BOUNDARIES TREATMENT

Jeff Winicour

THE INITIAL-BOUNDARY VALUE PROBLEM FOR GENERAL RELATIVITY

EVOLUTION-CONSTRAINT SYSTEM: $\mathcal{E} = 0$ $\Longrightarrow G_{\mu\nu} = 0$

ASSUME CAUCHY IS OK. WHAT CAN GO WRONG IN \mathcal{D}_2 ?

MATHEMATICALLY:

- NOT WELL-POSED
- CONSTRAINTS NOT SATISFIED

NUMERICALLY:

• UNSTABLE

PHYSICALLY:

- BOUNDARY DATA WRONG
- CAN'T EXTRACT WAVEFORM

THE DETAILS DEPEND UPON THE SYSTEM

SIMPLE EXAMPLE: NULL EVOLUTION IN \mathcal{D}_2

INTRODUCE NULL TETRAD ASSOCIATED WITH FOLIATION OF B

$$g_{\mu\nu} = -\ell_{(\mu} n_{\nu)} + m_{(\mu} \bar{m}_{\nu)}$$

ASSUME $\mathcal B$ EITHER EXPANDS OR CONTRACTS IN ℓ^μ DIRECTION

EVOLUTION SYSTEM \mathcal{E} : $G_{\mu\nu}\ell^{\nu} = 0$ $G_{\mu\nu}m^{\mu}m^{\nu} = 0$

INTRODUCE PROJECTOR ASSOCIATED WITH UNIT SPATIAL NORMAL N^{μ} TO \mathcal{B}

$$h^{\mu}_{\nu} = \delta^{\mu}_{\nu} - N^{\mu}N_{\nu}$$

CONSTRAINTS (3) $C: h_{\nu}^{\rho}G_{\rho\sigma}N^{\sigma} = 0$

CONSTRAINT PROPAGATION

$$\mathcal{C}=rac{1}{r^2}[r^2\mathcal{C}]_{\mathcal{B}}$$

WELL-POSED ???

ROBUST √

CAUCHY BOUNDARY FOR A SCALAR FIELD ON A CURVED BACKGROUND

(SYMMETRIC) HYPERBOLIC SYSTEM: $g^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\Phi = 0$

BOUNDARY FLUX: $\mathcal{F} = N^{\mu}T_{t\mu} = -(\partial_t \Phi)N^{\mu}\partial_{\mu}\Phi$

WELL-POSED BOUNDARY CONDITIONS: $F \ge 0$

HOMOGENEOUS DIRICHLET BOUNDARY CONDITION:

$$\partial_t \Phi = 0$$

HOMOGENEOUS SOMMERFELD BOUNDARY CONDITION:

$$\partial_t \Phi + \sqrt{-g_{tt}} N^\mu \partial_\mu \Phi = 0$$

HOMOGENEOUS NEUMANN BOUNDARY CONDITION:

$$N^{\mu}\partial_{\mu}\Phi = 0$$

INHOMOGENEOUS BOUNDARY DATA $q(x^a)$

$$\partial_t \Phi = q(x^a), \qquad \partial_t \Phi + \sqrt{-g_{tt}} N^{\mu} \partial_{\mu} \Phi = q(x^a), \qquad N^{\mu} \partial_{\mu} \Phi = q(x^a)$$

WELL-POSED INITIAL-BOUNDARY VALUE PROBLEM FOR THE LINEARIZED EINSTEIN EQUATIONS IN THE HARMONIC GAUGE

$$g_{\mu\nu} = \eta_{\mu\nu} + \delta g_{\mu\nu}$$

$$\gamma^{\mu\nu} = \delta(\sqrt{-g}g^{\mu\nu})$$

EVOLUTION SYSTEM \mathcal{E}

$$\Box \gamma^{ij} = 0$$

$$\partial_{\mu}\gamma^{\mu\nu} = \partial_{t}\gamma^{t\nu} + \partial_{i}\gamma^{i\nu} = 0$$

CONSTRAINT SYSTEM C

$$\Box \gamma^{t\nu} = 0$$

THE INITIAL-BOUNDARY VALUE PROBLEM FOR THIS SYSTEM IS WELL POSED FOR FREE DIRICHLET, SOMMERFELD OR NEUMANN BOUNDARY DATA FOR THE COMPONENTS γ^{ij} .

THE CORRESPONDING EVOLUTION CODE IS ROBUST THE BAD NEWS:

- IT IS NOT NOT KNOWN HOW TO GENERALIZE THIS SYSTEM TO THE NONLINEAR CASE.
- NO KNOWN NONLINEAR METRIC-CONNECTION SYSTEM HAS THIS FLEXIBILITY OF BOUNDARY DATA.

BOUNDARIES IN LINEARZIED APPROXIMATION

- J. Stewart, Class. Quantum Grav., 15, 2865 (1998)
- B. Szilágyi, B. Schmidt and J. Winicour, Phys. Rev., D65, 064015 (2002).
- G. Calabrese, L. Lehner and M. Tiglio G. Calabrese, L. Lehner and M. Tiglio, Phys. Rev. D, 65, 104031 (2002).
- G. Calabrese, L. Lehner, D. Neilsen, J. Pullin, O. Reula, O. Sarbach, M. Tiglio, gr-qc
- G. Calabrese, J. Pullin, O. Reula, O. Sarbach, M.l Tiglio, gr-qc
- S. Frittelli and R. Gómez, gr-qc

BOUNDARIES FOR NONLINEAR EINSTEIN EQUATIONS

• H. Friedrich and G. Nagy, Commun. Math. Phys., 201, 619 (1999).

EVOLUTION VARIABLLES: e_{μ} , $\Gamma^{\rho}_{\mu\nu}$, $C^{\rho}_{\mu\nu\sigma}$

THIS IS THE ONLY NONLINEAR SYSTEM WHICH IS KNOWN TO ADMIT PHYSICALLY GENERAL BOUNDARY CONDITIONS: ONLY THE WEYL CURVATURE REQUIRES BOUNDARY CONDITION AND ANALOGUES OF DIRICHLET, NEUMANN AND SOMMERFELD ARE ALLOWED.

POOR MAN'S VERSION

B. Szilágyi and J. Winicour gr-qc/0205044

BASED ON

CAUCHY PROBELM IN HARMONIC COORDINATES:

Y. Foures-Bruhat, Acta. Math., 88, 141 (1955).

A. E. Fisher and J. E. Marsden, Comm. Math. Phys., 28, 1 (1972).

WELLPOSED INITIAL-BOUNDARY VALUE PROBLEM FOR NONLINEAR SYSTEMS WITH CHARACTERISTIC BOUNDRIES:

P. Secchi, Arch. Rational Mech. Anal., 134, 155 (1996).

1

HARMONIC INITIAL-BOUNDARY VALUE PROBLEM

REDUCED EVOLUTION SYSTEM: $\gamma^{\mu\nu} = \sqrt{-g}g^{\mu\nu}$

$$\gamma^{\alpha\beta}\partial_{\alpha}\partial_{\beta}\gamma^{\mu\nu} + S^{\mu\nu}(\gamma,\partial\gamma) = 0$$

WELL-POSED FOR ANY DISSIPATIVE BOUNDARY CONDITIONS, e.g. DIRICHLET, SOMMERFELD, NEUMANN

CONSTRAINTS: $H^{\mu} = \partial_{\nu} \gamma^{\mu\nu} = \hat{H}^{\mu}(x^{\rho}, \gamma)$ FOR BREVITY SET $\hat{H}^{\mu}(x^{\rho}, \gamma) = 0$

REDUCED EQUATIONS IMPLY

$$\gamma^{\alpha\beta}\partial_{\alpha}\partial_{\beta}H^{\mu} + C^{\mu\alpha}_{\beta}\partial_{\alpha}H^{\beta} + D^{\mu}_{\beta}H^{\beta} = 0$$

UNIQUENESS IMPLIES $H^{\mu} = 0$ IF IT SATISFIES A DISSIPATIVE HOMOGENEOUS BOUNDARY CONDITION.

THIS IS NOT EASY TO ARRANGE. EXAMPLE: DIRICHLET CONDITION $H^{\mu}|_{\mathcal{B}} = 0$. LET BOUNDARY BE AT z = 0 WITH $x^{\mu} = (x^a, z)$. THEN

$$H^z = \partial_a \gamma^{za} + \partial_z \gamma^{zz} = 0$$

$$H^a = \partial_b \gamma^{ab} + \partial_z \gamma^{az} = 0$$

NAIVE BOUNDARY DATA FOR $\gamma^{\mu\nu}$ IMPROPERLY POSES BOTH DIRICHLET AND NEUMANN CONDITIONS ON γ^{az}

WELL-POSED HOMOGENEOUS BOUNDARY DATA

ONE CHOICE THAT WORKS:

$$\begin{array}{c}
\gamma^{za}|_{\mathcal{B}} = 0 \\
\partial_z \gamma^{zz}|_{\mathcal{B}} = 0 \\
\partial_z \gamma^{ab}|_{\mathcal{B}} = 0
\end{array}
\implies
\begin{cases}
H^z|_{\mathcal{B}} = 0 \\
\partial_z H^a|_{\mathcal{B}} = 0
\end{cases}$$

⇒ CONSTRAINTS SATISFIED

INHOMOGENEOUS BOUNDARY DATA $q(x^a)$ BOUNDARY HARMONIC GAUGE FREEDOM (SHIFT)

$$\gamma^{za}|_{\mathcal{B}} = q^a(x^b)\gamma^{zz}|_{\mathcal{B}}$$

NOTE: BOUNDARY DATA FOR $\gamma^{za}|_{\mathcal{B}}$ DEPENDS ON DATA FOR $\gamma^{zz}|_{\mathcal{B}}$ WHICH CAN ONLY BE DETERMINED BY CARRYING OUT THE EVOLUTION

BOUNDARY NORMAL: $\partial^n = \frac{1}{N^z} N^{\mu} \partial_{\mu} = \partial_z + q^a \partial_a$ NEUMANN DATA: $q^{zz} = \partial^n \gamma^{zz}|_{\mathcal{B}}$

$$H^z|_{\mathcal{B}} = 0 \implies q^{zz} = -\partial_a q^a \gamma^{zz}|_{\mathcal{B}}$$

REMAINING NEUMANN BOUNDARY DATA

$$q^{ab} = \partial^n \gamma^{ab}|_{\mathcal{B}}$$

RELATED TO EXTRINSIC CURVATURE K^{ab} OF BOUNDARY.

$$\partial^n H_a|_{\mathcal{B}} = 0 \Longrightarrow$$

$$\sqrt{-h}D_b(K_a^b-\delta_a^bK)+\sqrt{g^{zz}}K_{ab}H^b-\frac{g^{zz}}{2}H_b\partial_aq^b=0$$

HERE h_{ab} AND D_a ARE THE METRIC AND CONNECTION INTRINSIC TO $\mathcal B$

This forms a symmetric hyperbolic system which determines the 6 pieces of Neumann data q^{ab} in terms of 3 free functions, as well as the free (boundary gauge) data q^a and boundary values of the variables γ^{zz} , γ^{ab} and $\partial_z \gamma^{za}$ which must be determined by the evolution.

ANY SOLUTION OF THE REDUCED EQUATIONS WITH THIS BOUNDARY DATA SATISFIES THE CONSTRAINTS.

IS THE INITIAL-BOUNDARY PROBLEM WELL-POSED???

NUMERICAL IMPLEMENTATION

SOME DIFFICULT CHOICES

- FIRST DIFFERENTIAL ORDER OR SECOND SECOND ORDER IN TIME FIRST ORDER IN SPACE
- CUBIC BOUNDARY OR SPHERICAL
 CUBIC
- GENERAL BOUNDARY GAUGE OR $\gamma^{za}|_{\mathcal{B}} = 0$ $\gamma^{za}|_{\mathcal{B}} = q^{(x^b)}\gamma^{zz}|_{\mathcal{B}}$
- HARMONIC FORCING TERMS OR $\partial_{\mu}\gamma^{\mu\nu} = 0$ $\partial_{\mu}\gamma^{\mu\nu} = \hat{H}^{\mu}(x^{\rho}, \gamma)$
- BOUNDARY ACCURACY

 1ST ORDER IN NORMAL DIRECTION, 2ND ORDER TANGENTIALLY
 - NUMERICAL STENCILS, DISSIPATION, ... BAG OF "TRICKS"

TESTS OF NAIVE ALGORITHM

- ROBUST STABILITY
- LINEARIZED WAVE CONVERGENCE TESTS
- NONLINEAR GAUGE WAVE CONVERGENCE TESTS

FIG. 2. The L_{∞} norm of the finite-difference error, rescaled by a factor of $1/\Delta^2$, for a gauge-wave. The upper two (mostly overlapping) curves demonstrate convergence to the analytic solution for a wave with amplitude $A=10^{-1}$ evolved for 30 crossing times with gridsizes 80^3 and 120^3 . The lower curve represents evolution of the same gauge-wave with $A=10^{-3}$ for 300 crossing times with gridsize 80^3 .

NEUMANN BOUNDARY CONDITIONS FOR THE SCALAR WAVE EQUATION IN SECOND DIFFERENTIAL ORDER FORM

CURVED BOUNDARY AT REST IN A MINKOWSKI METRIC BACKGROUND

H.-O. Kreiss, N. A. Petersson and J. Yström, SIAM Journal on Numerical Analysis, 40, 1940 (2002).

MOVING BOUNDARY ON A DYNAMIC BACKGROUND SPACETIME

WHEN THE BOUNDARY MOVES TOWARD THE CAUCHY INTERIOR THE INTERPOLATION STENCIL FOR Φ_0 INVOLVES FUTURE TIME LEVELS.

