KAVLI 2012

Curved graphene revisited María A. H. Vozmediano Instituto de Ciencia de Materiales de Madrid CSIC

A. Cano
E. V. Castro
J. González,
F. Guinea
M. I. Katsnelson,
M. P. López-Sancho,
J. L. Mañes,
T. Stauber
M. Sturla

This work:

F. de Juan, M. Sturla

F. de Juan, A. Cortijo, A. G. Grushin, B. Valenzuela

Summary

- Fermi velocity is the only parameter in the continuum model.
- Energy dependence: disorder and interactions.
- Space dependence: ripples, strain.
- Reconciling the GR and TB approaches.
- Homework for the experimentalists.

Artistic view of Dirac cones from Manchester's group

Summary of graphene features

• The electronic properties described by 2D massless spinors.

Not a tight-binding feature: C_3 symmetry+ low energy.

 Spinor structure given by the two sublattices A and B

$$H = v_{F} \int d^{2}x \, \overline{\Psi}(\mathbf{x}) \sigma^{\mu} \partial_{\mu} \Psi(\mathbf{x})$$

- They come in two flavors associated to the two Fermi points (related by time reversal symmetry)
- Real spin did not play much a role until the recent advent of the topological insulators

The Fermi velocity is the only free parameter in the continuum model. All observable quantities depend on it.

Topological stability of the Fermi points

J. Mañes , F. Guinea, MAHV PRB07

Graphene and multilayer with ABC stacking: Fermi points protected by discrete TI invariance

$$H(K+k)$$

H defines a map from the circle |k|=R to 2x2 Hamiltonians $H = \vec{h} \cdot \vec{\sigma}$

Fermi points are zeroes of the determinant. A perturbation will open a gap if the loop $k = Re^{i\theta} \rightarrow (h_x, h_y, h_z) = R(\cos\theta, \sin\theta, 0).$

is contractible in the space of hamiltonians with non-vanishing determinant. If TI holds this space is homeomorphic to R^2 -{0}.

$$\pi_1(R^2 - \{0\}) = \pi_1(S^1) = Z$$

Fermi points robust to lattice deformations and interactions preserving TI.

Coulomb interactions: Graphene vs QED

$$L = \int d^2 r \, \mathrm{dt} \, \overline{\psi}(\mathbf{r}, t) \gamma^{\mu} (\partial_{\mu} - i e A_{\mu}) \psi(\mathbf{r}, t)$$

Non-relativistic QED (2+1)?

$$j^{\mu} \sim (\overline{\psi} \gamma^{0} \psi , v \overline{\psi} \gamma^{0} \psi)$$

The Fermi velocity

It plays the same role as the effective mass in usual 2DEG

From cyclotron mass-Suspended. Clean. (Elias et al Nat. Phys. 2011)

From ARPES. Epitaxial (Lanzara's group PNAS 2011)

Energy dependent!

Coulomb interactions make it grow at lower energies. Disorder does the opposite. If you see it constant as decreasing energies it intrinsically grows.

Also space dependent?

Graphene as a bridge between high and low energy physics

María A. H. Vozmediano Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas GRAPHENE

The running of the constants

 $\alpha_{QED} =$ $\alpha_{G} =$ Renormalize E->0 Downwards Upwards Infrared stable. QED is probably "trivial" free fixed point. Graphene runs to $\alpha_{\text{QED.}}$

news & views

nature

physics

Renormalization is not just numerical correction!

Curved and strained graphene

Artistic

Low, Guinea, Katsnelson 2011

Graphene wrinkle, Sun et al, Nanotec. (09)

Atomically resolved STM image of a monolayer of graphene on SiC(IIT).

Controlling strain

"Controlled ripple texturing of suspended graphene and ultrathin graphite membranes" Bao *et al.*, Nat. Nanotech. **4** 562 (2009)

"Impermeable atomic membranes from graphene sheets" Scott Bunch *et al.*, Nanolett. **8**, 2458 (2008)

Introducing Nonuniform Strain to Graphene Using Dielectric Nanopillars"

(cond-mat/1106.1507 Tomori et al.)

- Graphene bubbles with controllable curvature" (Cond-mat/1108.1701, Manchester group)
- "Topological properties of artificial graphene assembled by atom manipulation", where they
 produced atomically engineered strains. (Manoharan group, APS 2011)
- And the list goes on...

Effective gauge fields (from tight binding)

$$H = \begin{pmatrix} 0 & t_1 e^{i\vec{k}_1\vec{a}_1} + t_2 e^{-i\vec{k}_2\vec{a}_2} + t_3 e^{-i\vec{k}_3\vec{a}_3} & 0 \\ t_1 e^{-i\vec{k}_1\vec{a}_1} + t_2 e^{-i\vec{k}_2\vec{a}_2} + t_3 e^{-i\vec{k}_3\vec{a}_3} & 0 \end{pmatrix} \approx \begin{pmatrix} 0 & \frac{3\bar{t}a}{2} \left(k_x + ik_y\right) + \Delta t \\ \frac{3\bar{t}a}{2} \left(k_x + ik_y\right) + \Delta t & 0 \end{pmatrix}$$

Courtesy of F. Guinea

A modulation of the hoppings leads to a term which modifies the momentum: an effective gauge field. The induced "magnetic" fields have opposite sign at the two corners of the Brillouin Zone.

Model for curved graphene: QFT in curved space

Dirac in curved space

We can include curvature effects by coupling the Dirac equation to a curved space

$$\gamma^{a} e^{\mu}_{a} \left(\partial_{\mu} - \Omega_{\mu}(x) \right) \psi = E \Psi$$

Need a metric and a "tetrad".

$$e^a_{\mu}e^b_{\nu}\eta_{ab} = g_{\mu\nu}$$

Generate r-dependent Dirac matrices and an effective "gauge" field.

$$\Omega_{\mu} = \frac{1}{4} \gamma^{a} \gamma^{b} e_{a;\mu}^{\nu} e_{b\nu}$$

Effects of the curvature

1. The curved gamma matrices:

$$\gamma^{\mu}(r) = \gamma^{a} e_{a}^{\mu}(r)$$

$$H = iv_F \left(\sigma^1(r) \partial_1 + \sigma^2(r) \partial_2 \right) \equiv i(v_1(r) \sigma^1 \partial_1 + v_2(r) \sigma^2 \partial_2)$$

Can be seen as a position-dependent Fermi velocity

2. The spin connection:

- It can be seen as an effective gauge field. It is constructed with derivatives of the metric and depends on the γ matrix representation (Dirac point).
- It has different signs at the two Fermi points (time reversal symmetry preserved).

Physical reality of the fictitious gauge fields

Observing fictitious gauge fields

Fig. 3. (**A**) Experimental topographic line scan and experimentally determined B_s profile over the tip trajectory shown by black line in (B). (**B**) STM topography of graphene nanobubble. (**C**) Topography of theoretically simulated graphene nanobubble with calculated B_s color map. (**D**) Simulated topographic line scan and B_s profiles extracted from line shown in (C).

Strain-Induced Pseudo–Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles

N. Levy,^{1,2}*† S. A. Burke,¹*‡ K. L. Meaker,¹ M. Panlasigui,¹ A. Zettl,^{1,2} F. Guinea,³ A. H. Castro Neto,⁴ M. F. Crommie^{1,2}§

30 JULY 2010 VOL 329 SCIENCE www.sciencemag.org

$$A_{x} = \frac{\beta}{a} \left(u_{xx} - u_{yy} \right)$$
$$A_{y} = \frac{2\beta}{a} u_{xy}$$
$$\beta = \frac{\partial \log(t)}{\partial \log(a)} \approx 2$$

Need strong deformations giving rise to strong-uniform fictitious fields

PUBLISHED ONLINE: 10 JULY 2011 | DOI: 10.1038/NPHYS2034

Aharonov-Bohm interferences from local deformations in graphene

Fernando de Juan¹, Alberto Cortijo², María A. H. Vozmediano³* and Andrés Cano⁴

Profiles of fictitious magnetic fields

Covariant

$$B_{z} = -\frac{1}{r}\partial_{r}(rA_{\theta}) = \frac{1}{4r}\frac{\alpha z'}{\left(1 + \alpha z\right)^{3/2}}$$

Axial symmetry

TB-strain

$$A_{x} = \frac{\beta}{a} \left(u_{xx} - u_{yy} \right)$$
$$A_{y} = \frac{2\beta}{a} u_{xy}$$

TB-Magnetic field

Relating TB-elasticity and geometric

$$g^{ij} = \eta^{ij} + u^{ij}$$

$$\hline Geometric \qquad TB-elasticity$$
Space dependent Fermi velocity
$$ffective gauge fields with the symmetry of the deformation$$

$$Dimensions: \quad A: \partial g: \partial u$$
Need intrinsic curvature
$$Material independent$$

$$Geometric \qquad TB-elasticity \qquad ??$$

$$\cdot \quad SFfective gauge fields with the different symmetry \qquad . \qquad A: u$$

$$\cdot \quad In-plane \ strain \ OK$$

$$\cdot \quad Material \ dependent$$

0

An important issue: is v(x) a physical effect? (observable)

Strain + symmetry

Build an effective H at low energy with C_3 symmetry

What can we build with
$$(\sigma^i, q^i, u^{ij})$$
? $H_0 = v_F \sigma \cdot q$

 C_3 invariant tensor:

$$f^{ijk} = \frac{1}{a^3} \sum_{n=1}^{3} a_n^i a_n^j a_n^k$$

Terms compatible with C_3 symmetry:

Even # indices: contract with the flat metric

- $\sigma_i \partial_j$, the flat Hamiltonian
- $\sigma_i(\partial_j u_{kl})$ the geometric gauge field
- $u_{kl}\sigma_i\partial_j$ the space dependent Fermi velocity

Odd # indices: contract with f or ε_{iil}

- $\sigma_i u_{jk}$ the trigonal gauge field
- $\sigma_i \partial_k \partial_j$ the trigonal warping term

Deformed graphene: TB beyond linear approximation

$$H = -\sum_{n=1}^{3} (t + \delta t_n) \left(\begin{array}{cc} 0 & e^{-i(\vec{K} + \vec{q}) \cdot \vec{d}_n} \\ e^{i(\vec{K} + \vec{q}) \cdot \vec{d}_n} & 0 \end{array} \right)$$

Expand in q: Dirac fermions

$$H_{trigonal} = f^{ijk} \sigma^i q^j q^k$$

Expand in both:

 $H_{v_F} = \sigma^i q^j u^{kl} f^{ijkl}$

$$A^i = \frac{2}{3a} \epsilon^{ij} f^{jkl} u^{kl}$$

Expand in δt_{n} :

Gauge fields

 Related works

 J. L. Manes 2007 Phys. Rev. B 76 045430

 Winkler R and Zulicke U 2010 Phys. Rev. B 82 245313

 T. L. Linnik arXiv1111.3924

F. de Juan, M. Sturla, MAHV, work in progress.

See also Pereira on Thursday

A working example

 $z(r) = A \exp(-r^2 / b^2)$

 $v_r(r) = -$

F. de Juan, A. Cortijo, MAHV PRB76, 165409 (2007).

$$1 + z'(r)^{2} \equiv \alpha f(r),$$

$$\alpha = \left(\frac{A}{b}\right)^{2} \approx 10^{-2}, \ f(r) = \frac{4}{b^{2}}r^{2} \exp(-2r^{2}/b^{2})$$

 α measures the departure from flat space (h/L)^{2.} The effects are of order α .

Notice: A distribution of ripples will give rise to a landscape of $v_{\rm F}$.

 $\overline{\sqrt{1+z'(r)^2}}$

Relating morphology and electronics

Evidence for Strain-Induced Local Conductance Modulations in Single-Layer Graphene on SiO2M. L. Teague, A. P. Lai, J. Velasco, C. R. Hughes, A. D. Beyer, M. W. Bockrath, C. N. Lau, and N.-C. Yeh, Nano Letters 2009 9 (7), 2542-2546

-180

0 Energy(meV)

180

-150

Energy (meV)

150

Correlation of the tunneling spectrum with strain tensor ->

Conclusion

Pay attention to the Fermi velocity!

(It is not the constant that it looks like)

Some tasks for the experimentalists (May 2010)

- Establish the existence (or not) of a gap in the clean, neutral system.
- Measure the variations (or not) of the Fermi velocity with energy at low energies.
- Measure the variations (or not) of the Fermi velocity with the curvature in rippled samples.

(January 2012)

- Establish the correlation (or not) of morphology and electronics (see Lau).
- Revise the experiments where the value of v_F is a crucial quantity. Notice that it varies with the energy and with location on the sample.