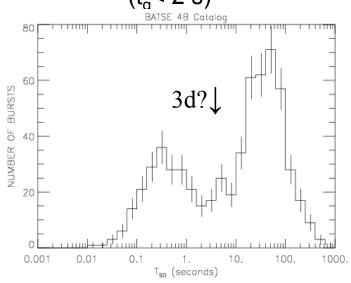

# Models of Early Afterglows in the light of Swift


Peter Mészáros Pennsylvania State University

#### GRB: standard paradigm

#### **Hyperaccreting Black Holes**



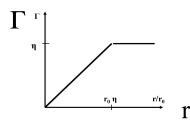
Bimodal distribution of  $\mathbf{t}_{\gamma}$  duration



← ↑ Long (t<sub>g</sub> > 2 s)

M. Ruffert, H.-Th. Janka, 1998

Mészáros KITP06


#### **Relativistic Outflows**

- Energy-impulse tensor: T<sub>ik</sub> = w u<sub>i</sub> u<sub>k</sub> + p g<sub>ik</sub>,
   u<sup>i</sup>: 4-velocity, g<sub>ik</sub>= metric, g<sub>11</sub>=g<sub>22</sub>=g<sub>33</sub>=-g<sub>00</sub>=1, others 0;
   ultra-rel. enthalpy: w = 4p ∝ n<sup>4/3</sup>; w, p, n: in comoving-frame
- 1-D motion :  $u^i=(\gamma,u,0,0)$ , where  $\mathbf{u}=\Gamma(\mathbf{v}/\mathbf{c})$ ,  $\mathbf{v}=3$ -velocity,  $\mathbf{A}=$  outflow channel cross section :
- Impulse flux energy flux particle number flux

Isentropic flow : L, J constant →

**w**  $\Gamma$  /n = constant (relativistic Bernoulli equation); for ultra-rel. equ. of state p ∝ w ∝ n<sup>4/3</sup>, and cross section A ∝ r<sup>2</sup>

- →  $n \propto 1 / r^2 \Gamma$  comoving density drops
  - $\rightarrow$   $\Gamma \propto r$  bulk" Lorentz factor initially grows with r.
- But, eventually saturates,
   Γ→E<sub>j</sub>/M<sub>j</sub>c<sup>2</sup> ~ constant

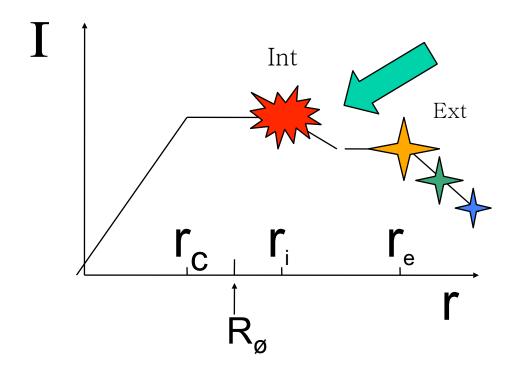


#### Shock formation

- Collisionless shocks (rarefied gas)
- "Internal" shock waves: where ?
   If two gas shells ejected with Δ Γ = Γ<sub>1</sub>-Γ<sub>2</sub>~ Γ, starting at time intervals Δt ~t<sub>v.</sub>, they collide at r<sub>is</sub> ,

$$r_{is} \sim 2 c \Delta t \Gamma^2 \sim 2 c t_v \Gamma^2 \sim 10^{12} t_{-3} \Gamma_2^2 cm$$
 (internal shock)

[Alternative picture: magnetic dissipation, reconnection]


"External shock": merged ejected shells coast out to r<sub>es</sub>, where they have swept up enough enough external matter to slow down, E=(4p/3)r<sub>es</sub><sup>3</sup> n<sub>ext</sub> m<sub>p</sub> c<sup>2</sup> Γ <sup>2</sup>,

$$r_{es}$$
~  $(3E/4pn_{ext}m_pc^2)^{1/3}$   $\Gamma^{-2/3}$  ~  $3.10^{16}(E_{51}/n_O)^{1/3}$   $\Gamma_2^{-2/3}$  cm (external shock)

#### Internal & External Shocks

in optically thin medium:

#### **LONG-TERM BEHAVIOR**



Internal shocks (or other, e.g. magnetic dissipation) at radius r<sub>i</sub>~10<sup>12</sup>cm

- External shocks at r<sub>e</sub> ~10<sup>16</sup>cm;
   progressively decelerate, get weaker and redder in time (Rees & Meszaros 92)
- Decreasing Doppler boost: →
  roughly, expect radio @ ~1 week ,
  optical @ ~1 day (Paczynski, & Rhoads
  93, Katz 94)
- PREDICTION :

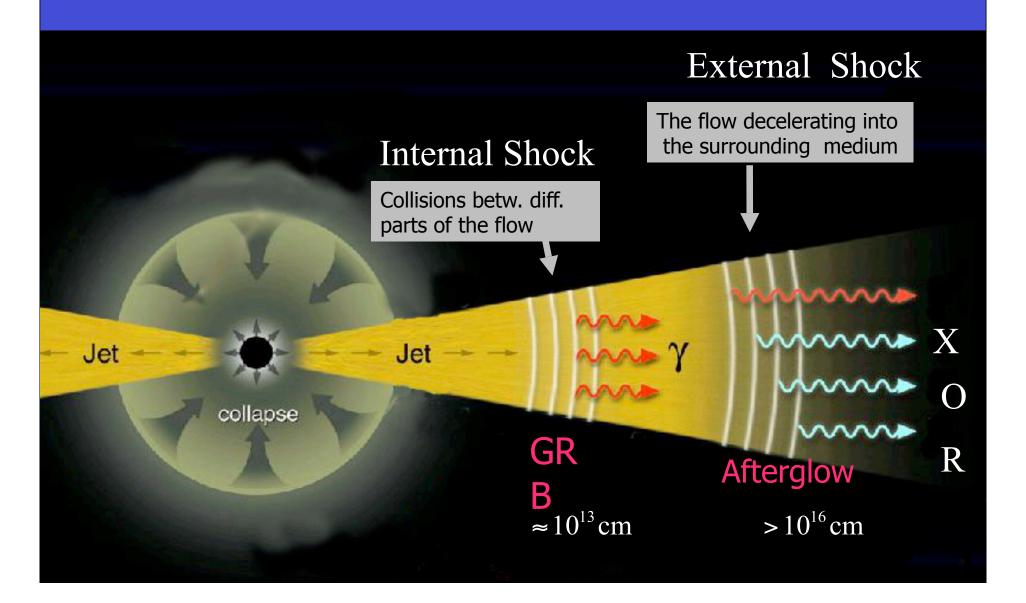
Full quantitative theory of:

 External forward shock spectrum softens in time:

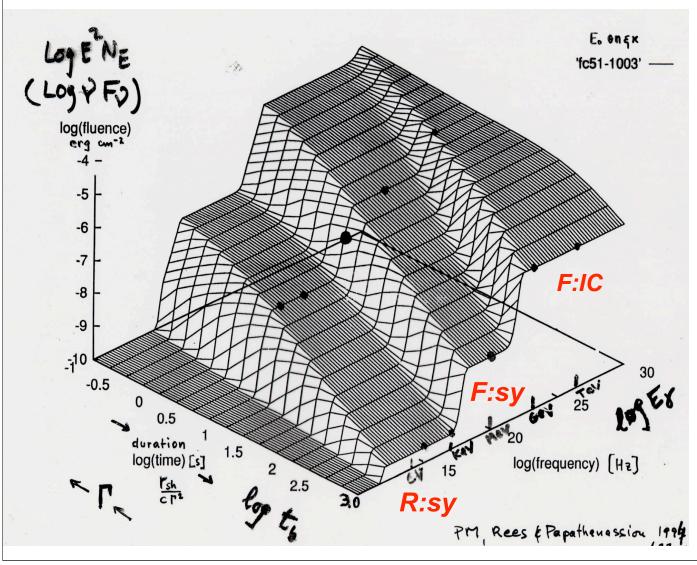
X-ray, optical, radio ...

→long fading afterglow

(t ~ min, hr, day, month)


 External reverse shock (less relativistic, cooler, denser):

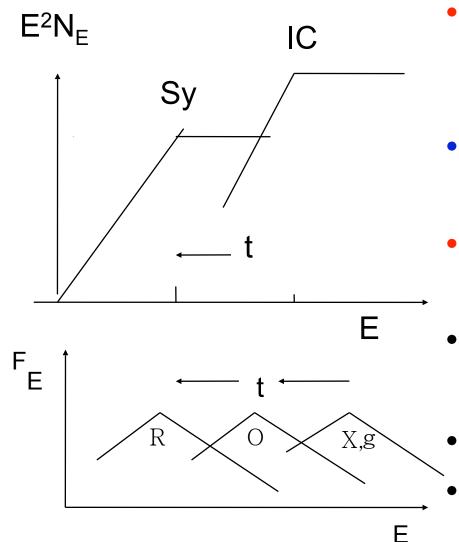
**Prompt Optical** → quick fading (t ~ mins)


(Meszaros & Rees 1997 ApJ 476,232)

Mészáros KITP06

## Fireball Model: long GRBs




# Standard External Forw. & Rev. Shock Synchroton & IC spectrum



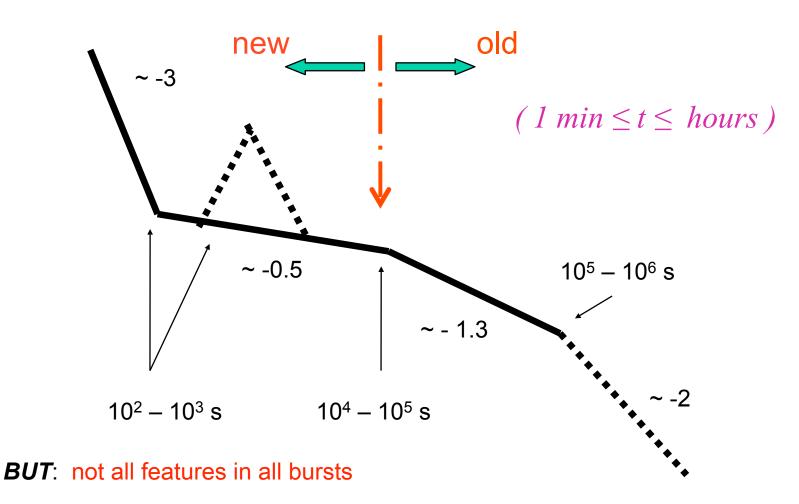
Lower energy: Synchrotron (reverse: eV, forward: MeV)

Higher energy: Inv. Compton (forward: GeV)


#### Shock Photon Spectrum



- Non-thermal power law spectrum, both in int. and ext. shocks, due to
- Synchrotron, peak at ~200 keV (or ~ eV?)
- Inv. Compton, peak ~ GeV (or ~200 keV?
- Sy peak location, ratio
   Sy/IC dep. on B<sub>sh</sub>, γ<sub>e,m</sub>
  - Peak **softens** with time
    - Ratio Sy/IC decr w. time


#### SWIFT: New Results

- > 90 new afterglows localized since launch
- Redshifts for >18 long GRB and 4 short GRB
- <z<sub>long</sub>> ~2.4-2.8, which is 2x Beppo-Sax distance
   (i.e. significantly *fainter & redder*, than Beppo-Sax afterglows!)
- <z<sub>short</sub>> ~0.1-0.7; L<sub>short</sub>~ 10<sup>-2</sup> L<sub>long</sub>; compact merger
- XR light curves (10<sup>2</sup>s-10<sup>4</sup>s): new features
   (both long and short) steep + shallow decay, flares



→ evidence for *continued activity?*In the period 1 min < t < hrs,
new features show up, which
may be natural extensions of the
standard burst & AG model (or ..?)

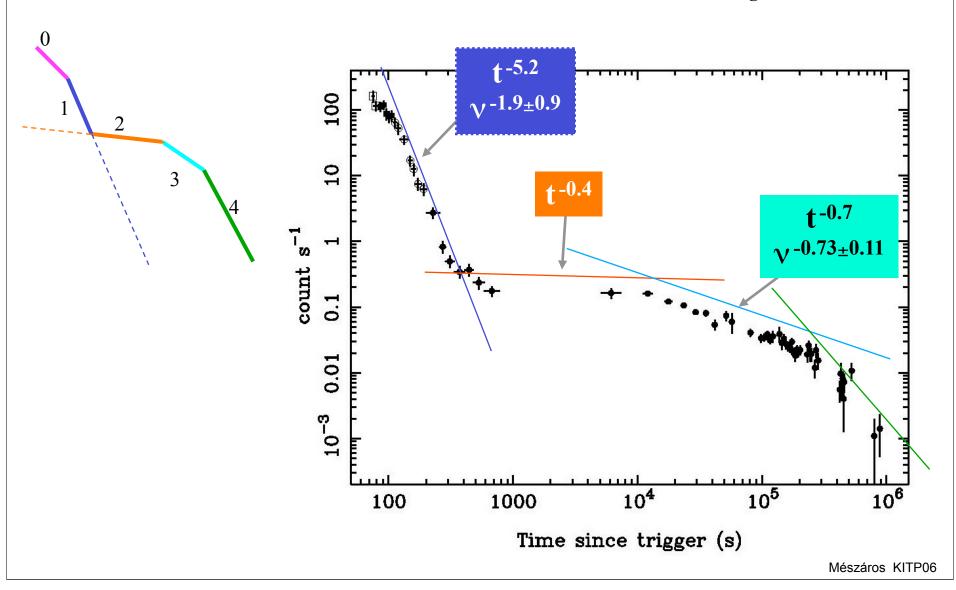
# New features seen by Swift: A Generic X-ray Lightcurve



Mészáros KITP06

### Afterglow: when does it start?

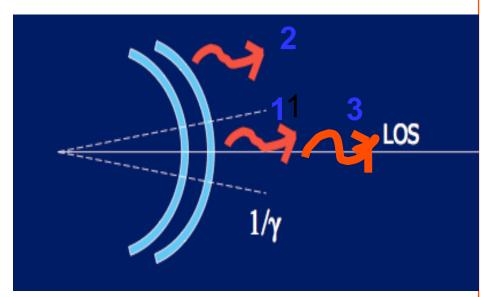
• standard interpretation: AG starts at  $t_{dec} \sim (3/4) (r_{dec}/2 c \Gamma^2) (1+z)$ 


~ 
$$(3/8 \text{ c } \Gamma^2)(3E/4\pi \text{ n m}_p \text{ c}^2 \Gamma^2)^{1/3}(1+z)$$

~ 
$$10^2 (E_{52}/n_0)^{1/3} \Gamma_2^{-8/3} (1+z) s$$

- But, for prompt duration  $T=T_{\gamma}=T_{\text{outflow}} \sim T90$ 
  - "Thin shell": T < t<sub>dec</sub> → AG start at t<sub>dec</sub> above
  - "Thick shell":  $T > t_{dec} \rightarrow AG$  start at  $T \sim T_{\gamma} \sim T90$

## Example: GRB 050315


Vaughn et al. 2005



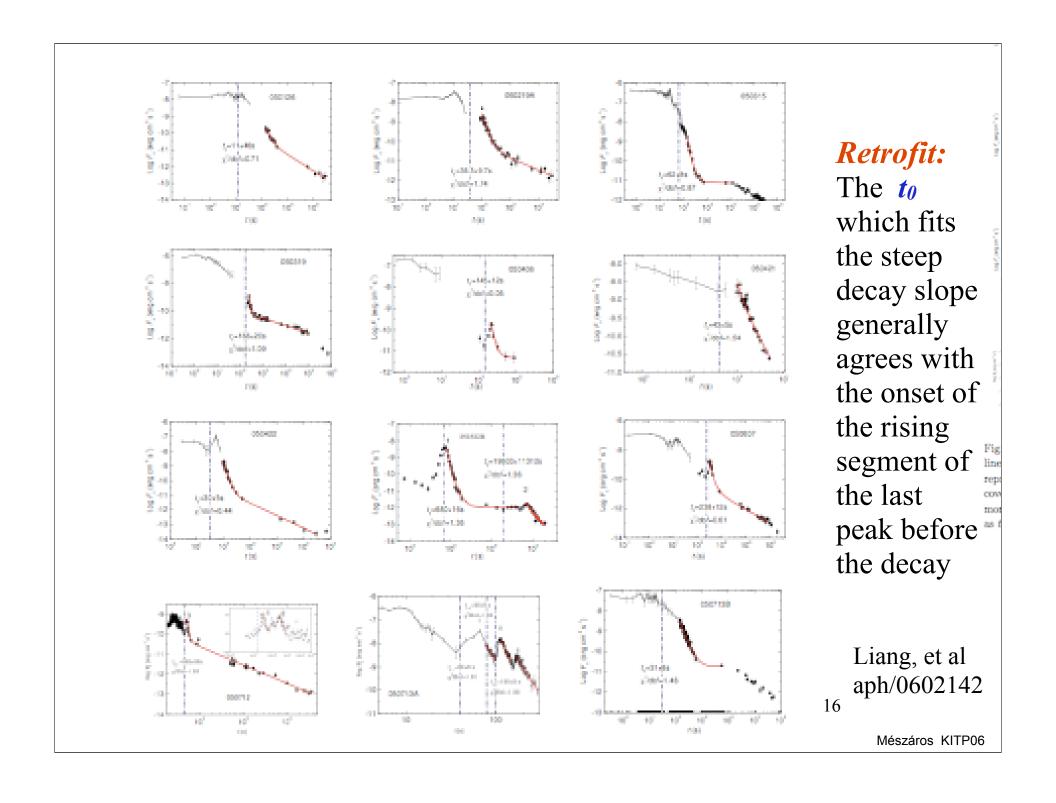
## Initial steep drop: $F_x \propto (t-t_0)^{-\alpha}$

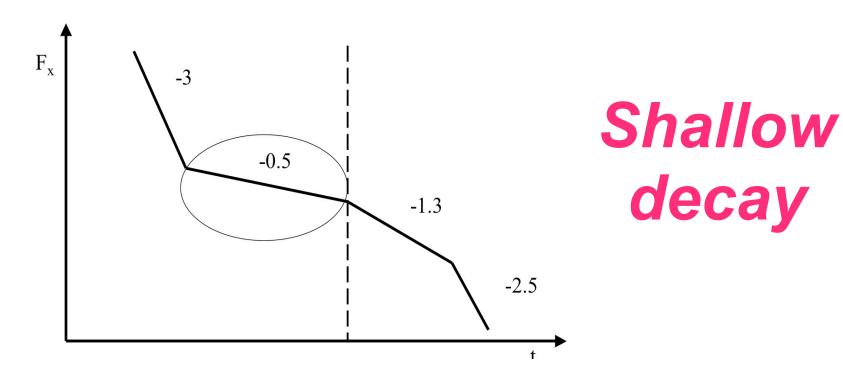
- Very early jet break? (jet too narrow)
- Patchy jet (spike)? (same ... probability?)
- Cocoon radiation? Possible (Pe'er, et al, 06 in prep.)
- Current bet: *tail end of GRB* (high latitude emission) : radiation from outside main beam,  $\theta > \Gamma^{-1}$ 
  - arrives at  $t \sim R\theta^2/2c$  later than from  $\theta \sim 0$ ,
  - is softer by  $D\sim t^{-1}$  (Nousek et al 05, Zhang et al 05, Panaitescu et al 05))
- expect  $\alpha=2+\beta$ , where F~  $t^{\alpha}v^{\beta}$  (Kumar, Panaitescu 00)
  - ~ OK , generally; departures may be understood

# Initial rapid decay: High latitude emission



#### Radiation Components:

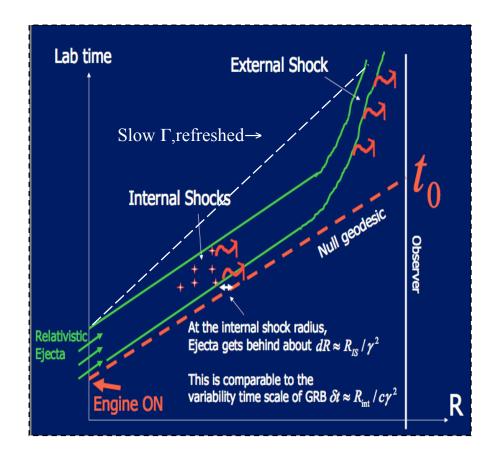

- 1 : Prompt γ-rays (GRB)
   from I.o.s. angles θ < Γ-1</li>
- 2: tail-end of GRB, from high latitude emission: γ-rays emited promptly, but from angles θ >Γ-1; arrive at time t ~ Rθ²/2c later than from θ~0, and is softer by D~t-1; expect


$$\alpha = 2 + \beta$$
, ~ OK

3 : afterglow, from forward shock at l.o.s.angles θ < Γ-1;</li>
 later than (or partially overlap with) high latitude comp. (2)

#### High latitude ...

- Time slope  $\alpha$  depends on choice of  $t_0$ 
  - $\rightarrow$  can fit  $t_0$  such that slope is satisfied
  - i.e., determine t<sub>dec</sub> ? (Liang et al astroph/0602142)
- When T >  $t_{dec}$  (and also when T<  $t_{dec}$ ) can have an admixture of (a) afterglow (l.o.s)  $\theta$ < $\Gamma$ -1, and (b) high latitude  $\theta$ > $\Gamma$ -1 components. Generally  $\beta_{prompt}$ < $\beta_{steep}$ , so can accommodate steeper decays than 2+  $\beta_{prompt}$  (O'Brien et al, 05)
- Flares: t<sub>0</sub> fit can give pulse ejection time by engine (Liang et al 06)
- Structured jet: for on-beam viewing jet shape has little effect, but off-beam can get shallower slope (Dyks et al aph/0511699)
- From initial steep decay slope,  $t_0$  constraints suggest  $t_0 \sim t_{\rm trigger}$ , may infer prompt emission radius  $R_{\gamma}$  (Lazzati, Begelman aph/0511658)






- Slope 0.3 ≤ α ≤ 1 : likely due to "refreshed shock" ...
  - I.e. the forward afterglow shock receives continued reinforcement from late-arriving ejecta

NOTE: late arriving, but not necessarily late ejected!

(Rees-Meszaros 98, Panaitescu, PM, MJR 98, Kumar-Piran 00, Sari-Meszaros 00, Nousek et al 05, Zhang et al 05, Granot-Kumar 05)

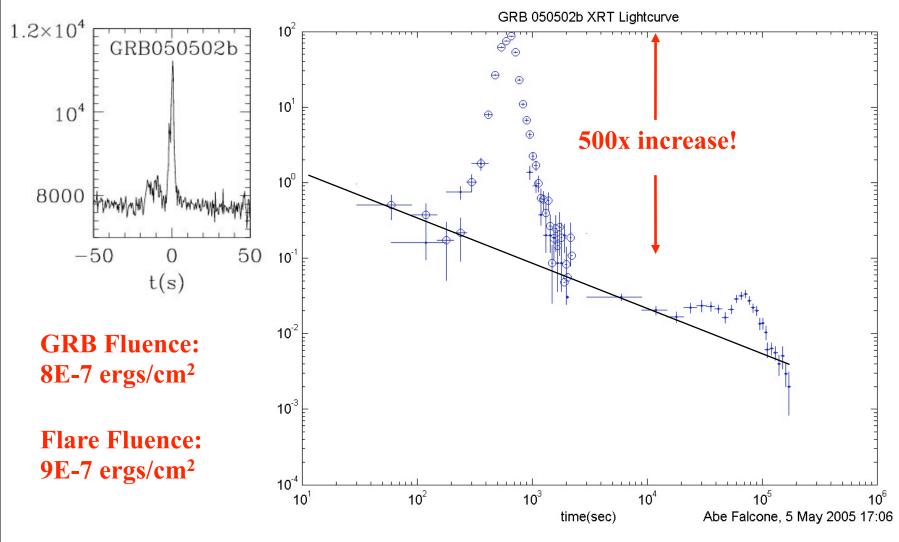


# Shallow decay $(0.2 \le \alpha \le 1)$

- Probably due to refreshed shocks, due either to:
- Long duration ejection
   (t ~ t<sub>flat</sub>) ; or
- Short duration ejection
   (t ~ t<sub>γ</sub>), but with range of Γ,
   e.g. M(Γ)~ Γ<sup>-s</sup>, E(Γ) ~ Γ<sup>-s+1</sup>,
   for ρ~r<sup>-g</sup> ext. medium :

e.g. FS: 
$$\alpha = [-4-4s+g+sg+\beta(24-7g+sg)]/[2(7+s-2g)]$$

Rees+PM, 98 ApJ 496, L1; Sari +PM, 00, ApJ 535, L33; Zhang +PM 01, ApJ 552, L35


Note : Fit to Swift data  $\Rightarrow \Gamma$  distrib. may be a broken power law

(Granot, Kumar astro-ph/0511049)

## Refreshed (shallow decay)

- Note: E<sub>Xshallow</sub> ≤ E<sub>yprompt</sub> [O'Brien, et al, 06].
  - But in order for refreshed shock to dominate the afterglow, energy input in refreshed component needs exceed that in prompt
- $\Rightarrow$  either rad'n. effic.  $\varepsilon_{\gamma} > \varepsilon_{\chi}$  (eg prompt is Poynting dominated ?..)
  - or fraction of refreshed shock energy undetected (IR? GeV?...)
  - or preactivity evacuates cavity, or fraction of energy into electrons ∝t<sup>1/2</sup> (loka et al, astro-ph/0511749
- Alternative: shallow decay due to emission from anisotropic jet lines of sight just outside sharp edge of main bright jet (Eichler-Granot astroph/0509857)
- Other possibilities:
  - E\_kin underestimated (also in BATSE), so  $\epsilon_\gamma$  is reasonable relative to  $\epsilon_X$
  - Two-component jet (narrow-fast/broad-slow) (Granot, et al, astroph/0601056)





Burrows et al. 2005, Science; Falcone et al. 2005, ApJ

Mészáros KITP06

#### **XR Flares**

- Main puzzles: large energy E<sub>xfl</sub> ≤ 0.1-1 E<sub>γprompt</sub>
   steep rise/decay F∝ (t-t<sub>0</sub>)<sup>α</sup>, α~±3-6
- Possible causes:
  - refreshed (forward) shocks (rise & decay too shallow)
  - reverse IC component (one shot affair- where is forward?)
  - interaction with external matter (rise/decay slope?)



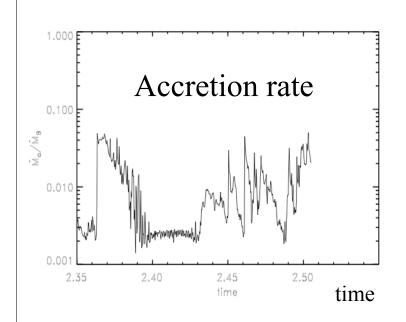
- continued central engine activity, e.g. internal shocks, dissipation (difficult for central engine, but address temp. slope, total energy - less problematic than others?)

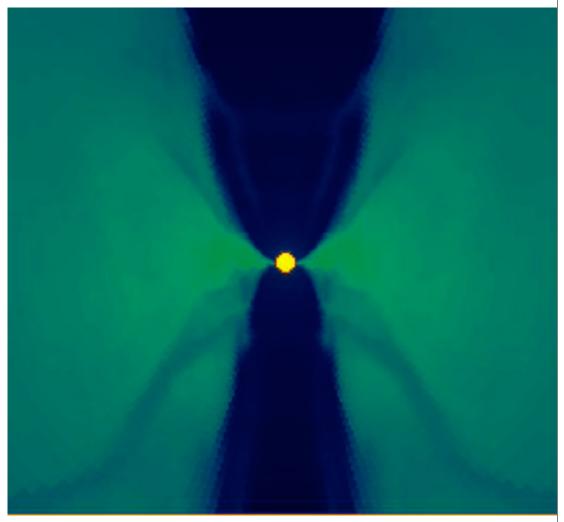
### XR Flare triggers?

- Gravitational instability → disk fragmentation
  - → lumpy accretion

(Perna, Armitage, B.Zhang)

- MHD accretion- magnetic tension ("springy")
  - → lumpy accretion


(Proga & Begelman, Fan, Proga &B.Zhang)


- Short bursts: BH-NS disr (SPH GR numerical)
  - → prompt accretion + extended tail
  - → delayed lumpy accretion

(Davies, et al 05; Lee et al 00, Rosswog et al 04; Laguna, Rasio 05)

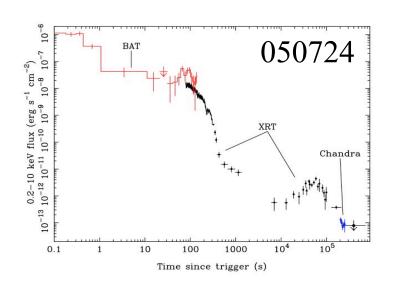
# MHD accretion?

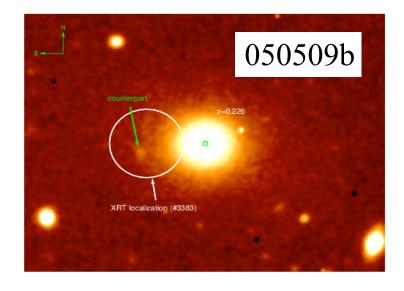
(Proga & Begelman 03)





# Main Possible Explanations of long GRB afterglow new features

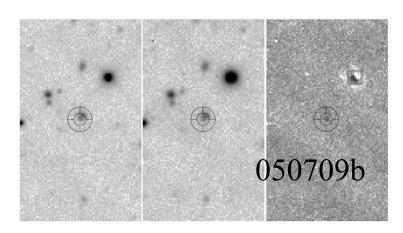

- Initial drop: likely due to tail end of GRB (high latitude emission): rad'n from θ>Γ<sup>-1</sup> arrives at t ~ Rθ²/2c later than from θ~0, is softer by D~t<sup>-1</sup>; expect α=2+β, ~ OK
- Shallow decay: probably "refreshed shocks", **either** from **Longer** ejection (t ~ t<sub>flat</sub>); **or Short** ejection (t ~ t<sub> $\gamma$ </sub>), but with range of  $\Gamma$ , e.g. M( $\Gamma$ )~  $\Gamma$ -s , E( $\Gamma$ ) ~  $\Gamma$ -s+1
- Flares: likely due to continued central engine activity: main constraints: very sharp rise and decline (t±3 ←→ t±6)
- But: remains work in progress- depending also on new observations


#### Short & Long Afterglows

- Big question: are they the same?
- Oth order answer: looks like yes
  - initial steep decay ✓
  - XR flares ✓
  - "normal forward shock" decay ✓
  - jet break ✓
- But: 1st order differences are interesting
  - Avg. kin. energy/solid angle x100 smaller
  - Avg. jet angle x2 larger than in long bursts

(Fox et al 05, Panaitescu 05)

#### **Short Bursts**






#### - Hosts: E, Irr, SFR

(compat. W. NS merg, ✓ but: some SGR, other?)

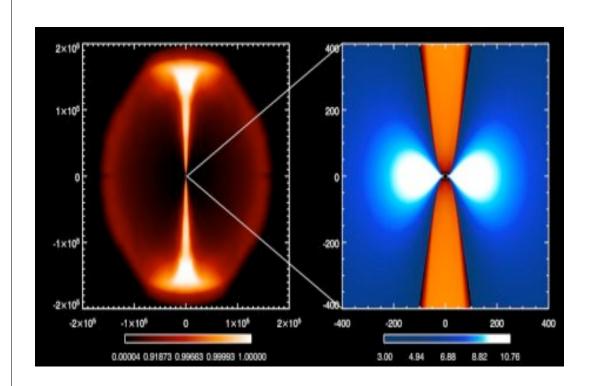
- **Redshift** : < 0.1 to  $\sim 0.7$
- XR, OT, RT: yes (mostly)
- XR l.c.: similar to long bursts? (XR bumps too- late engine?)



#### SHB afterglow fits

- So far, > 11 shb afterglows, 5-6 hosts (D. Fox talk, Nature 05)
- AG fits for 050709 (Irr), 050724 (E) (Panaitescu, aph/0511588)

Using fluxes and break times, standard ag model:


$$\Gamma = 6.5 (E_{50}/n_0)^{1/8} t_d^{-3/8}, \quad \theta_j = \Gamma(t_b)^{-1}$$

$$\to \theta_j = 9^{\circ} (n_0/E_{50})^{1/8} t_{bd}^{3/8},$$

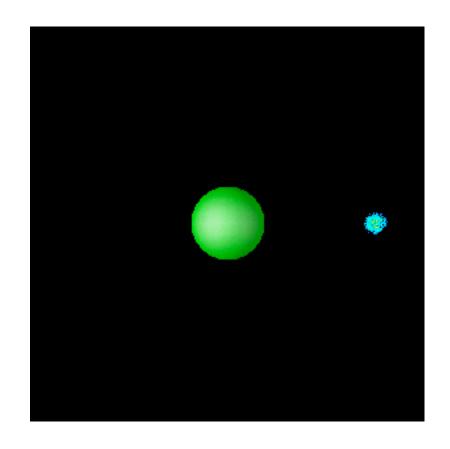
$$E_j = \pi \theta_j^2 E \sim 10^{49} n_0^{1/4} (E_{50} t_{bd})^{3/4} erg$$

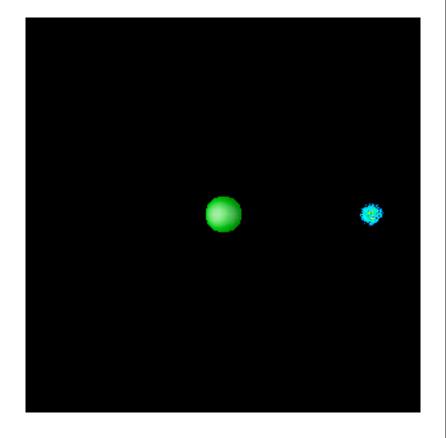
```
High /low dens. soln's: 050709:\theta_{j}>6^{\circ}, 10^{-4}< n<10^{-1} cm<sup>-3</sup>, E~3-300 x 10^{50} erg/s \theta_{j}>2^{\circ}, n<10^{-5} cm<sup>-3</sup>, E~2-10 x 10^{49} erg/sr 050724:\theta_{j}>8^{\circ}, 10^{-1}< n<10^{3} cm<sup>-3</sup>, E~1-50 x 10^{49} erg/sr
```

- but: GRB 050724 (Grupe et al, 06, in prep.) Chandra late obs.: no break seen.
- while: GRB 051221A : Swift + 2 Chandra obs. : well defined jet break appears @ 4 days  $\Rightarrow \theta_j \sim 7$ °,  $E_j \sim 2.10^{49}$  erg



## **Short burst** paradigm: **NS-NS** or **NS-BH** merger BH + accretion

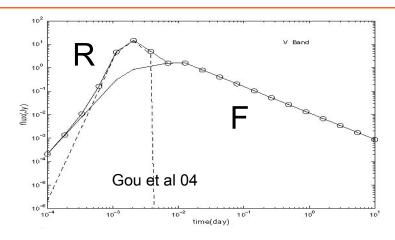

 Paradigm seems compatible with hosts, and (for Kerr BH-NS) some simulations suggest extended activity & flares ⇒

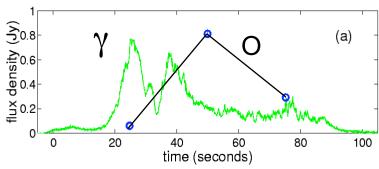


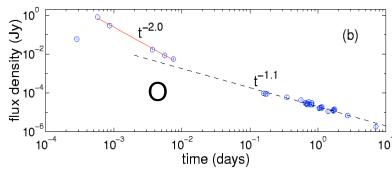

Laguna, Rasio 06; (Preliminary)

## BH-NS merger?

(Laguna & Rasio '06)



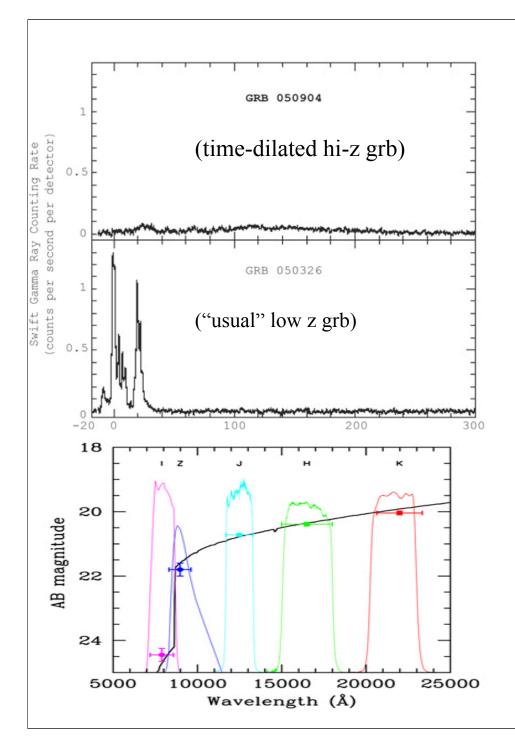


Schwarz.BH-NS

Kerr-proBH-NS

#### Prompt Optical afterglows








- ← expected behavior: reverse shock causes prompt (10's of sec) bright (m<sub>V</sub> ≥ 9) optical flash, decaying much faster than long-lasting forward shock optical afterglow (Mészáros-Rees 97)
- First seen in GRB 990123
  - ← Rotse (Akerlof et al 99), and few other bursts, but rare: why?
- Could be that
  - rev.shock hi-mag→suppress?
  - pair formation → spec. to IR ?
  - rev. shock rel. → spec. to UV?
- Latest :

**GRB 050904** (z=6.29)

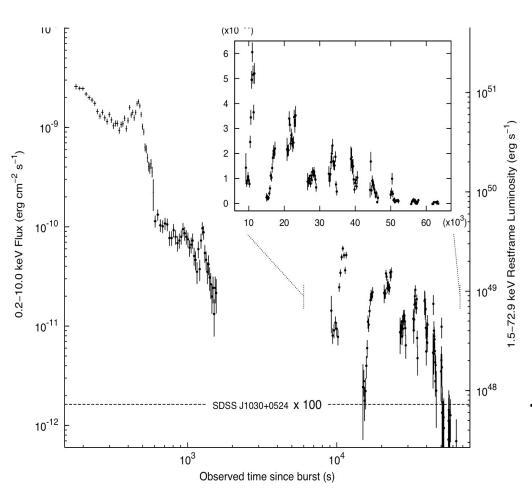
shows prompt bright opt flash!

Mészáros KITP06



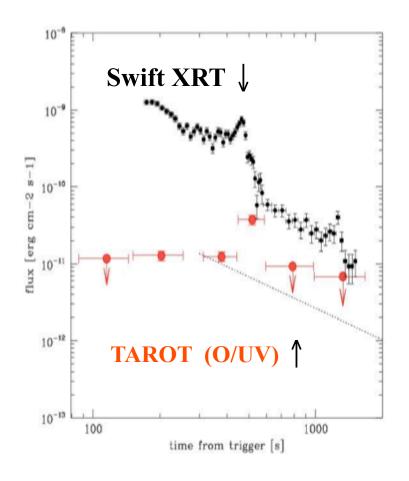
# Most distant

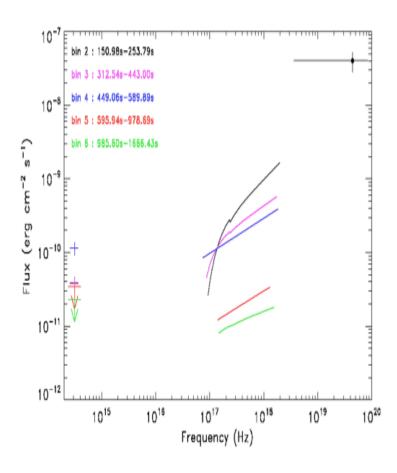
long burst from


Swift ( z=6.29 ):

GRB050904

- Discovered/localized by Swift BAT, XRT, UVOT
- Prompt ground I,R band TAROT,P60 upper limits,
- Detection J=17 mag FUN/SOAR
   ← photometric z >6
- Spectroscopy Subaru 8.5 m


@ t=3.5 day: z = 6.29!


# GRB 050904 as an XR beacon

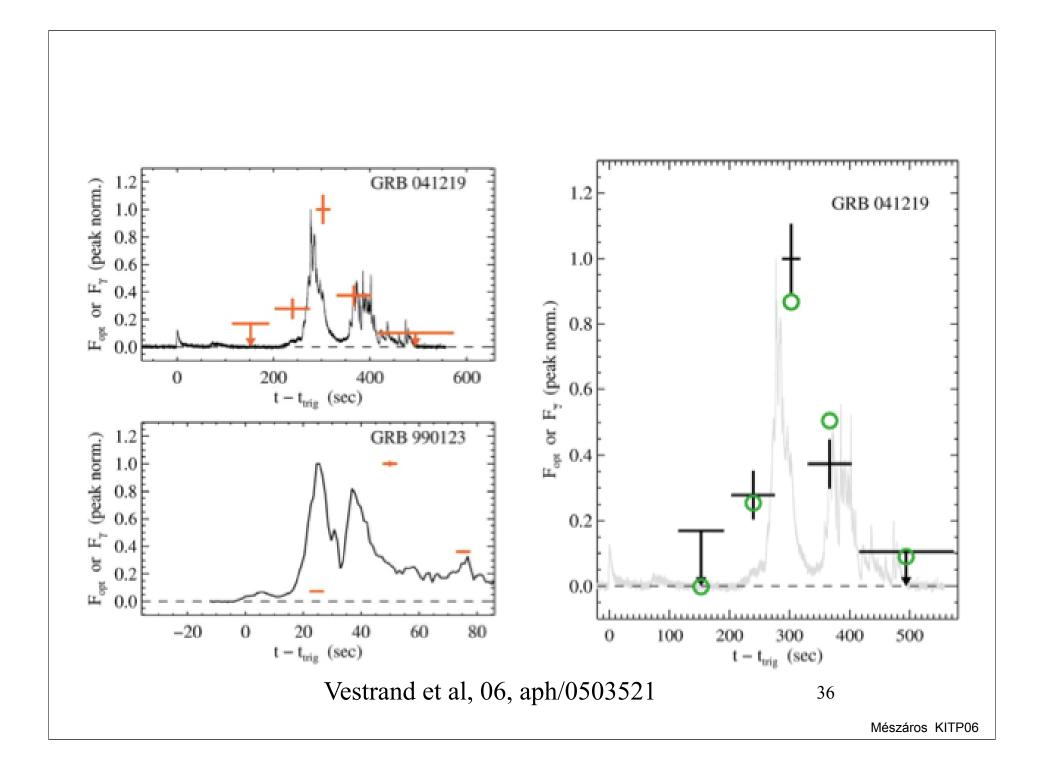


- At a redshift z=6.29
   (~reionization; most distant known known QSR: z~ 6.4)
- GRB 050904 X-ray flux
   exceeded that of the
   brightest known X-ray QSO
   SDSS J0130+0524,
   by up to x10<sup>5</sup>, for days

← SDSS J0130 (multiplied by 100)






- Prompt O/UV flash as bright as 990123 (~ 9th mag!) at same z (rev. shock..)
- $E_{iso} \sim 10^{54}$  erg, similarly very high ;decay similarly steep ( $\sim t^{-3}$ )
- Observed at 800-1000 nm by TAROT (25 cm tel.!) [Boer et al, astro-ph/0510381]

#### Why 050904 and 990123?

- Need high  $E_{iso} \sim 10^{54}$  erg ? (or small beam?)
- If reverse shock rest frame spectrum in UV (relativistic reverse shock?)
  - → ground detection @ O/IR: need high z (or else need enough rest-frame spectrum extending redwards of Lyα, so not absorbed)
- Need burst with strong flares (weak "smooth" afterglow component)?
- Other non-obs. or weak flash: pair formation, or weak field in ejecta → rest-frame spectrum shifted to IR?

#### Origin of prompt O-flash

- 4 prompt optical flashes have been measured while the gamma-rays were still in progress
- in some (GRB 050904, Boer et al, astro-ph/0510381; also GRB 041219, Vestrand et al, astroph/0503521)
  - prompt optical 1.c. correlates with gamma-rays
    - ⇒ emission from the same region? (e.g. internal shock?)
- in others (GRB 050401, Rykoff et al astroph/0508495, GRB 990123, Akerloff et al 00)
  - prompt optical l.c. does NOT correlate with gamma-rays
  - ⇒ emission from different region ? (e.g. reverse shock?)



#### Conclusions

- Swift is significantly expanding our view & understanding of afterglows
- New early XR, O features appear to be understandable within context of standard afterglow model, with (not quite mastered) extensions Understanding of new XR "smooth" features is reasonable, but fluid dynamics remains controversial - and MHD may play a large role.
- XR flares are significant challenge, also for progenitor, central engine
- Relation of early XRT, UVOT to BAT flux levels pose challenges to prompt GRB gamma-ray mechanisms (efficiencies, etc..)
- Commonality & differences between short and long GRB afterglow features will yield important clues, need much further work (diff. due to lower  $E_{iso}$ , broader  $\theta_{iet}$ , E vs. Irr, Sp hosts?)
- Information on long and short GRB jet breaks (collimation) not very extensive yet, possibly due to higher avg. z and lower fluxes?
- O/UV late afterglows largely support forward shock AG interpretation
- Prompt O/IR flash detection may hold vital clues (rareness? reverse shock interpretation? other..?)
- Potential for high-z IGM probing, SFR mapping appears poised for transition from wish to actual data to be modeled → cosmology.