P_1^{(+)\dagger} P_4^{(+)} \right) & v_4^2 \left(P_4^{(+)\dagger} \right)^2 + v_1 v_2 P_1^{(+)\dagger} P_2^{(+)\dagger} \\ v_4^2 \left(P_4^{(+)} \right)^2 + v_1 v_2 P_2^{(+)} P_1^{(+)} & v_2 v_4 \left(P_2^{(+)} P_4^{(+)\dagger} + P_4^{(+)} P_2^{(+)\dagger} \right) \end{pmatrix}$$

. . . .

Where
$$P_{j} = p + F_{j} / v_{j}$$

$$D_{l=1,2} = g \operatorname{Tr}[u_{ij}^{(l)}] \qquad \qquad \mathcal{F}[\mathbf{u}^{(S)}, \mathbf{u}^{(A)}, h^{(S)}, h^{(A)}] = ac \left(\partial_{y} h^{(S)} - i\tau \partial_{x} h^{(S)}\right)$$

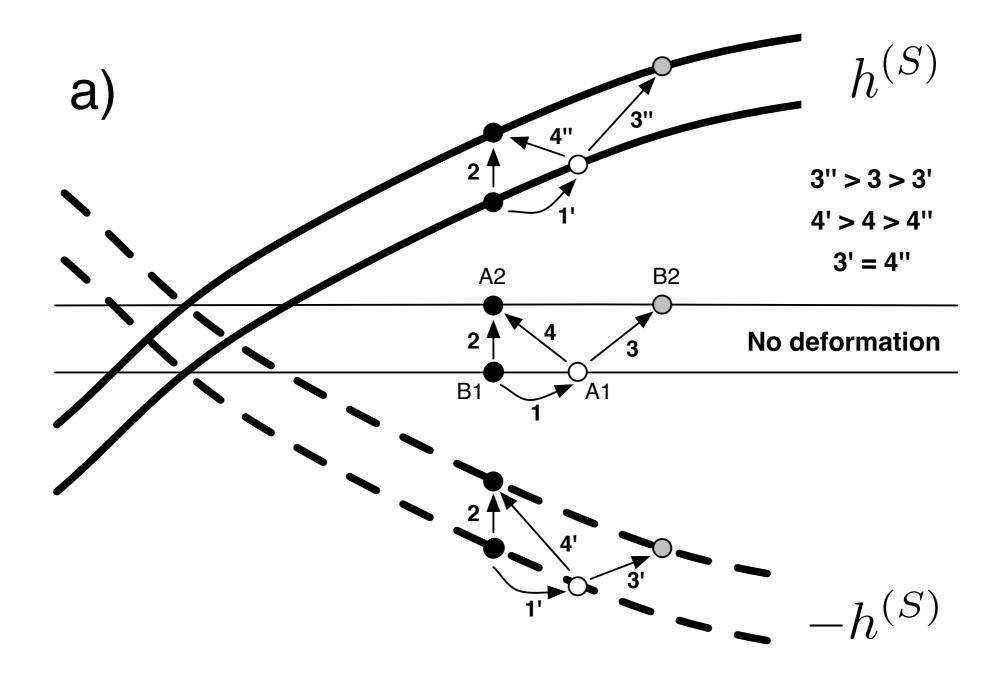
$$F_{l=1,2}^{(\tau)} = \frac{3}{4}a \frac{\partial t_{l}}{\partial a} \left[u_{xx}^{(l)} - u_{yy}^{(l)} - i\tau \left(u_{xy}^{(l)} + u_{yx}^{(l)}\right)\right] \qquad \qquad + \frac{a^{2}}{2} \left(u_{xx}^{(S)} - u_{yy}^{(S)} - i\tau \left(u_{xy}^{(S)} + u_{yx}^{(S)}\right)\right)$$

$$F_{3}^{(\tau)} = \frac{3}{2\tilde{c}} \frac{\partial \gamma_{3}}{\partial \tilde{c}} \mathcal{F}[\mathbf{u}^{(S)}, \mathbf{u}^{(A)}, h^{(S)}, h^{(A)}] \qquad \qquad + 2a \left(u_{y}^{(A)} - i\tau u_{x}^{(A)}\right) .$$

$$F_{4}^{(\tau)} = \frac{3}{2\tilde{c}} \frac{\partial \gamma_{4}}{\partial \tilde{c}} \mathcal{F}[\mathbf{u}^{(S)}, -\mathbf{u}^{(A)}, -h^{(S)}, h^{(A)}]$$

$$F_{\gamma} = -2 \frac{\partial \gamma}{\partial c} \left[h^{(A)} + \frac{\mathbf{u}^{(A)2}}{c}\right] \cdot \quad \text{Anti-symmetric deformation Potential opens band gap$$

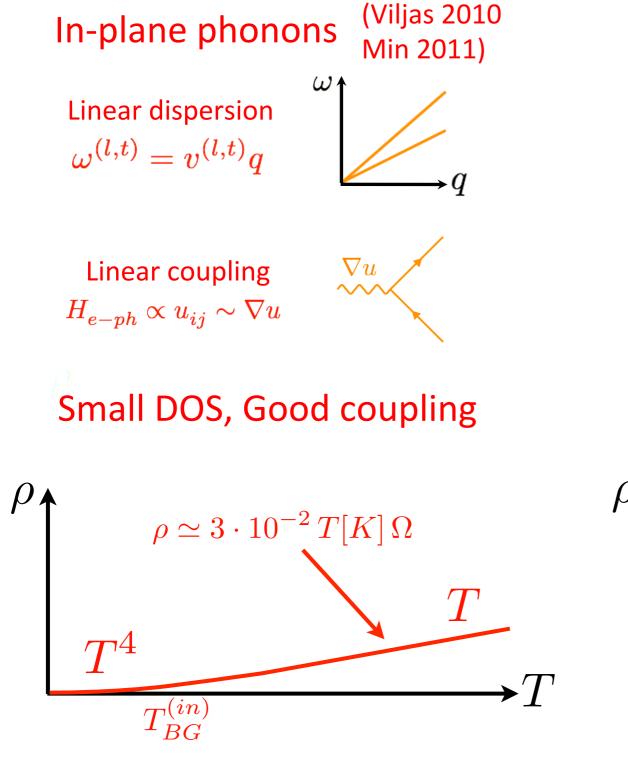
Unexpected linear coupling for flexural modes



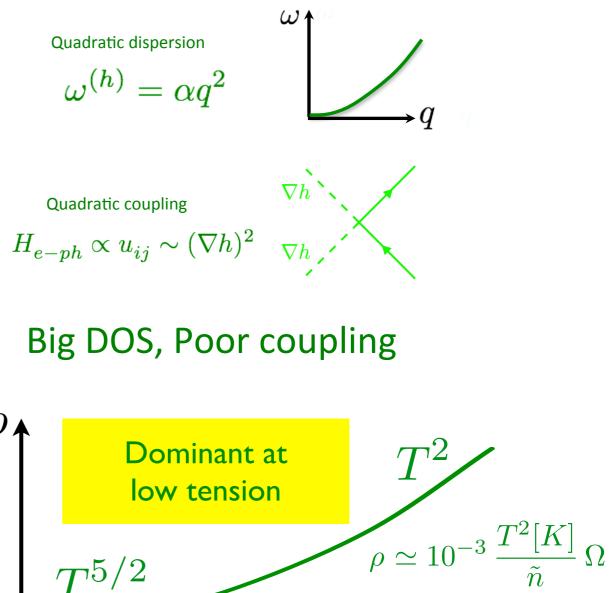
 $\mathbf{u}^{(2)}$

Temperature-dependent resistivity

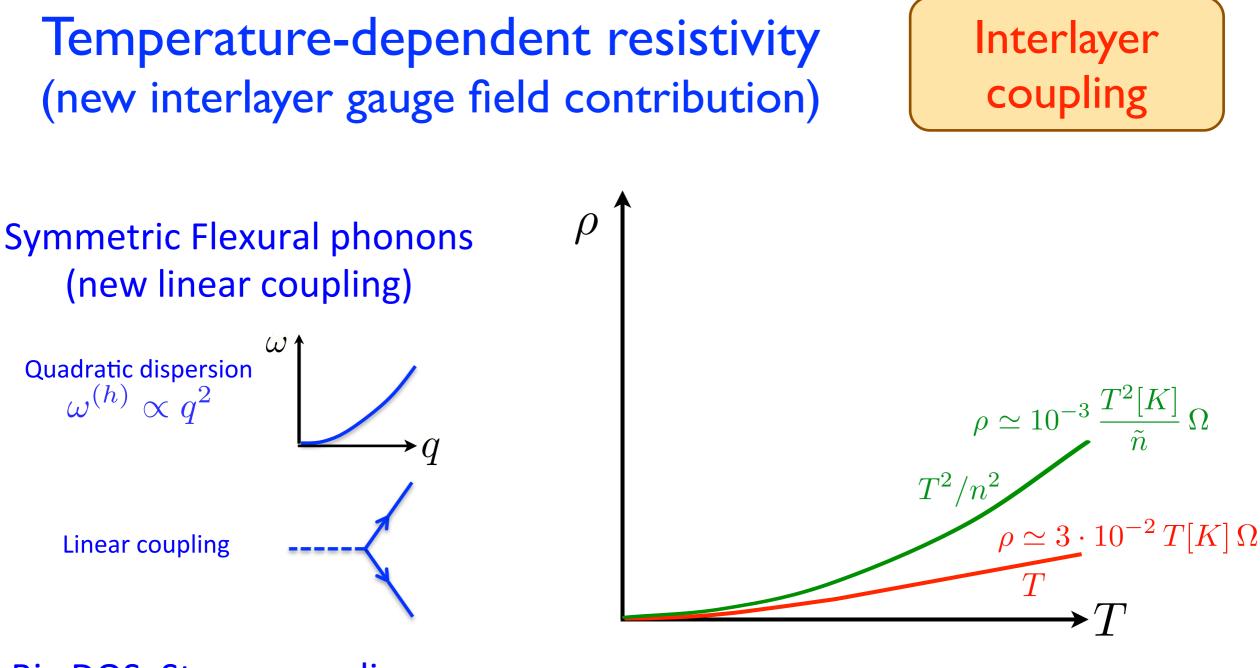
Intralayer coupling



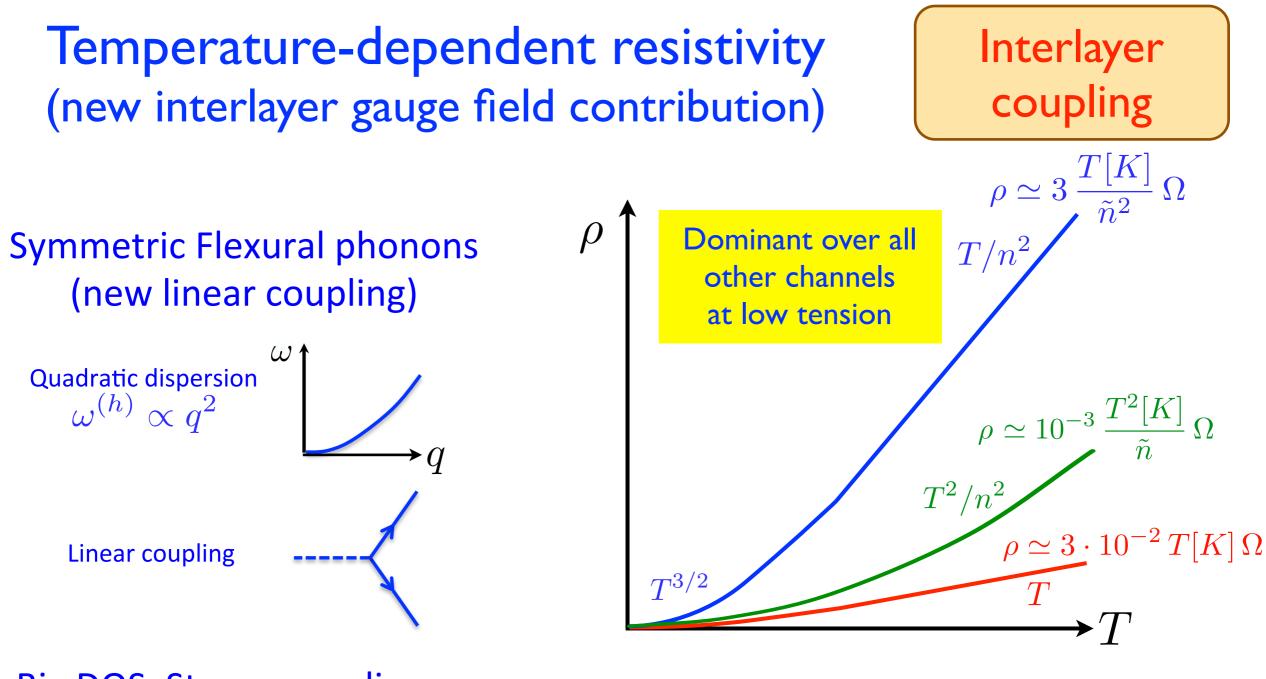
Flexural phonons (H. Ochoa 2011)



 $T_{BG}^{(F)}$

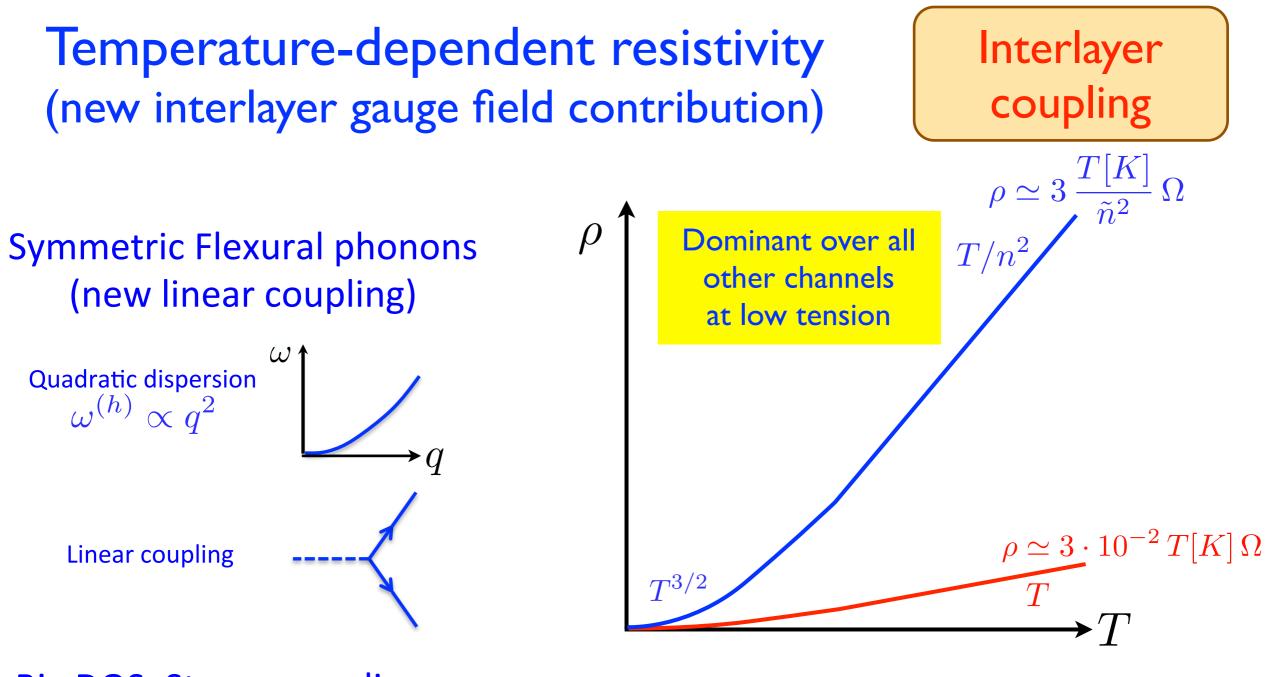


Big DOS, Strong coupling



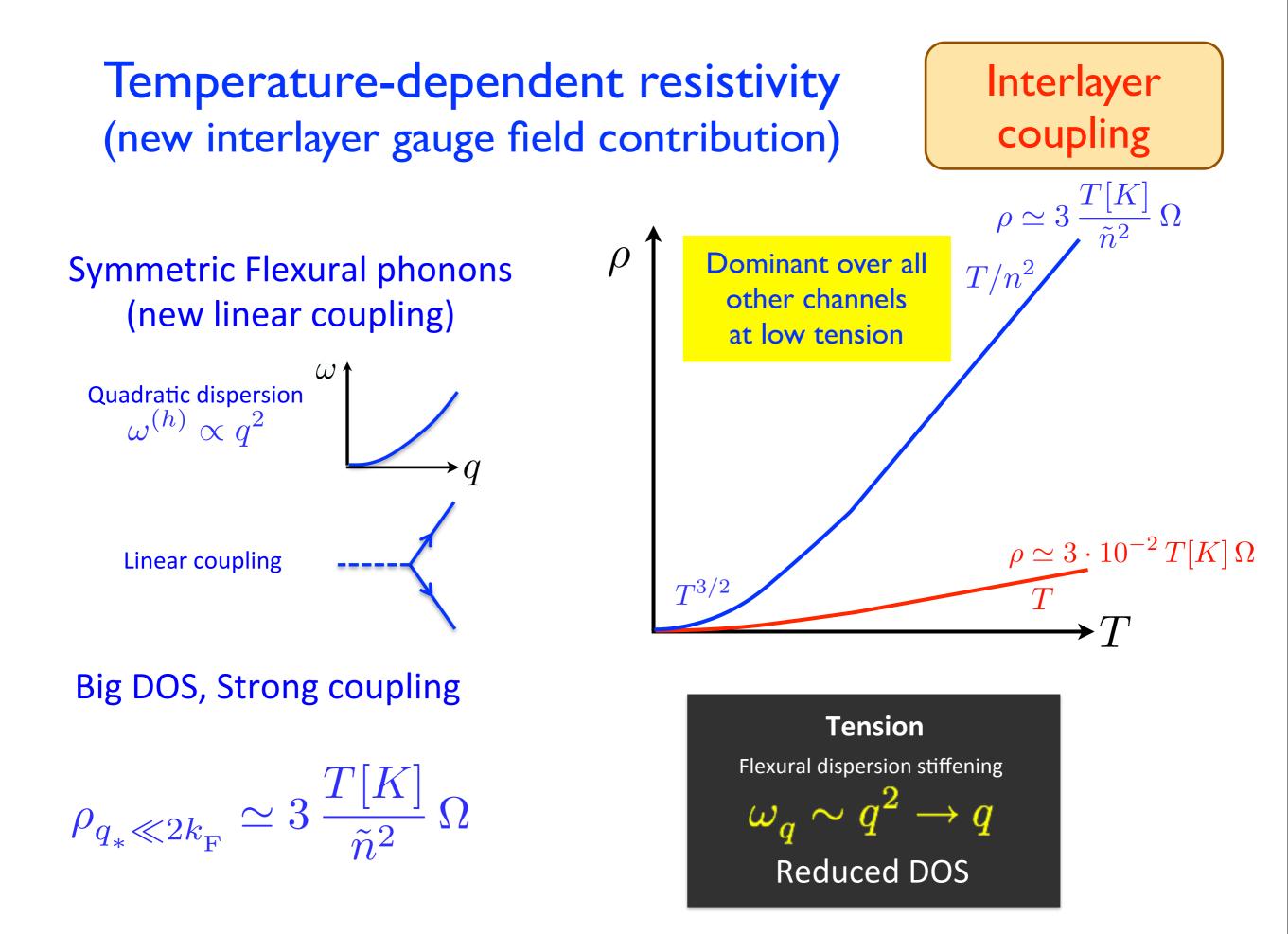
Big DOS, Strong coupling

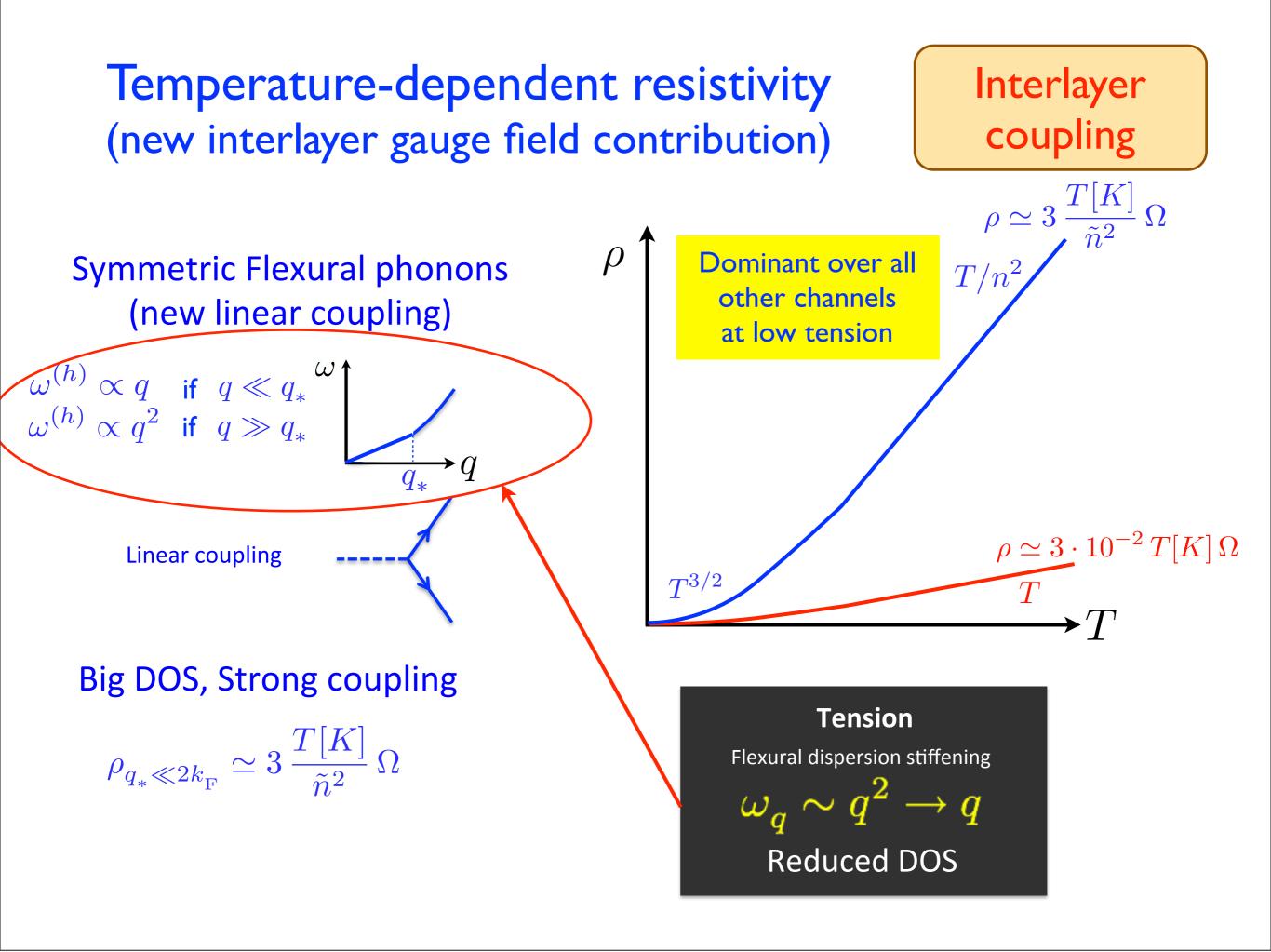
$$\rho_{q_*\ll 2k_{\rm F}}\simeq 3\,\frac{T[K]}{\tilde{n}^2}\,\Omega$$



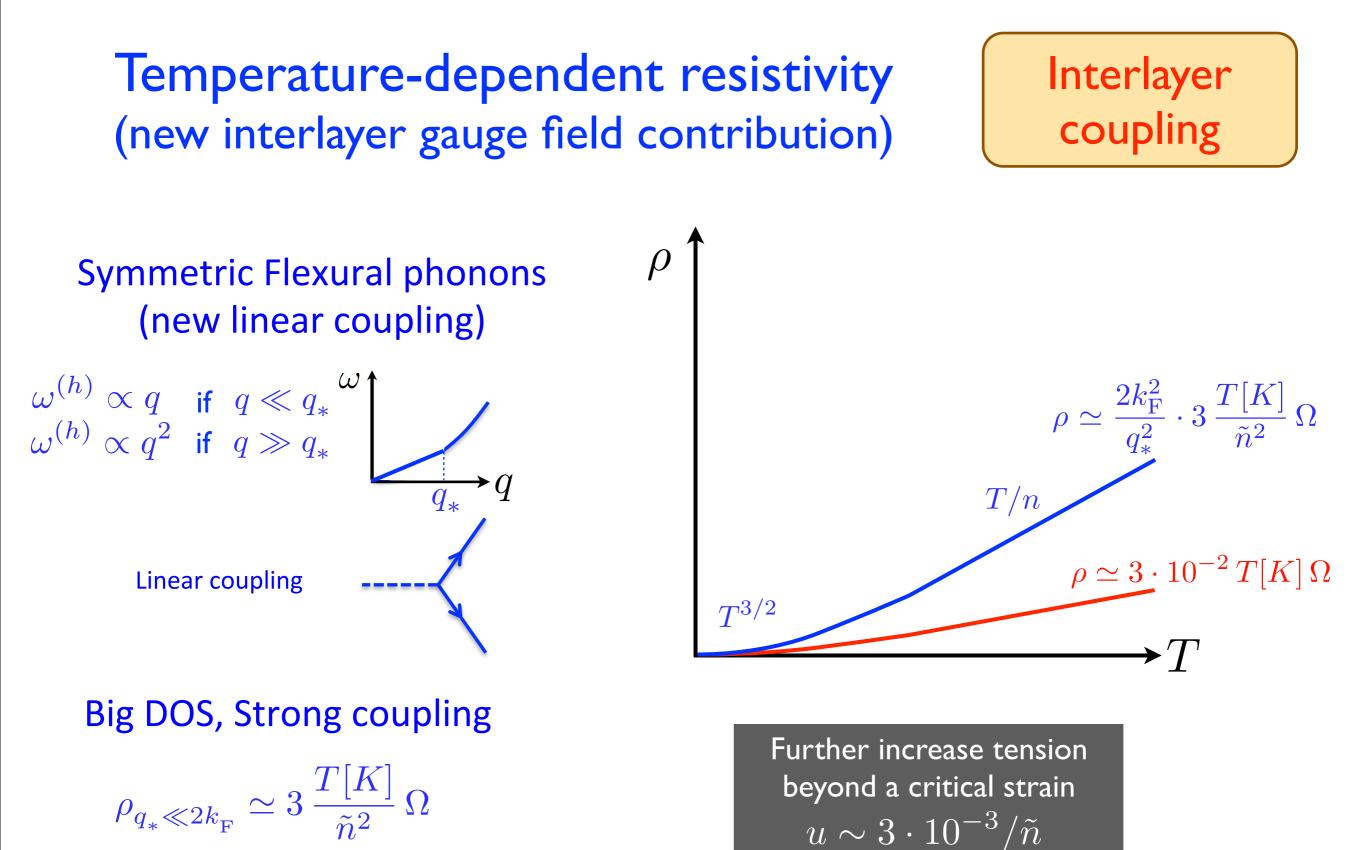
Big DOS, Strong coupling

$$\rho_{q_*\ll 2k_{\rm F}}\simeq 3\,\frac{T[K]}{\tilde{n}^2}\,\Omega$$





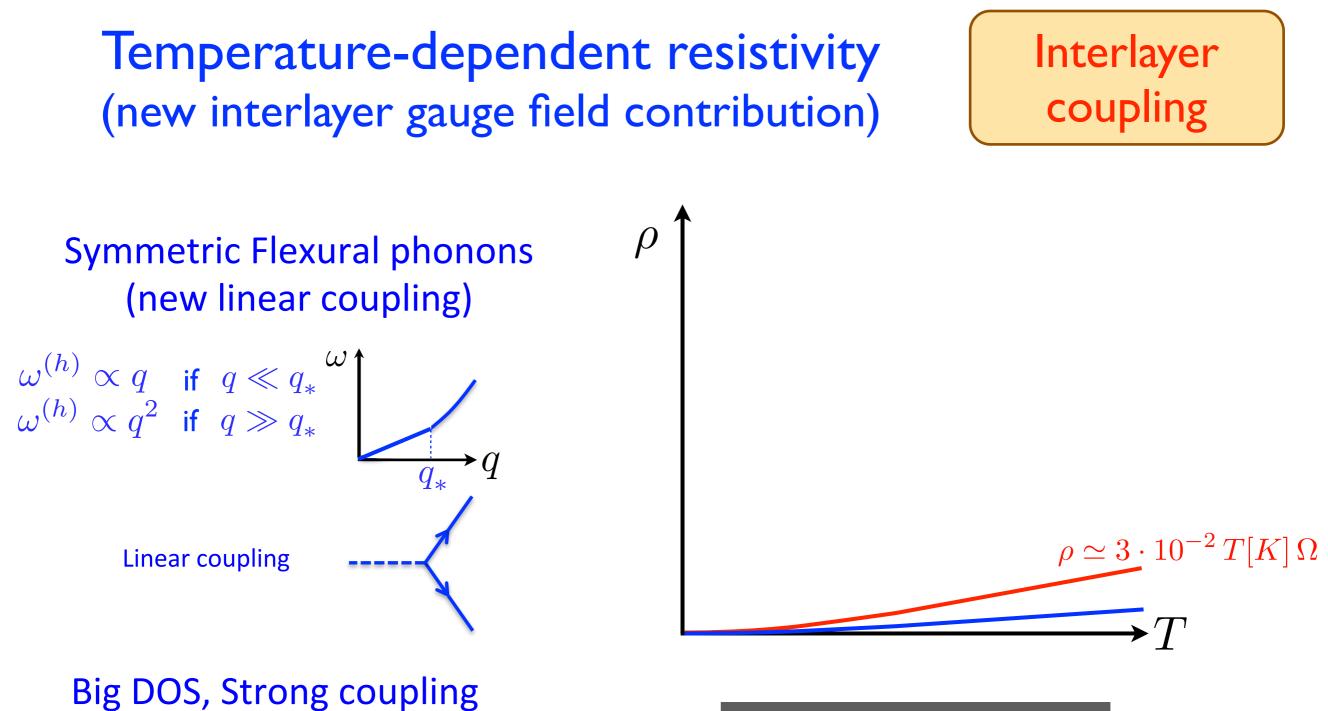




Flexural modes

suppressed!

$$\rho_{q_*\gg 2k_{\rm F}} \simeq \frac{2k_{\rm F}^2}{q_*^2} \cdot 3 \, \frac{T[K]}{\tilde{n}^2} \, \Omega$$



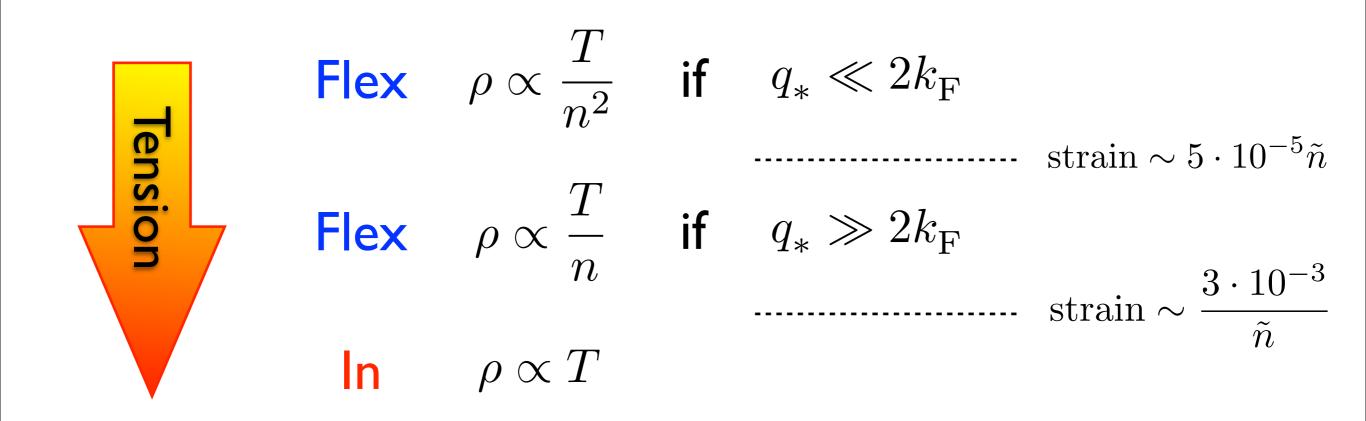
$$\begin{split} \rho_{q_*\ll 2k_{\mathrm{F}}} &\simeq 3\,\frac{T[K]}{\tilde{n}^2}\,\Omega\\ \rho_{q_*\gg 2k_{\mathrm{F}}} &\simeq \frac{2k_{\mathrm{F}}^2}{q_*^2}\cdot 3\,\frac{T[K]}{\tilde{n}^2}\,\Omega \end{split}$$

Further increase tension beyond a critical strain $u \sim 3 \cdot 10^{-3} / \tilde{n}$ Flexural modes suppressed!

Summary

Electron-phonon resistivity in suspended bilayers

$$p \propto T$$
 for $T \gg T_{
m BG}^{
m (in)}$



Conclusions

In-plane VS flexural phonons

Monolayers

Flexural modes dominate the resistivity at low tension

Fictitious gauge fields for generic deformations New linear coupling **Bilayers** for flexural modes Resistivity linear in T: $\rho \propto$ n^{lpha} density dependence reveals tension

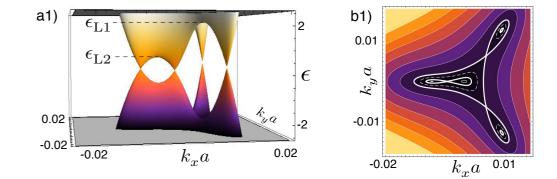
 $\rho \propto$

 \mathcal{N}

E.Mariani@exeter.ac.uk

Uniaxial strain, pure shear and sliding layers

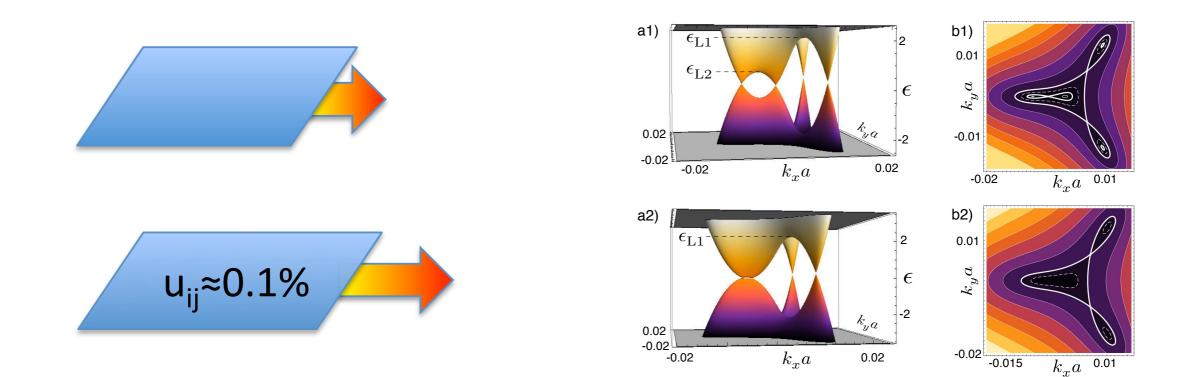
J.W. Son, PRB 2011 M. Mucha-Kruczynski PRB 2011



x

Uniaxial strain, pure shear and sliding layers

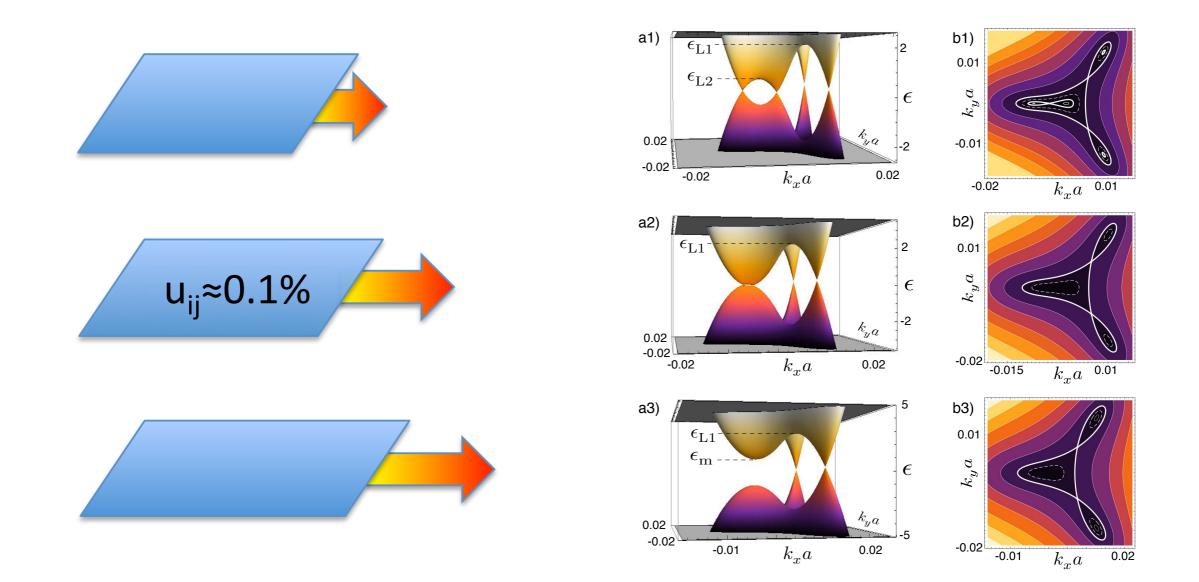
J.W. Son, PRB 2011 M. Mucha-Kruczynski PRB 2011



x

Uniaxial strain, pure shear and sliding layers

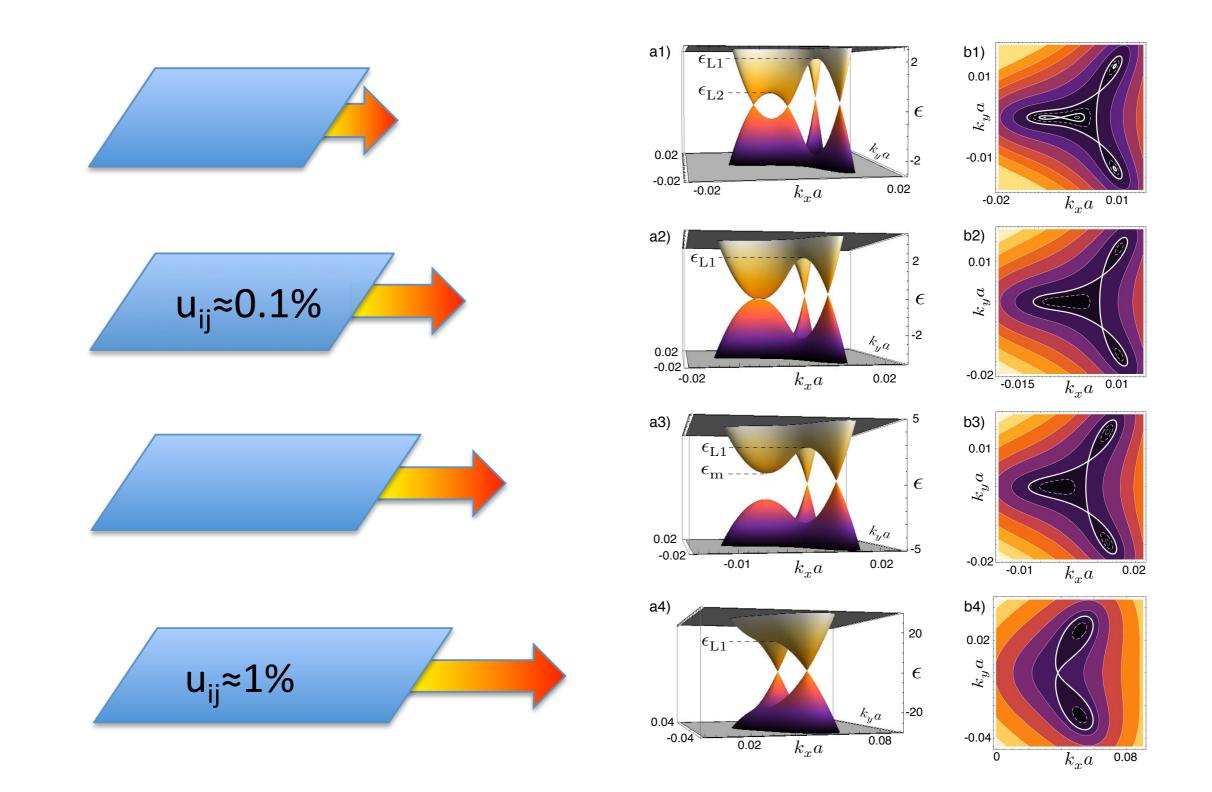
J.W. Son, PRB 2011 M. Mucha-Kruczynski PRB 2011



x

Uniaxial strain, pure shear and sliding layers

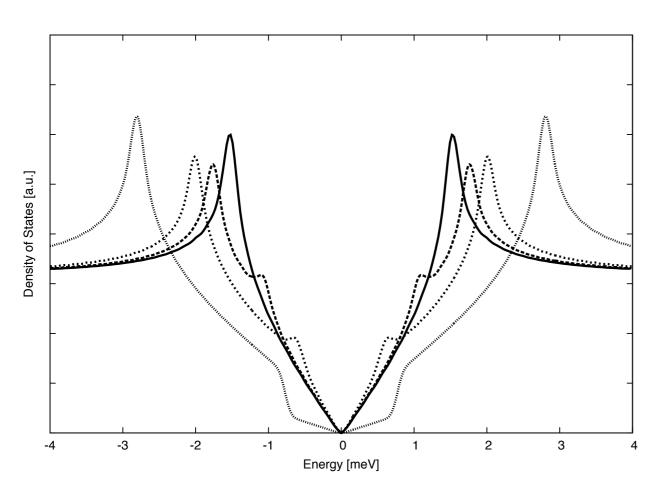
J.W. Son, PRB 2011 M. Mucha-Kruczynski PRB 2011

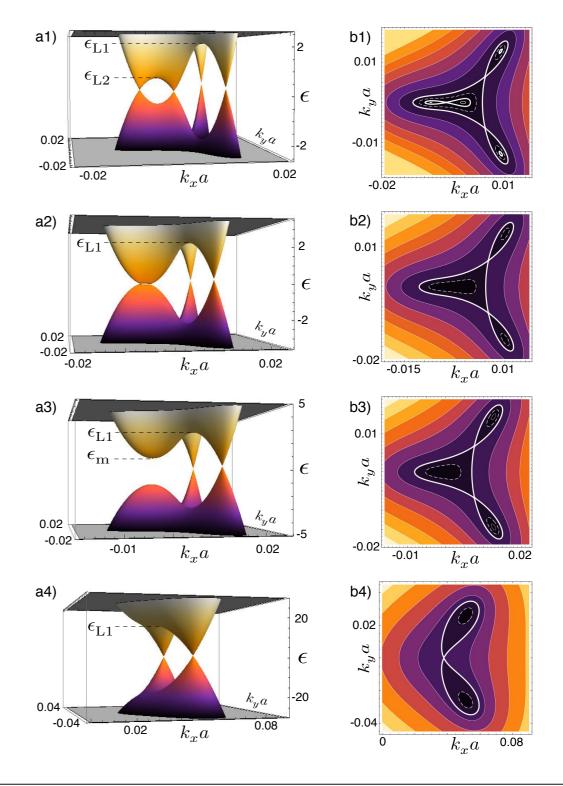


Uniaxial strain, pure shear and sliding layers

J.W. Son, PRB 2011 M. Mucha-Kruczynski PRB 2011

- Dramatic changes in the bandstructure
- Dirac points drift with strain annihilation of two Dirac points!
- Tuneable Lifshitz transition





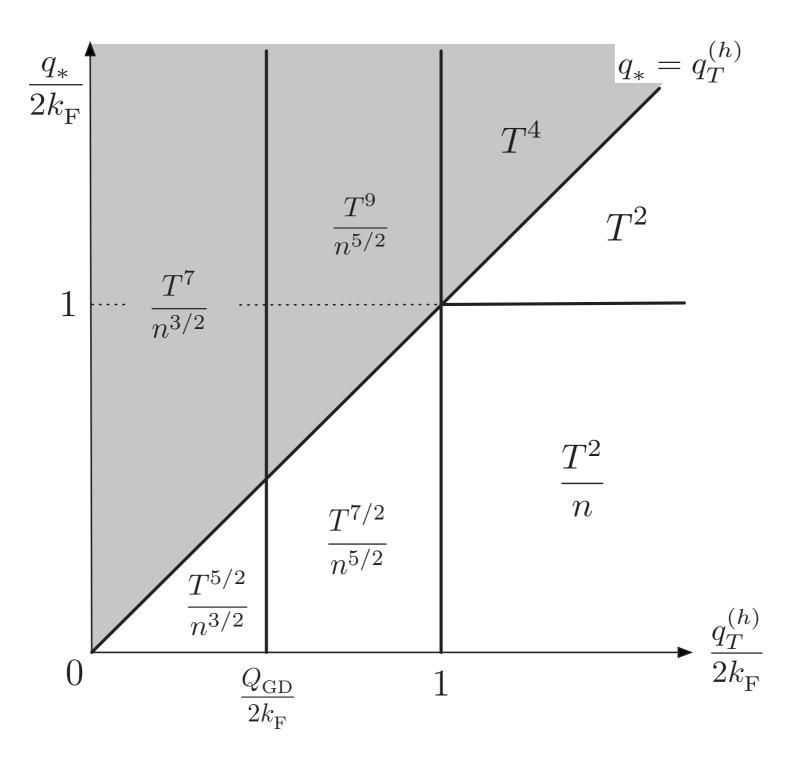


FIG. 2. The dependence of the resistivity due to scattering off flexural modes on temperature *T* and electron density *n*. The gray area identifies the region $q_* > q_T^{(h)}$ where the relevant flexural phonon dispersion is dominated by tension and $\omega_{\mathbf{q}}^{(h)} \simeq \alpha q$.

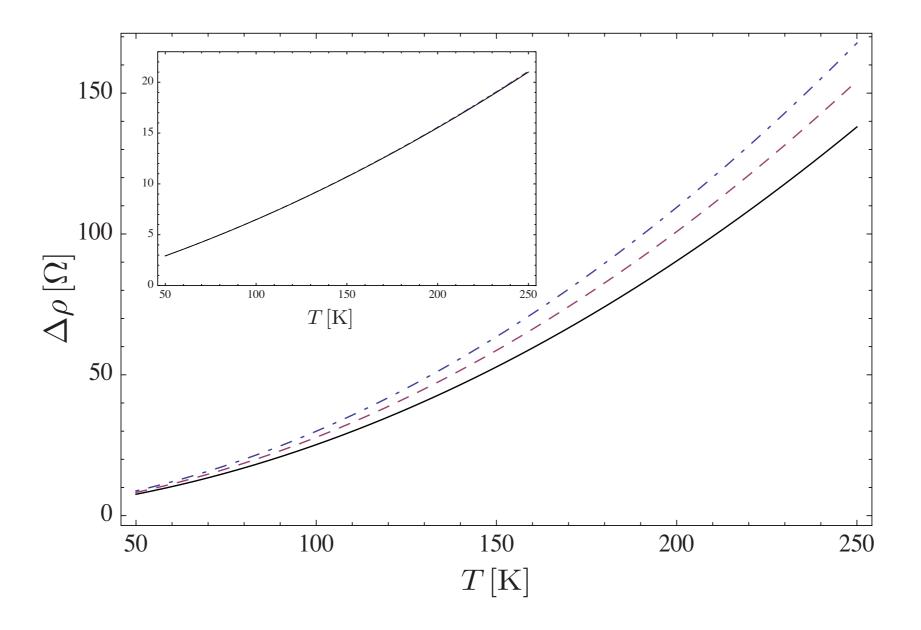


FIG. 3. (Color online) The combined contributions to the resistivity due to in-plane and flexural-phonons $\Delta \rho$ as a function of the temperature *T* for three different electron densities \tilde{n} =0.05,0.15,0.3 (dashed-dotted, dashed, and continuous line, respectively). Here we assume a tension $\tilde{\gamma}=1$ and a deformation potential coupling $\tilde{g}_1=10$. Inset: same plot as in the main figure but for stronger tension $\tilde{\gamma}=20$. Notice the almost perfect linear-*T* scaling, independent of density.