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THE INITIAL-BOUNDARY VALUE PROBLEM FOR
GENERAL RELATIVITY
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ASSUME CAUCHY IS OK.
WHAT CAN GO WRONG IN D, ?

MATHEMATICALLY:

e NOT WELL-POSED
e CONSTRAINTS NOT SATISFIED

NUMERICALLY:
e UNSTABLE

PHYSICALLY:
e BOUNDARY DATA WRONG
e CAN'T EXTRACT WAVEFORM
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THE DETAILS DEPEND UPON THE SYSTEM CAUCHY BOUNDARY FOR A

ALAR FIEL A CURVED BACKGROUND
SIMPLE EXAMPLE: NULL EVOLUTION IN D, Rb e

(SYMMETRIC) HYPERBOLIC SYSTEM g‘“’V V., 2=0

f
:j,/ 5N

/Bu ND ARY DATA ?(z@l}

/
/s Z=C
2 o |
' = (t,2') = (2° 2)
INTRODUCE NULL TETRAD ASSOCIATED WITH
FOLIATION OF B BOUNDARY FLUX: F = N*Ty, = —(8,®)N*9,®
G = —myy + mymy) WELL-POSED BOUNDARY CONDITIONS: F >0
ASSUME B EITHER EXPANDS OR CONTRACTS HOMOGENEOUS DIRICHLET BOUNDARY CONDITION:
IN ¢ DIRECTION B0 =0
EVOLUTION SYSTEM & Gut'=0 Gum'm”=0 HOMOGENEOUS SOMMERFELD BOUNDARY CONDITION:
INTRODUCE PROJECTOR ASSOCIATED WITH P + /—guN"9,2 =0
i
UNET SFATIAL NORMAL A*L08 HOMOGENEOUS NEUMANN BOUNDARY CONDITION:
hy =&, — NN, N#9,® =0
wE =
CONSTRAINTS (3) C:  h2G,N? =0
CONSTRAINT PROPAG ATION INHOMOGENEOUS BOUNDARY DATA ¢(z%)
C = [ 2C]B ® = g(z%), 0® + /=g N*0,® = g(z*), N9, = q(z%)

WELL-POSED 777
ROBUST /
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WELL-POSED INITIAL-BOUNDARY VALUE PROBLEM FOR
THE LINEARIZED EINSTEIN EQUATIONS
IN THE HARMONIC GAUGE

Quv = Nuv e 69;4.1/
Y = d(v/—g9")

EVOLUTION SYSTEM &
Oy =0

a#,,y;w - at,ytv o an(:‘v =0

CONSTRAINT SYSTEM C
D'yt" = f)

THE INITIAL-BOUNDARY VALUE PROBLEM FOR THIS SYSTEM
IS WELL POSED FOR FREE DIRICHLET, SOMMERFELD OR NEU-
MANN BOUNDARY DATA FOR THE COMPONENTS ~".

THE CORRESPONDING EVOLUTION CODE IS ROBUST
THE BAD NEWS:

¢ IT ISNOT NOT KNOWN HOW TO GENERALIZE THIS SYSTEM
TO THE NONLINEAR CASE.

¢ NO KNOWN NONLINEAR METRIC-CONNECTION SYSTEM
HAS THIS FLEXIBILITY OF BOUNDARY DATA.

BOUNDARIES IN LINEARZIED APPROXIMATION

e J. Stewart, Class. Quantum Grav., 15, 2865 (1998)
« B. Szildgyi, B. Schmidt and J. Winicour, Phys. Rev., D65, 064015 (2002).

¢ G. Calabrese, L. Lehner and M. Tiglio G. Calabrese, L. Lehner and M. Tiglio, Phys.
Rev. D, 65, 104031 (2002).

¢ G, Calabrese, L. Lehner, D. Neilsen, J. Pullin, O. Reula, O. Sarbach, M. Tiglio,
gr-qc

e G. Calabrese, J. Pullin, O. Reula, O. Sarbach, M.l Tiglio , gr-qc

e S. Frittelli and R. Gémesz, gr-qc

BOUNDARIES FOR NONLINEAR EINSTEIN EQUATIONS

« H. Friedrich and G. Nagy, Commun. Math. Phys., 201, 619 (1999).
EVOLUTION VARIABLLES: ¢, I',, C},

e

THIS IS THE ONLY NONLINEAR SYSTEM WHICH IS KNOWN TO ADMIT
PHYSICALLY GENERAL BOUNDARY CONDITIONS: ONLY THE WEYL CUR-
VATURE REQUIRES BOUNDARY CONDITION AND ANALOGUES OF DIRICH-
LET, NEUMANN AND SOMMERFELD ARE ALLOWED.

POOR MAN'S VERSION

 B. Szildgyi and J. Winicour gr-qc/0205044

BASED ON
CAUCHY PROBELM IN HARMONIC COORDINATES:
Y. Foures-Bruhat, Acta. Math., 88, 141 (1955).
A. E. Fisher and J. E. Marsden, Comm. Math. Phys., 28, 1 (1872).

WELLPOSED INITIAL-BOUNDARY VALUE PROBLEM FOR
NONLINEAR SYSTEMS WITH CHARACTERISTIC BOUNDRIES:
P. Secchi, Arch. Rational Mech. Anal., 134, 155 (1996).
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HARMONIC INITIAL-BOUNDARY VALUE PROBLEM

REDUCED EVOLUTION SYSTEM: +* = {/—gg"*
V00057 + 5 (7,87) = 0

WELL-POSED FOR ANY DISSIPATIVE BOUNDARY
CONDITIONS, e.g. DIRICHLET, SOMMERFELD, NEU-
MANN

CONSTRAINTS: H* = d,y* = H*(z",7)
FOR BREVITY SET H*(z*,~) =0

REDUCED EQUATIONS IMPLY
Y2 0,05H" + C3* 0, H” + D4H? = 0

UNIQUENESS IMPLIES H* =0 IF IT SATISFIES A DIS-
SIPATIVE HOMOGENEOUS BOUNDARY CONDITION.

THIS IS NOT EASY TO ARRANGE.
EXAMPLE: DIRICHLET CONDITION H*|3 = 0.
LET BOUNDARY BE AT z = 0 WITH 2* = (2, 2). THEN

H? = aa7za ofs az')’” )

H® = ab,yab i 6;’7“2 = ()

NAIVE BOUNDARY DATA FOR +* IMPROPERLY
POSES BOTH DIRICHLET AND NEUMANN CONDI-
TIONS ON »*

WELL-POSED HOMOGENEOUS BOUNDARY DATA
A

A

pnd e N ¥

’ l

2 —

ot = (2% 2) 3 2=0

:rﬂ:(tiziy) ’8'— t:o
ONE CHOICE THAT WORKS:

Y*s=0 Hi|g=0
az’TZZIB = 0 ﬁ
9,7%|g =0 0,Hg =0

RouNDARY DAnA R Y

e

~—

=> CONSTRAINTS SATISFIED
=

e —
INHOMOGENEOUS BOUNDARY DATA g(z%)
BOUNDARY HARMONIC GAUGE FREEDOM (SHIFT)
,yzaIB i qa(xb),yzzls
NOTE: BOUNDARY DATA FOR +*|zg DEPENDS ON

DATA FOR ~+*|z WHICH CAN ONLY BE DETERMINED
BY CARRYING OUT THE EVOLUTION

BOUNDARY NORMAL: 9" = £:N"3, = 0, + ¢,
NEUMANN DATA: ¢ = 8"y**|s

Hilp=0 = ¢* =~ gy |8
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REMAINING NEUMANN BOUNDARY DATA

qab S an,yab'B

RELATED TO EXTRINSIC CURVATURE K®
BOUNDARY.

OF

& H,|s =0 =>

zz
V=hDy(K® — 88 K) + T K H® — %H,,aaq" =0

HERE h,, AND D, ARE THE METRIC AND CONNEC-
TION INTRINSIC TO B

This forms a symmetric hyperbolic system which determines
the 6 pieces of Neumann data ¢* in terms of 3 free functions,
as well as the free (boundary gauge) data ¢° and boundary
values of the variables v**, ¥ and 8.7** which must be deter-
mined by the evolution.

ANY SOLUTION OF THE REDUCED EQUATIONS
WITH THIS BOUNDARY DATA SATISFIES THE CON-
STRAINTS.

IS THE INITIAL-BOUNDARY PROBLEM WELL-POSED?7?

NUMERICAL IMPLEMENTATION

SOME DIFFICULT CHOICES

¢ FIRST DIFFERENTIA RDER OR SECO
SECOND ORDER IN(TIMEJFIRST ORDER JN{SPACE

¢ CUBIC BOUNDARY OR SPHERICAL
CUBIC

¢ GENERAL BOUNDARY GAUGE OR 4*|g =0
,.yza|B — q(xb),yzzls

e HARMONIC FORCING TERMS OR 9,y" =0

6;17#y o Hﬂ(mp, 7)

¢ BOUNDARY ACCURACY
1ST ORDER IN NORMAL DIRECTION, 2ND ORDER TANGENTIALLY

e NUMERICAL STENCILS, DISSIPATION, ...
BAG OF “TRICKS”

TESTS OF NAIVE ALGORITHM

¢ ROBUST STABILITY
¢ LINEARIZED WAVE CONVERGENCE TESTS
e NONLINEAR GAUGE WAVE CONVERGENCE TESTS
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FIG. 2. The Lo norm of the finite-difference error, rescaled
by a factor of 1/A?, for a gauge-wave. The upper two (mostly
overlapping) curves demonstrate convergence to the analytic
solution for a wave with amplitude A = 10™" evolved for 30
crossing times with gridsizes 80° and 120°. The lower curve
represents evolution of the same gauge-wave with A=10"?
for 300 crossing times with gridsize 80°.

NEUMANN BOUNDARY CONDITIONS FOR
THE SCALAR WAVE EQUATION
IN SECOND DIFFERENTIAL ORDER FORM

CURVED BOUNDARY AT REST IN
A MINKOWSKI METRIC BACKGROUND

H.-O. Kreiss, N. A. Petersson and J. Ystrom, SIAM Journal on Nu-
merical Analysis, 40, 1940 (2002). 7,

d_) = By — "By Az + O(AZ?)

MOVING BOUNDARY ON A
DYNAMIC BACKGROUND SPACETIME

%

t+0t _@— éﬁwo »

n ]
¢ —e— T 3P,

\?..—-o N
WHEN THE BOUNDARY MOVES TOWARD THE
CAUCHY INTERIOR THE INTERPOLATION STENCIL FOR &

INVOLVES FUTURE TIME LEVELS.
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