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A far from complete list of numerical questions

Choosing the system to solve: coordinate conditions, free or constrained evolution,
boundary conditions.

Once the problem has been defined, one needs to solve it in a numerically stable
way.

Numerical stability = convergence: the property that errors go way with resolution.

Several issues that need to be considered for numerical stability:
l How does one discretize near boundaries?
l If doing extrapolation near a corner or a curvilinear boundary, in which direction

should one do so? Does higher order extrapolation help?
l If using cubic boxes as computational domains, how does one impose

boundary conditions at corners and edges?
l How shall one use dissipation near boundaries?
l Can one avoid artificial, numerical errors that grow fast in time?



Novel techniques for Numerical Relativity

Manuel Tiglio, LSU (KITP Gravitation Conf 5/14/03) 2

Overview, main ideas

l Method of lines: from semidiscrete to fully discrete stability.

l Numerical stability as a discrete version of well posedness.

l Numerical stability through discrete energy estimates:
Summation by parts
Boundary conditions

l Going beyond numerical stability: preventing errors from growing.

l Application: black hole excision.

l Dynamical control of discrete constraint violations.

l Multi-patch evolution.

The method of lines

l Given a set of differential equations,

l Semidiscrete problem: first discretize space but not time:

l Prove numerical stability for the semidiscrete problem (system of ODE’s).
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l If now you use appropriate time integrators, stability for the fully discrete
problem follows. The details of what you did in the semidiscrete case do not
matter, provided that the semidiscrete problem was stable.

l Get spatial discretizations that give semidiscrete stability, and time integrators
that are “locally stable”.  Combine them at will.
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Numerical stability: a discrete version of well posedness

Two reasons for looking at numerical stability for linear problems:
It is a necessary condition for stability in the non-linear case.
The solution to the nonlinear problem

can sometimes be shown to be the solution to an iteration of linear problems:

ÿ Numerical stability: replace in the above expressions the integral by sum over grid points,

and demand that f(t) does not depend on the resolution.
ÿ Key idea to construct numerically stable schemes: construct discrete operators that allow you

to repeat the steps done at the continuum when showing well posedness.
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Same f(t) for all
initial data!

Well posedness: existence and uniqueness of a solution with some smoothness, plus
an energy estimate.
Define a scalar product

and a norm or “energy” E(t) = (u,u), and show that

Some details on the key idea: summation by parts and discrete boundary
conditions

v Steps followed at the continuum when deriving an energy estimate:

ÿ Integration by parts
ÿ Controlling boundary terms through (for example) maximally dissipative

boundary conditions.

v Similarly, at the discrete level need one needs to:

ÿ Construct difference operators that satisfy summation by parts
ÿ Impose boundary conditions in a way that not only is consistent with the

continuum, but also one controls the boundary terms left after summation by
parts

ÿ These 2 steps guarantee numerical stability (roughly, there are more details
here).
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Summation by parts (SBP): a discrete version of integration by parts

v Integration by parts:

v Say the domain goes from 0 to 1. Construct a difference operator D approximating d/dx, and
a discrete scalar product such that

v  The difference operator and scalar product depend only on the geometry of the
computational domain, not on the equation you are solving.

v Accuracy: D has less accuracy at the boundary (compared to the interior). Global
convergence rate better than the accuracy at the boundary, though (Gustaffsson).
High order differencing (or extrapolation) at boundaries can introduce instabilities.

v Existence, properties: Kreiss + Scherer

v Explicit high order constructions in simple domains: Bo Strand 90’s.
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Discrete boundary conditions

ÿ They have to be consistent with the continuum boundary conditions that guaranteed well
posedness.

v But this is not enough for numerical stability. One needs to control the boundary terms left after
summation by parts.

ÿ One way of doing this is by imposing boundary conditions through an orthogonal projector P
(Olsson ’95).

ÿ P acts on the space of gridfunctions: P: GF:‡ GF

ÿ P is a projector: P2=P , and self-adjoint P=PT fl Key property

ÿ Acts on the right hand side of the equation: ut = AiDi u+Bu ‡ ut = P(AiDi u+Bu)

 Note: Can handle edges and vertices in a numerically stable way (provided you know what to do at
the continuum).

Other ways (e.g., Carpenter et. Al.)
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Beyond numerical stability: guiding the numerical solution

ÿ Numerical stability guarantees that as resolution is increased the numerical errors go to
zero.

ÿ But still, at fixed resolution the errors can grow exponentially (or worse) in time.

Strict stability: rearrange the discrete equations so that not
only you have a bound for the energy, but also this bound is optimal.

v The numerical solution stays close to the exact one, at each  resolution.
v Need some good energy estimate to guide the numerical simulation.

+      Numerical terms

Bounded for all resolutions,
But potentially dangerous.

Example: say Et(t) = E(t)Dx, then E(t) = exp(t Dx) E(0). The norm of the solution 
stays constant in the limit Dx ‡0, but at fixed resolution it grows in time. 

Et(t) =     (u,f(x)u)Dx + boundary terms

Continuum terms: obtained through
summation by parts and appropriately

representing boundary conditions.

We have to do something!

Application: black hole excision

q “Hide” the singularity by placing an inner boundary inside the
black hole.

q One wants to do that in a well posed way.
In particular, make sure that the number of zero speed modes
does not change as one moves along the boundary.

q Consider the simplest possible case: 2 concentric cubic boxes.

q We have constructed, for this geometry, dissipative operators,
a scalar product and difference operators that satisfy
summation by parts.

q Several ongoing projects using these numerical techniques for
black hole excision.

Outer boundary

Inner boundary

Singularity excision
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Fields propagating in stationary spacetimes

Discretizing with a numerically stable scheme, without further work, in general gives
exponentially growing errors.

These are avoided by constructing the scheme such that the physical energy is non-
increasing (or preserved) at the semidiscrete level.

Consider a time indepent system: ut = AiDi u+Bu. For any H that satisfies

                                   non-increasing energies E =(u,Hu) can be constructed:Ti
i HBHBHA )()( +=∂

Rearranging the discrete system as 

Implies that the semidiscrete energy is also 
non-increasing:
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Square wheels

q Cubic boxes are not very well suited for black hole excision.
q An arbitrary cubic box inside a black hole is not a purely

outflow boundary. It has to be small enough.

For example, for a Schwarzschild black hole, L~ 0.37M

One can use a piecewise cubic boundary.
A 2D example (Engquist ’78): Say P1 has grid coordinates (0,0).
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The difference operator at P1 depends
in a highly non-intuitive way on the
stencil near P1
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Multi patch evolution

l Cover the grid with several patches.
l Overlapping grids: communicate them through

interpolation.

l Grids with interface region: one can derive discrete energy
estimates by carefully discretizing in the interfaces.

Wave propagation through overlapping, moving grids
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Dynamical control of discrete constraint-violations

l Given a set of evolution equations, add the constraints Ci = Ci (u, Du), to the right hand
side

l These evolution equations determine how these constraints propagate

l Define an energy for these constraints Ec = (C,C). It satisfies the evolution equation

l Choose m to get the desired behaviour, e.g.

l Do it on the fly, during evolution. In order to achieve symmetric hyperbolicity, do it for one
resolution, interpolate, and keep that m(t) from there on. It is then a priori given.

l If you control the constraints (=they do not grow) for one resolution, and you are in the
convergence regime, you are controlling them for higher resolutions as well
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The discretized
constraints will not
grow in time

A proof of principle
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Dynamical minimization of constraints growth for a single black hole in 3D

l Symmetric hyperbolic formulation with live gauges.
l Non-constraint preserving boundary conditions for the moment.
l Physical characteristic speeds.
l Shown the initial discretized constraints, with a “good” inner boundary (small

enough so that it is purely outflow) and a “bad” one (not purely outflow).

Conclusions, future directions

l Spherical boundaries: be patient, we will have them for you.
l Well posedness can actually be worked out for first order in time, and

second order in space ‡ we plan to work out the numerics as well.
l Computing things and trying to answer questions (e.g.,are non-constraint

preserving boundary conditions triggering the “typical” constraint
instabilities?).

l Fluids.
l Axisymmetric systems.
l Resolution, resolution…


