# Dynamics & Structure of GRB Jets Jonathan Granot

KIPAC @ Stanford



"Supernova and Gamma-Ray Burst Remnants" KITP, Santa Barbara, February 6, 2006

#### **Outline of the Talk:**

- Observational evidence for jets in GRBs
- The jet dynamics: degree of lateral expansion
  - ◆ Semi-Analytic models
  - ♦ Simplifying the dynamical Eqs.:  $2D \rightarrow 1D$
  - ◆ Full hydrodynamic simulations
- The Jet Structure: how can we tell what it is
  - ◆ Afterglow polarization, Statistical approach
  - ◆ Afterglow light curves
  - ◆ The jet structure, energy, and γ-ray efficiency
- Conclusions

#### Observational Evidence for Jets in GRBs

- The energy output in  $\gamma$ -rays assuming isotropic emission approaches (or even exceeds)  $M_{\odot}c^2$ 
  - → ⇒ difficult for a stellar mass progenitor
  - ◆ True energy is much smaller for a narrow jet
- Achromatic break or steepening of the afterglow light curves ("jet break")



# Optical Light Curve of GRB 030329 (Gorosabel et al. 2006)

smooth & achromatic break



# Dynamics of GRB Jets: Lateral Expansion Simple (Semi-) Analytic Jet Models

(Rhoads 97, 99; Sari, Piran & Halpern 99,...)

#### Typical Simplifying Assumptions:

- A uniform jet with sharp edges (even at  $t > t_{jet}$ )
- The shock front is a part of a sphere within  $\theta < \theta_{jet}$
- The velocity is in the radial direction (even at  $t > t_{jet}$ )
- Lateral expansion in a velocity of  $c_s \approx c/\sqrt{3}$  or  $\approx c$  in the local rest frame
- The jet dynamics are obtained by solving simple 1D equations for conservation of energy and momentum
- Most works assume a uniform external medium (ISM)

## Main Results: Jet Dynamics at $t > t_{iet}$ :

 $\sim$  (c<sub>s</sub>/cθ<sub>0</sub>)exp(-R/R<sub>jet</sub>), θ<sub>jet</sub> $\sim$ θ<sub>0</sub>(R<sub>jet</sub>/R)exp(R/R<sub>jet</sub>) where R<sub>jet</sub>= [E/ρ<sub>ext</sub>π(c<sub>s</sub>)<sup>2</sup>]<sup>1/3</sup> (comparable to the Sedov length for the true energy, if c<sub>s</sub>  $\sim$  c)

#### **Light Curves:**

- Most models predict a jet break but differ in the details:
  - The time of the jet break  $t_{jet}$  (by up to a factor of ~20)
  - ♦ Temporal slope  $F_v(v>v_m, t>t_{jet}) \propto t^{-\alpha}, \alpha \sim p (\pm 15\%)$
  - ◆ The sharpness of the jet break (~1-4 decades in time)
- Kumar & Panaitescu (2000) predicted a significantly smoother jet break for a stellar wind environment (this was reproduced in other works but was never observed)

## Simplifying the Dynamics: 2D → 1D

Integrating the hydrodynamic equations over the radial direction significantly reduces the numerical difficulty

This is a reasonable approximation as most of the shocked fluid is within a thin layer of width  $\sim R/10y^2$ 



#### Numerical Simulations:

(JG et al. 2001; Cannizzo et al. 2004; Zhang & Macfayen 2006)

#### The difficulties involved:

- The hydro-code should allow for both  $\gamma \gg 1$  and  $\gamma \approx 1$
- Most of the shocked fluid lies within in a very thin shell behind the shock ( $\Delta \sim R/10\gamma^2$ )  $\Rightarrow$  hard to resolve
- A relativistic code in at least 2D is required
- A complementary code for calculating the radiation



Very few attempts so far

#### Movie of Simulation

## Hydrodynamic Simulation of a Relativistic Jet

J. Granot, M. Miller, T. Piran, W. M. Suen P. A. Hughes, 2001



Movie by S. Ayal, J. Granot

# Proper Density: (logarithmic color scale)

Bolometric
Emissivity:
(logarithmic color scale)



#### The Jet Dynamics: very modest lateral expansion



## There is slow material at the sides of the jet while most of the emission is from its front



#### Main Results of Hydro-Simulations:

- The assumptions of simple models fail:
  - ◆ The shock front is not spherical
  - ◆ The velocity is not radial
  - ◆ The shocked fluid is not homogeneous
- There is only very mild lateral expansion as long as the jet is relativistic
- Most of the emission occurs within  $\theta < \theta_0$
- Nevertheless, despite the differences, there is a sharp achromatic jet break [for  $v > v_m(t_{jet})$ ] at  $t_{jet}$  close to the value predicted by simple models

#### Comparison to (Semi-) Analytic Models:

#### Similarities:

- An achromatic jet break at  $t_{jet}$  for  $v > v_m(t_{jet})$
- ◆ The value of t<sub>jet</sub> is similar
- ◆ Temporal slope,  $F_v(v > v_m, t > t_{jet}) ∝ t^α$ , is close to the analytic value α ≈ p (α = 1.12p for p = 2.5 and is even closer to p for p < 2.5)

#### **Differences:**

- ◆ The jet dynamics are very different
- ♦ For  $∨ < ∨_m(t_{jet})$  (radio) α changes more gradually and moderately at  $t_{jet}$  and changes more sharply only at a later time when  $∨_m$  decreases below  $∨_{obs}$
- ♦ Jet break is sharper than in most analytic models, and is somewhat sharper for  $\theta_{obs}$ = 0 than for  $\theta_{obs}$ ≈  $\theta_0$

### Why do we see a Jet Break:



The observer sees mostly emission from within an angle of  $1/\Gamma$  around the line of sight

Direction to observer

The edges of the jet become visible when  $\Gamma$  drops below  $1/\theta_{jet}$ , causing a jet break

For  $V_{\perp} \sim C$ ,  $\theta_{jet} \sim 1/\Gamma$  so there is not much "missing" emission from  $\theta > \theta_{jet}$  & the jet break is due to the decreasing  $dE/d\Omega$  + faster fall in  $\Gamma(t)$ 

# Limb Brightening of the Image + a rapid transition ⇒ an "overshoot"



#### **Lateral Expansion: Evolution of Image Size**

(Taylor et al. 04,05; Oren, Nakar & Piran 04; JG, Ramirez-Ruiz & Loeb 05)



#### The Structure of GRB Jets:



#### How can we determine the jet structure?

- Afterglow (linear) polarization light curves
  - ◆ The pol. is usually attributed to jet geometry
  - ◆ Also depends on the magnetic field structure
  - ◆ Effected by density bumps, refreshed shocks
  - → not a very "clean" probe of jet geometry
- Statistical studies of prompt GRB & afterglow
  - $\bullet \log N \log S$ ,  $dN/d\theta$ ,  $dN/d\theta dz$ , orphan AGs,...
  - → Difficult: not always "clean" or conclusive
- Afterglow light curves: fewer assumptions are required & good obs. are frequently available

#### Afterglow Light Curves: Uniform Jet

(Rhoads 97,99; Panaitescu & Meszaros 99; Sari, Piran & Halpern 99; Moderski, Sikora & Bulik 00; JG et al. 01,02)

■ Uniform "top hat" jet - extensively studied





#### Afterglow LCs: Universal Structured Jet

(Lipunov, Postnov & Prohkorov 01; Rossi, Lazzati & Rees 02; Zhang & Meszaros 02)

Works reasonably well but has potential problems



#### Afterglow LCs: Universal Structured Jet

LCs Constrain the power law indexes 'a' & 'b':

 $dE/d\Omega \propto \theta^{-a}, \Gamma_0 \propto \theta^{-b}$ 

■  $1.5 \le a \le 2.5, 0 \le b \le 1$  (JG & Kumar 2003)





#### Afterglow Light Curves: Off-Axis Viewing Angles

 $\theta_{\text{obs}}=0$ ,0.5 $\theta_0$ 

10<sup>-4</sup>

10<sup>-6</sup>

F, (mJy)

 $\theta_0$ 

 $1.5\theta_0$ 

model 3

10<sup>1</sup>

(hydro-simulation)

 $2\theta_0$ 

 $3\theta_0$ 

 $4\theta_0$ 



#### Prompt Emission: Off-Axis Viewing Angles

- E<sub>peak</sub>  $\propto \delta^{-1}$ , f  $\propto \delta^{-a}$  where  $\delta \approx 1 + [\Gamma(\theta_{obs} \theta_0)]^2 \&$ a  $\approx 2$  for  $\theta_0 < \theta_{obs} \le 2\theta_0$ ; a  $\approx 3$  for  $\theta_{obs} \ge 2\theta_0$
- The prompt emission from large off-axis viewing angles,  $\delta \gg 1$  or  $\theta_{obs} \gtrsim 2\theta_0$ , will not be detected ("orphan afterglows")
- The prompt emission from slightly off-axis viewing angles might still be detected, but peaks at lower  $E_{peak}$  & has a much smaller fluence f(X-ray flashes or X-ray rich GRBs)

#### Light Curves of X-ray Flashes & XRGRBs

Suggest a roughly uniform jet with reasonably sharp edges, where GRBs, XRGRBs & XRFs are similar jets viewed from increasing viewing angles (Yamazaki, Ioka & Nakamura 02,03,04)





(JG, Ramirez-Ruiz & Perna 2005)

#### Afterglow L.C. for Different Jet Structures:

- Uniform conical jetwith sharp edges: ✓
- Gaussian jet in both  $\Gamma_0$  & dE/dΩ: might still work
- Constant  $\Gamma_0$  + Gaussian dE/d $\Omega$ : not flat enough
- Core +  $dE/dΩ \propto \theta^{-3}$ wings: not flat enough



 $\theta_{\text{obs}}/\theta_{\text{0/c}} = 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6$  (JG, Ramirez-Ruiz & Perna 2005)

#### The Jet Structure and its Energy

- The same observations imply ~10 times more energy for a structured jet than for a uniform jet: ~10<sup>52</sup> erg instead of the "standard" ~10<sup>51</sup> erg
- Flat decay phase in *Swift* early X-ray afterglows imply very high γ-ray efficiencies,  $\varepsilon_{\gamma} \sim 90\%$ , if it is due to energy injection + standard AG theory
- The flat decay is due to an increase in time of AG efficiency  $\Rightarrow \varepsilon_{v}$  does not change (~ 50%)
- Pre-Swift estimates of  $E_{kin,AG} \sim 10^{51}$  erg for a uniform jet relied on standard afterglow theory
- Different assumptions:  $E_{kin,AG} \sim 10^{52}$  erg,  $\varepsilon_{\gamma} \sim 0.1$
- $\mathbf{E}_{v} \lesssim 0.1 \Rightarrow \mathbf{E}_{kin,AG} \gtrsim 10^{53} \text{ erg for a structured jet}$

#### Conclusions:

- Numerical studies show very little lateral expansion while the jet is relativistic & produce a sharp jet break (as seen in afterglow obs.)
- The jet break occurs predominantly since its edges become visible (not lateral expansion)
- The most promising way to constrain the jet structure is through the afterglow light curves
- A low γ-ray efficiency requires a high afterglow kinetic energy:  $\varepsilon_{\gamma} \leq 0.1 \Rightarrow E_{kin,AG} \geq 10^{53}$  erg for a

atmostrated int & D 1052 and for a uniform int