

Charge and spin transport in high quality suspended and boron nitride based graphene devices

Bart van Wees University of Groningen, The Netherlands

physics of nanodevices

20/01/2012

University of Groningen Zernike Institute for Advanced Materials

Conductance quantization of quantum point contacts in GaAs/AlGaAs 2DEG (1988)

Quantized conductance of onedimensional channels

physics of nanodevices

Energy spectrum of graphene nanoribbons

quantization sequence:

2e²/h, 6e²/h, 10e²/h, ...

Brey and Fertig, PRB 2006

4

New polymer based process:

* Fully resist based process:
only organic solvents used
-> compatible with most
materials

* Very low contact resistances (required for two-terminal measurements)

LOR = polydimethylglutarimide based organic resist

N. Tombros, A.Veligura, J. Junesch, J. J. van den Berg, P. J. Zomer, I. J.Vera Marun, H. T. Jonkman, and B.J. van Wees, *Large yield production of high mobility freely suspended graphene electronic devices on a PMGI based organic polymer*, J. Appl. Phys. 109, 093702 (2011), arXiv:1009.4213

physics of nanodevices

Current annealing: 30-40 % yield!

Not annealed

Annealed

physics of nanodevices

Formation of constrictions during current annealing

Large improvement in graphene quality

$$\mu = \frac{1}{n \cdot e \cdot R_{sq}}$$

$$n = \alpha V_g$$

$$a = 0.45 \cdot 10^{10} \, cm^{-2} V^{-1}$$

 μ_{SL} >260.000 cm²V⁻¹s⁻¹ at n= 2.10¹⁰ cm⁻²

Ballistic transport: $\lambda_{mfp} \sim (250-500) \text{ nm}$

Two-terminal quantum Hall effect at 4.2 K

physics of nanodevices

Low magnetic field regime

Quantization at zero B!

Conductance quantization of electrons / holes. N. Tombros et al.<u>Nature Physics</u> 7, 697–700 (2011)

Transition from quantum confinement to quantum hall regime

Quantized conductance of onedimensional channels

physics of nanodevices

Voltage biased energy spectroscopy

physics of nanodevices

"0.6 structure"

Conclusions

- Conductance quantization at B=0 due to quantum confinement in a narrow and short constriction
- "Effective" boundary conditions at edges
- -> valley degeneracy lifted, gap formation at zero density
- Continuous evolution into quantum Hall edge channels
- 2e²/h plateau is surprisingly accurate and flat
- "0.6 structure" : signature of electron-electron interaction
- Fermi velocity renormalization? (to be checked)
- More devices needed!!!

*Intrinsic SO interaction in graphene (weak).

*Rashba type (effective SO fields in x-y plane, perpendicular to electron velocity) Type 1: Electric field from top/bottom gate (homogeneous SO fields) Type 2: Curvature induced (SO fields fluctuate with zero average)

*Scattering induced SO interaction. (Elliot-Yafet mechanism)

Different scaling with mobility:

Dyakonov-Perel: spin relaxation time ~ 1/ momentum relaxation time Elliot-yafet: spin relaxation time ~ momentum relaxation time

Spin injection/detection scheme

ferromagnet

paramagnet

$$\frac{\partial \vec{\mu}}{\partial t} = D \nabla^2 \vec{\mu} - \frac{\vec{\mu}}{\tau} + \left(\frac{g \mu_B}{\hbar} \vec{B} \times \vec{\mu}\right)$$

- 1) Diffusion D : diffusion constant
- 2) Relaxation τ : spin relaxation time

3) Larmor spin precession: $g \sim 2$ Spin relaxation length: $\lambda = \sqrt{D\tau}$

Optimize spin injection/detection by 1 nm Al_2O_3 oxide layer

Current contacts: inject spin current

Voltage contacts: measure spin dependent voltage

Gate voltage: applied between graphene and n-doped Si

Room temperature spin transport

N. Tombros et al. Nature (2007)

Hanle spin precession

Spin relaxation vs. diffusion constant

Graphene on boronnitride

P. Zomer et al., Appl. Phys. Lett. 99, 232104 (2011).

Comparison between BN and SiO2

Thx to Physics of Nanodevices group

