Models of Early Afterglows in the light of Swift Peter Mészáros Pennsylvania State University #### GRB: standard paradigm #### **Hyperaccreting Black Holes** Bimodal distribution of \mathbf{t}_{γ} duration ← ↑ Long (t_g > 2 s) M. Ruffert, H.-Th. Janka, 1998 Mészáros KITP06 #### **Relativistic Outflows** - Energy-impulse tensor: T_{ik} = w u_i u_k + p g_{ik}, uⁱ: 4-velocity, g_{ik}= metric, g₁₁=g₂₂=g₃₃=-g₀₀=1, others 0; ultra-rel. enthalpy: w = 4p ∝ n^{4/3}; w, p, n: in comoving-frame - 1-D motion : $u^i=(\gamma,u,0,0)$, where $\mathbf{u}=\Gamma(\mathbf{v}/\mathbf{c})$, $\mathbf{v}=3$ -velocity, $\mathbf{A}=$ outflow channel cross section : - Impulse flux energy flux particle number flux Isentropic flow : L, J constant → **w** Γ /n = constant (relativistic Bernoulli equation); for ultra-rel. equ. of state p ∝ w ∝ n^{4/3}, and cross section A ∝ r² - → $n \propto 1 / r^2 \Gamma$ comoving density drops - \rightarrow $\Gamma \propto r$ bulk" Lorentz factor initially grows with r. - But, eventually saturates, Γ→E_j/M_jc² ~ constant #### Shock formation - Collisionless shocks (rarefied gas) - "Internal" shock waves: where ? If two gas shells ejected with Δ Γ = Γ₁-Γ₂~ Γ, starting at time intervals Δt ~t_{v.}, they collide at r_{is} , $$r_{is} \sim 2 c \Delta t \Gamma^2 \sim 2 c t_v \Gamma^2 \sim 10^{12} t_{-3} \Gamma_2^2 cm$$ (internal shock) [Alternative picture: magnetic dissipation, reconnection] "External shock": merged ejected shells coast out to r_{es}, where they have swept up enough enough external matter to slow down, E=(4p/3)r_{es}³ n_{ext} m_p c² Γ ², $$r_{es}$$ ~ $(3E/4pn_{ext}m_pc^2)^{1/3}$ $\Gamma^{-2/3}$ ~ $3.10^{16}(E_{51}/n_O)^{1/3}$ $\Gamma_2^{-2/3}$ cm (external shock) #### Internal & External Shocks in optically thin medium: #### **LONG-TERM BEHAVIOR** Internal shocks (or other, e.g. magnetic dissipation) at radius r_i~10¹²cm - External shocks at r_e ~10¹⁶cm; progressively decelerate, get weaker and redder in time (Rees & Meszaros 92) - Decreasing Doppler boost: → roughly, expect radio @ ~1 week , optical @ ~1 day (Paczynski, & Rhoads 93, Katz 94) - PREDICTION : Full quantitative theory of: External forward shock spectrum softens in time: X-ray, optical, radio ... →long fading afterglow (t ~ min, hr, day, month) External reverse shock (less relativistic, cooler, denser): **Prompt Optical** → quick fading (t ~ mins) (Meszaros & Rees 1997 ApJ 476,232) Mészáros KITP06 ## Fireball Model: long GRBs # Standard External Forw. & Rev. Shock Synchroton & IC spectrum Lower energy: Synchrotron (reverse: eV, forward: MeV) Higher energy: Inv. Compton (forward: GeV) #### Shock Photon Spectrum - Non-thermal power law spectrum, both in int. and ext. shocks, due to - Synchrotron, peak at ~200 keV (or ~ eV?) - Inv. Compton, peak ~ GeV (or ~200 keV? - Sy peak location, ratio Sy/IC dep. on B_{sh}, γ_{e,m} - Peak **softens** with time - Ratio Sy/IC decr w. time #### SWIFT: New Results - > 90 new afterglows localized since launch - Redshifts for >18 long GRB and 4 short GRB - <z_{long}> ~2.4-2.8, which is 2x Beppo-Sax distance (i.e. significantly *fainter & redder*, than Beppo-Sax afterglows!) - <z_{short}> ~0.1-0.7; L_{short}~ 10⁻² L_{long}; compact merger - XR light curves (10²s-10⁴s): new features (both long and short) steep + shallow decay, flares → evidence for *continued activity?*In the period 1 min < t < hrs, new features show up, which may be natural extensions of the standard burst & AG model (or ..?) # New features seen by Swift: A Generic X-ray Lightcurve Mészáros KITP06 ### Afterglow: when does it start? • standard interpretation: AG starts at $t_{dec} \sim (3/4) (r_{dec}/2 c \Gamma^2) (1+z)$ ~ $$(3/8 \text{ c } \Gamma^2)(3E/4\pi \text{ n m}_p \text{ c}^2 \Gamma^2)^{1/3}(1+z)$$ ~ $$10^2 (E_{52}/n_0)^{1/3} \Gamma_2^{-8/3} (1+z) s$$ - But, for prompt duration $T=T_{\gamma}=T_{\text{outflow}} \sim T90$ - "Thin shell": T < t_{dec} → AG start at t_{dec} above - "Thick shell": $T > t_{dec} \rightarrow AG$ start at $T \sim T_{\gamma} \sim T90$ ## Example: GRB 050315 Vaughn et al. 2005 ## Initial steep drop: $F_x \propto (t-t_0)^{-\alpha}$ - Very early jet break? (jet too narrow) - Patchy jet (spike)? (same ... probability?) - Cocoon radiation? Possible (Pe'er, et al, 06 in prep.) - Current bet: *tail end of GRB* (high latitude emission) : radiation from outside main beam, $\theta > \Gamma^{-1}$ - arrives at $t \sim R\theta^2/2c$ later than from $\theta \sim 0$, - is softer by $D\sim t^{-1}$ (Nousek et al 05, Zhang et al 05, Panaitescu et al 05)) - expect $\alpha=2+\beta$, where F~ $t^{\alpha}v^{\beta}$ (Kumar, Panaitescu 00) - ~ OK , generally; departures may be understood # Initial rapid decay: High latitude emission #### Radiation Components: - 1 : Prompt γ-rays (GRB) from I.o.s. angles θ < Γ-1 - 2: tail-end of GRB, from high latitude emission: γ-rays emited promptly, but from angles θ >Γ-1; arrive at time t ~ Rθ²/2c later than from θ~0, and is softer by D~t-1; expect $$\alpha = 2 + \beta$$, ~ OK 3 : afterglow, from forward shock at l.o.s.angles θ < Γ-1; later than (or partially overlap with) high latitude comp. (2) #### High latitude ... - Time slope α depends on choice of t_0 - \rightarrow can fit t_0 such that slope is satisfied - i.e., determine t_{dec} ? (Liang et al astroph/0602142) - When T > t_{dec} (and also when T< t_{dec}) can have an admixture of (a) afterglow (l.o.s) θ < Γ -1, and (b) high latitude θ > Γ -1 components. Generally β_{prompt} < β_{steep} , so can accommodate steeper decays than 2+ β_{prompt} (O'Brien et al, 05) - Flares: t₀ fit can give pulse ejection time by engine (Liang et al 06) - Structured jet: for on-beam viewing jet shape has little effect, but off-beam can get shallower slope (Dyks et al aph/0511699) - From initial steep decay slope, t_0 constraints suggest $t_0 \sim t_{\rm trigger}$, may infer prompt emission radius R_{γ} (Lazzati, Begelman aph/0511658) - Slope 0.3 ≤ α ≤ 1 : likely due to "refreshed shock" ... - I.e. the forward afterglow shock receives continued reinforcement from late-arriving ejecta NOTE: late arriving, but not necessarily late ejected! (Rees-Meszaros 98, Panaitescu, PM, MJR 98, Kumar-Piran 00, Sari-Meszaros 00, Nousek et al 05, Zhang et al 05, Granot-Kumar 05) # Shallow decay $(0.2 \le \alpha \le 1)$ - Probably due to refreshed shocks, due either to: - Long duration ejection (t ~ t_{flat}) ; or - Short duration ejection (t ~ t_γ), but with range of Γ, e.g. M(Γ)~ Γ^{-s}, E(Γ) ~ Γ^{-s+1}, for ρ~r^{-g} ext. medium : e.g. FS: $$\alpha = [-4-4s+g+sg+\beta(24-7g+sg)]/[2(7+s-2g)]$$ Rees+PM, 98 ApJ 496, L1; Sari +PM, 00, ApJ 535, L33; Zhang +PM 01, ApJ 552, L35 Note : Fit to Swift data $\Rightarrow \Gamma$ distrib. may be a broken power law (Granot, Kumar astro-ph/0511049) ## Refreshed (shallow decay) - Note: E_{Xshallow} ≤ E_{yprompt} [O'Brien, et al, 06]. - But in order for refreshed shock to dominate the afterglow, energy input in refreshed component needs exceed that in prompt - \Rightarrow either rad'n. effic. $\varepsilon_{\gamma} > \varepsilon_{\chi}$ (eg prompt is Poynting dominated ?..) - or fraction of refreshed shock energy undetected (IR? GeV?...) - or preactivity evacuates cavity, or fraction of energy into electrons ∝t^{1/2} (loka et al, astro-ph/0511749 - Alternative: shallow decay due to emission from anisotropic jet lines of sight just outside sharp edge of main bright jet (Eichler-Granot astroph/0509857) - Other possibilities: - E_kin underestimated (also in BATSE), so ϵ_γ is reasonable relative to ϵ_X - Two-component jet (narrow-fast/broad-slow) (Granot, et al, astroph/0601056) Burrows et al. 2005, Science; Falcone et al. 2005, ApJ Mészáros KITP06 #### **XR Flares** - Main puzzles: large energy E_{xfl} ≤ 0.1-1 E_{γprompt} steep rise/decay F∝ (t-t₀)^α, α~±3-6 - Possible causes: - refreshed (forward) shocks (rise & decay too shallow) - reverse IC component (one shot affair- where is forward?) - interaction with external matter (rise/decay slope?) - continued central engine activity, e.g. internal shocks, dissipation (difficult for central engine, but address temp. slope, total energy - less problematic than others?) ### XR Flare triggers? - Gravitational instability → disk fragmentation - → lumpy accretion (Perna, Armitage, B.Zhang) - MHD accretion- magnetic tension ("springy") - → lumpy accretion (Proga & Begelman, Fan, Proga &B.Zhang) - Short bursts: BH-NS disr (SPH GR numerical) - → prompt accretion + extended tail - → delayed lumpy accretion (Davies, et al 05; Lee et al 00, Rosswog et al 04; Laguna, Rasio 05) # MHD accretion? (Proga & Begelman 03) # Main Possible Explanations of long GRB afterglow new features - Initial drop: likely due to tail end of GRB (high latitude emission): rad'n from θ>Γ⁻¹ arrives at t ~ Rθ²/2c later than from θ~0, is softer by D~t⁻¹; expect α=2+β, ~ OK - Shallow decay: probably "refreshed shocks", **either** from **Longer** ejection (t ~ t_{flat}); **or Short** ejection (t ~ t_{γ}), but with range of Γ , e.g. M(Γ)~ Γ -s , E(Γ) ~ Γ -s+1 - Flares: likely due to continued central engine activity: main constraints: very sharp rise and decline (t±3 ←→ t±6) - But: remains work in progress- depending also on new observations #### Short & Long Afterglows - Big question: are they the same? - Oth order answer: looks like yes - initial steep decay ✓ - XR flares ✓ - "normal forward shock" decay ✓ - jet break ✓ - But: 1st order differences are interesting - Avg. kin. energy/solid angle x100 smaller - Avg. jet angle x2 larger than in long bursts (Fox et al 05, Panaitescu 05) #### **Short Bursts** #### - Hosts: E, Irr, SFR (compat. W. NS merg, ✓ but: some SGR, other?) - **Redshift** : < 0.1 to ~ 0.7 - XR, OT, RT: yes (mostly) - XR l.c.: similar to long bursts? (XR bumps too- late engine?) #### SHB afterglow fits - So far, > 11 shb afterglows, 5-6 hosts (D. Fox talk, Nature 05) - AG fits for 050709 (Irr), 050724 (E) (Panaitescu, aph/0511588) Using fluxes and break times, standard ag model: $$\Gamma = 6.5 (E_{50}/n_0)^{1/8} t_d^{-3/8}, \quad \theta_j = \Gamma(t_b)^{-1}$$ $$\to \theta_j = 9^{\circ} (n_0/E_{50})^{1/8} t_{bd}^{3/8},$$ $$E_j = \pi \theta_j^2 E \sim 10^{49} n_0^{1/4} (E_{50} t_{bd})^{3/4} erg$$ ``` High /low dens. soln's: 050709:\theta_{j}>6^{\circ}, 10^{-4}< n<10^{-1} cm⁻³, E~3-300 x 10^{50} erg/s \theta_{j}>2^{\circ}, n<10^{-5} cm⁻³, E~2-10 x 10^{49} erg/sr 050724:\theta_{j}>8^{\circ}, 10^{-1}< n<10^{3} cm⁻³, E~1-50 x 10^{49} erg/sr ``` - but: GRB 050724 (Grupe et al, 06, in prep.) Chandra late obs.: no break seen. - while: GRB 051221A : Swift + 2 Chandra obs. : well defined jet break appears @ 4 days $\Rightarrow \theta_j \sim 7$ °, $E_j \sim 2.10^{49}$ erg ## **Short burst** paradigm: **NS-NS** or **NS-BH** merger BH + accretion Paradigm seems compatible with hosts, and (for Kerr BH-NS) some simulations suggest extended activity & flares ⇒ Laguna, Rasio 06; (Preliminary) ## BH-NS merger? (Laguna & Rasio '06) Schwarz.BH-NS Kerr-proBH-NS #### Prompt Optical afterglows - ← expected behavior: reverse shock causes prompt (10's of sec) bright (m_V ≥ 9) optical flash, decaying much faster than long-lasting forward shock optical afterglow (Mészáros-Rees 97) - First seen in GRB 990123 - ← Rotse (Akerlof et al 99), and few other bursts, but rare: why? - Could be that - rev.shock hi-mag→suppress? - pair formation → spec. to IR ? - rev. shock rel. → spec. to UV? - Latest : **GRB 050904** (z=6.29) shows prompt bright opt flash! Mészáros KITP06 # Most distant long burst from Swift (z=6.29): GRB050904 - Discovered/localized by Swift BAT, XRT, UVOT - Prompt ground I,R band TAROT,P60 upper limits, - Detection J=17 mag FUN/SOAR ← photometric z >6 - Spectroscopy Subaru 8.5 m @ t=3.5 day: z = 6.29! # GRB 050904 as an XR beacon - At a redshift z=6.29 (~reionization; most distant known known QSR: z~ 6.4) - GRB 050904 X-ray flux exceeded that of the brightest known X-ray QSO SDSS J0130+0524, by up to x10⁵, for days ← SDSS J0130 (multiplied by 100) - Prompt O/UV flash as bright as 990123 (~ 9th mag!) at same z (rev. shock..) - $E_{iso} \sim 10^{54}$ erg, similarly very high ;decay similarly steep ($\sim t^{-3}$) - Observed at 800-1000 nm by TAROT (25 cm tel.!) [Boer et al, astro-ph/0510381] #### Why 050904 and 990123? - Need high $E_{iso} \sim 10^{54}$ erg ? (or small beam?) - If reverse shock rest frame spectrum in UV (relativistic reverse shock?) - → ground detection @ O/IR: need high z (or else need enough rest-frame spectrum extending redwards of Lyα, so not absorbed) - Need burst with strong flares (weak "smooth" afterglow component)? - Other non-obs. or weak flash: pair formation, or weak field in ejecta → rest-frame spectrum shifted to IR? #### Origin of prompt O-flash - 4 prompt optical flashes have been measured while the gamma-rays were still in progress - in some (GRB 050904, Boer et al, astro-ph/0510381; also GRB 041219, Vestrand et al, astroph/0503521) - prompt optical 1.c. correlates with gamma-rays - ⇒ emission from the same region? (e.g. internal shock?) - in others (GRB 050401, Rykoff et al astroph/0508495, GRB 990123, Akerloff et al 00) - prompt optical l.c. does NOT correlate with gamma-rays - ⇒ emission from different region ? (e.g. reverse shock?) #### Conclusions - Swift is significantly expanding our view & understanding of afterglows - New early XR, O features appear to be understandable within context of standard afterglow model, with (not quite mastered) extensions Understanding of new XR "smooth" features is reasonable, but fluid dynamics remains controversial - and MHD may play a large role. - XR flares are significant challenge, also for progenitor, central engine - Relation of early XRT, UVOT to BAT flux levels pose challenges to prompt GRB gamma-ray mechanisms (efficiencies, etc..) - Commonality & differences between short and long GRB afterglow features will yield important clues, need much further work (diff. due to lower E_{iso} , broader θ_{iet} , E vs. Irr, Sp hosts?) - Information on long and short GRB jet breaks (collimation) not very extensive yet, possibly due to higher avg. z and lower fluxes? - O/UV late afterglows largely support forward shock AG interpretation - Prompt O/IR flash detection may hold vital clues (rareness? reverse shock interpretation? other..?) - Potential for high-z IGM probing, SFR mapping appears poised for transition from wish to actual data to be modeled → cosmology.