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Preamble

• joint work with members of HLT & PR lab (Informatik 6):
– acoustic modeling: Patrick Doetsch, Pavel Golik, Tobias Menne, Zoltan Tüske, Albert Zeyer, ...
– language modeling: Martin Sundermeyer, Kazuki Irie, ...
– cf. hltpr.rwth-aachen.de/web/Publications

• toolkits used for our own results presented here are available on our web site:
– RASR: RWTH Automatic Speech Recognition toolkit (also handwriting)
– RWTHLM: RWTH neural network based Language Modeling toolkit (esp. LSTM)
– RETURNN: RWTH Extensible Training for Universal Recurrent Neural Networks (new!)
– ...
– cf. hltpr.rwth-aachen.de/web/Software
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Schlüter et al. — Human Language Technology and Pattern Recognition
RWTH Aachen University — June 26, 2017



Human Language Technology: Overview & History,

Outline

Human Language Technology: Overview & History

Statistical Approach

Neural Network and Statistical Approach

Deep Learning for Acoustic Modelling

Deep Learning for Language Modelling

Current State-of-the-Art in ASR

References

Automatic Speech Recognition: State-of-the-Art in Transition - A Neural Paradigm Change?
KITP Workshop on the Physics of Hearing, KITP, Santa Barbara, CA
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Human Language Technology: Overview & History,

Terminology:
• speech: acoustic signal, spoken language

• language: text, sequence of characters,
written language

• scientific disciplines:
– NLP: natural language processing (in

the strict sense): written language only
– HLT: human language technology:

spoken and written language

Characteristic task properties:
• well-defined ’classification’ tasks:

– 5000-year history of (written!) language
– well-defined classes:

letters or words of the language

• easy task for humans (at least for natives!)

• hard task for computers
(as last 50 years have shown!)

Specific well-defined tasks in HLT:
• Automatic Speech Recognition (ASR)

Informatik 6: Human Language Technology and Machine Learni ng

Automatic Speech Recognition

we  want to preserve this  great  idea

Machine Translation

wir wollen diese große Idee erhalten

 we  want to    preserve  this   great   idea

Handwriting Recognition

we  want to preserve this  great  idea

three tasks for machine learning:
– automatic speech recognition (ASR)
– handwriting recognition (HR)
– machine translation (MT)

H. Ney 1 May 28, 2015

• Text image recognition (printed and
handwritten text, offline) (HWR)
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• Machine Translation (MT)
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Human Language Technology: Overview & History,

Speech and Language: Characteristic Properties

Typical situation:
input sequence → output sequence

Tasks:
• speech recognition: speech signal → words/letter sequence

• recognition of image text: text image → words/letter sequence
(printed/written characters)

• machine translation: source word/letter sequence → target words/letter sequence

Common property:
output sequence = natural language word/letter sequence

Terminology:
• compound decision theory

• contextual pattern recognition

• structured output

elementary pattern classification
and machine learning:

single class index
without any structure
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Human Language Technology: Overview & History,

Speech recognition

What is the problem?
• ambiguities at all levels

• interdependencies of decisions

Approach [CMU and IBM 1975]:
• hypothesis scores

• probabilistic framework

• statistical decision theory

Modern terminology:
• machine learning

SPEECH SIGNAL

ACOUSTIC ANALYSIS

RECOGNIZED SENTENCE

SENTENCE 
 

KNOWLEDGE SOURCES
SEARCH: INTERACTION OF 

                            KNOWLEDGE SOURCES

WORD  

PHONEME 
     

LANGUAGE 
MODEL

PRONUNCIATION 
LEXICON 

PHONEME
MODELS

SEGMENTATION AND
CLASSIFICATION

SYNTACTIC AND
SEMANTIC ANALYSIS

WORD BOUNDARY DETECTION
AND  LEXICAL ACCESS

HYPOTHESES

HYPOTHESES

HYPOTHESES
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Human Language Technology: Overview & History,

History Speech Recognition 1975-2015

• steady increase of challenges:
– vocabulary size: 10 digits ... 1000 ... 10.000 ... 500.000 words
– speaking style: read speech ... colloquial/spontaneous speech

• steady improvement of statistical methods: HMM, Gaussians and mixtures, statistical trigram
language model, adaptation methods, discriminative sequence training, artificial neural nets, ...

• 1985-93: criticism about statistical approach
– too many parameters and saturation effect
– ... ’will never work for large vocabularies’ ...

• remedy(?) by rule-based approach:
– language models (text): linguistic grammars and structures
– phoneme models (speech): acoustic-phonetic expert systems
– limited success for various reasons:

huge manual effort is required!
problem of coverage and consistency of rules
lack of robustness

• evaluations, experimental tests:
– the same evaluation criterion on the same test data
– direct comparison of algorithms and systems
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Human Language Technology: Overview & History,

Bayes Architecture for Speech Recognition (and other HLT tasks)

Training
Data

Test
Data

Statistical Models
Error Measure

(Cost Function)

 Training 
Criterion

Bayes Decision Rule

Output

Parameter
Estimates

Evaluation

Optimization

Speech Recognition = Modeling + Statistics + Efficient Algorithms
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Human Language Technology: Overview & History,

Bayes Architecture for Speech Recognition (and other HLT tasks)

Training
Data

Test
Data

Statistical Models
Error Measure

(Cost Function)

 Training 
Criterion

Bayes Decision Rule

Output

Parameter
Estimates

Evaluation

Optimization

Speech Recognition = Modeling + Statistics + Efficient Algorithms
Speech Recognition = Modeling + Performance Measure

6 of 78 Automatic Speech Recognition: State-of-the-Art in Transition - A Neural Paradigm Change?
KITP Workshop on the Physics of Hearing, KITP, Santa Barbara, CA
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Human Language Technology: Overview & History,

Statistical Approach

Ingredients:
• performance measure (often edit distance):

to judge the quality of the system output
• probabilistic models (with a suitable structure):

capture dependencies within/between input observation sequence X and output word sequence W

– elementary observations: Gaussian mixtures, log-linear models, SVMs, NNs, ...
– sequence context: n-gram Markov chains, HMMs, CRFs, RNNs, ...
– effectively: discrimination function needed

• training criterion:
to learn the free parameters of the models

– ideally should be linked to performance criterion
– might result in complex mathematical optimization (efficient algorithms!)

• Bayes decision rule:
to generate the output word sequence

– combinatorial problem (efficient algorithms)
– should exploit structure of models

Examples: dynamic programming and beam search, A∗ and heuristic search, ...
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Human Language Technology: Overview & History,

ASR Architecture Speech Input

Feature
Extraction

Acoustic Model

Language Model

Global Search Process:

maximize

  x1 
...
 
xT

p(w1 ... wN)  p(x1 ... xT  |  w1...wN)

  w1 ... wN

Recognized
Word Sequence

 

over

  p(x1 ... xT  |  w1...wN )

p(w1 ... wN)

Feature Vectors

opt {w1 ... w   }N

  s1 ... sM

Samples

Statistical Approach to Automatic
Speech Recognition (ASR)
[Bahl & Jelinek+ 1983]
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Human Language Technology: Overview & History,

Bayes Decision Rule: Sources of Errors

Why does a ’Bayes’ decision system make errors?

To be more exact: Why errors in addition to so-called Bayes errors,
i.e. the minimum that can be achieved?

Reasons from the viewpoint of Bayes’ decision rule:
• probability models:

– ’incorrect’ observation x : only incomplete part or
poor transformation of true observations used

– incorrect models, e.g. pϑ(c|x) or pϑ(cN1 |xT1 )
• training conditions:

– poor training criterion
– not enough training data
– mismatch conditions between training and test data

• training criterion + efficient algorithm:
– suboptimal algorithm for training (e.g. gradient descent)

• decision rule:
– incorrect error measure, e.g. MAP rule in ASR and MT

• decision rule + efficient algorithm:
– suboptimal search procedure, e.g. beam search or N-best lists
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Human Language Technology: Overview & History,

ASR Architecture:
Neural Networks

Speech Input

Feature
Extraction

Acoustic Model

Language Model

Global Search Process:

maximize

  x1

 

...

 

xT

p(w1 ... wN)  p(y1 ... yT  |  w1...wN)

  w1 ... wN

Recognized
Word Sequence

 

over

  p(y1 ... yT  |  w1...wN )

p(w1 ... wN)

Feature Vectors

opt {w1 ... w   }N

  s1 ... sM

Samples

Neural
Network

  y1...yT

neural feature transformation:
• tandem [Hermansky & Ellis+ 2000]

• bottleneck [Grézl & Karafiát+ 2007]
earlier introduced as non-linear LDA
[Fontaine & Ris+ 1997]
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Human Language Technology: Overview & History,

ASR Architecture:
Neural Networks

Speech Input

Feature
Extraction

Acoustic Model

Language Model

Global Search Process:

maximize

  x1 
...
 
xT

p(w1 ... wN)  p(x1 ... xT  |  w1...wN)

  w1 ... wN

Recognized
Word Sequence

 

over

  p(x1 ... xT  |  w1...wN )

p(w1 ... wN)

Feature Vectors

opt {w1 ... w   }N

  s1 ... sM

Samples
neural acoustic modeling:
• hybrid [Bourlard & Morgan 1993]
→ LVCSR [Seide & Li+ 2011]

• connectionist temporal classification
(CTC) [Graves & Fernández+ 2006]
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Human Language Technology: Overview & History,

ASR Architecture:
Neural Networks

Speech Input

Acoustic Model

Language Model

Global Search Process:

maximize

p(w1 ... wN)  p(s1 ... sM  |  w1...wN)

  w1 ... wN

Recognized
Word Sequence

 

over

  p(s1 ... sM  |  w1...wN )

p(w1 ... wN)

opt {w1 ... w   }N

  s1 ... sM

Samples

integrated learning of acoustic
model and feature extraction
• single channel [Palaz & Collobert+ 2013]

[Tüske & Golik+ 2014]
[Golik & Tüske+ 2015]

• multichannel [Sainath & Weiss+ 2015]
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Human Language Technology: Overview & History,

ASR Architecture:
Neural Networks

Speech Input

Feature
Extraction

Acoustic Model

Language Model

Global Search Process:

maximize

  x1 
...
 
xT

p(w1 ... wN)  p(x1 ... xT  |  w1...wN)

  w1 ... wN

Recognized
Word Sequence

 

over

  p(x1 ... xT  |  w1...wN )

p(w1 ... wN)

Feature Vectors

opt {w1 ... w   }N

  s1 ... sM

Samples
neural language modeling:
• feed-forward (FF) [Schwenk 2007]

• recurrent [Mikolov & Karafiat+ 2010]

• LSTM [Sundermeyer & Schlüter+ 2012]

• long-context FF [Tüske & Irie+ 2016]
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Human Language Technology: Overview & History,

ASR Architecture:
Neural Networks

Speech Input

Feature
Extraction

Integrated Model/
Discrimination 

Function

Global Search Process:

maximize

  x1 
...
 
xT

 g(x1 ... xT  ,  w1...wN)

  w1 ... wN

Recognized
Word Sequence

 

over

  g(x1 ... xT  ,  w1...wN )

Feature Vectors

opt {w1 ... w   }N

  s1 ... sM

Samples

 

integrated NN approach:
• attention, encoder/decoder approach

[Bahdanau & Chorowski+ 2015]
[Chan & Jaitly+ 2015]

• segmental/inverted HMM
[Lu & Kong+ 2016]
[Doetsch & Hegselmann+ 2016]

14 of 78 Automatic Speech Recognition: State-of-the-Art in Transition - A Neural Paradigm Change?
KITP Workshop on the Physics of Hearing, KITP, Santa Barbara, CA
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Statistical Approach,

Principles

Starting Points

• very complex problem: no perfect knowledge of the dependencies in speech and language:
– different from conventional computer science
– like a problem in natural sciences (cf. approximative modeling in physics)

• perfect solution will be difficult:
– we accept that the system will make errors
– but we try to find the best compromise

• fairly general view:
– input sequence (ASR: sequence over time t: X := x1...xt...xT )
– output sequence: W := w1...wn...wN of unknown length N

• we need a generation mechanism:
X → W = Ŵ (X )

• to this purpose, we assume a
– posterior distribution pr(W |X )
– which can be extremely complex: both arguments are sequences!
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Statistical Approach,

Principles

Bayes Decision Rule for Sequences

• performance measure or cost function L[W̃ ,W ] (e.g. edit distance)

between true output sequence W̃ and hypothesized output sequence W .
• Bayes decision rule minimizes expected cost:

X → W (X ) := arg min
W

{∑
W̃

pr(W̃ |X ) · L[W̃ ,W ]
}

• standard decision rule uses sequence-level cost (MAP rule):

X → Ŵ (X ) := arg max
W

{
pr(W |X )

}
since [Bahl & Jelinek+ 1983], this simplified Bayes decision rule is widely used
for speech recognition, handwriting recognition, machine translation, ...
well-known inconsistency! [Jelinek 1997, pp. 4-5]

• however, standard decision rule works well, as often both decision rules agree,
which can be proven under certain conditions [Schlüter & Nussbaum+ 2012], e.g.:

L[W , W̃ ] is a metric, and max
W

pr(W |X ) ≥ 0.5 ⇒ W (X ) = Ŵ (X )

• approximative (second pass) sequence-level cost approaches provide good improvements
[Stolcke & König+ 1997, Mangu & Brill+ 1999, Goel & Byrne 2000, Wessel & Schlüter+ 2001]
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Statistical Approach,

Principles

Generative vs. Discriminative Approach

Bayes Decision Rule:

X → W = W (X ) := arg min
W

{∑
W̃

pr(W̃ |X ) · L[W̃ ,W ]
}

practical considerations:
• unknown distribution pr(W |X ):

remedy: replace true pr(W |X ) by a model p(W |X )
and learn its free parameters from a HUGE set of examples

• important problem:
– compositional modelling for p(W |X ) is needed since W and X are sequences
– units smaller than the whole sequence are needed (e.g. phrases/word groups, words, letters)

• two principal approaches:
– generative approach: p(W ,X ) = p(W ) · p(X |W )

language model p(W ), trained on text data
acoustic model p(X |W ), trained on (transcribed) audio data

– discriminative (or direct) approach: p(W |X ) = p(W ,X )/
∑

W̃ p(W̃ ,X )
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Statistical Approach,

Principles

Generative vs. Discriminative Training

Starting point:
• models pθ(W ) and pθ(X |W ) with unknown parameters θ
• training data: set of (audio, sentence) pairs (Xr ,Wr), r = 1, ...,R

Training:
• generative model: maximum likelihood (along with EM/Viterbi algorithm):

F (θ) =
∑
r

log pθ(Wr ,Xr) =
∑
r

log pθ(Wr) +
∑
r

log pθ(Xr |Wr)

nice property: decomposition into two separate problems (also: separate training data):
– language model pθ(W ): without annotation!
– acoustic model pθ(X |W ): with annotation!

• discriminative model: discriminative training
– optimizes decision boundaries, e.g. maximum mutual information (MMI)
– ideally: optim. error rate, e.g. minimum classification error (MCE), minimum phone error (MPE)
– in practice:

initialization by maximum likelihood
complex optimization problem: sum over all sentences in denominator
approximation: word lattice, many shortcuts, ...
experiments: relative improvement by 5-10% over maximum likelihood
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Statistical Approach,

Acoustic Features

Alternative Acoustic
Feature Streams
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Statistical Approach,

Acoustic Features

Hierarchical MRASTA Filtering

• Long-term features:
– Representations relAtive SpecTrA (RASTA) filtering [Hermansky & Fousek 2005].
– Modulation frequency range (≈1-20Hz) relevant for speech perception.

• Multi-resolutional smoothing of temporal trajectories of critical band energies (CRBE)
• Filtering with first and second derivatives of Gaussians, g1, g2

– σ varying in the range 8-60 ms
– E.g. 12 temporal filters applied on 20 CRBEs + derivatives in freq.

• Processing fast and slow modulation spectrum by hierarchical MLPs

-1
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g
1
(t

)

-0.3 -0.2 -0.1 0 0.1 0.2

Time [s]

-2

-1

0

1

g
2
(t

)

9x frames

LDA

slow mod.

spectrum

fast mod.

spectrum

Remarks:
• FF MLPs: currently best results using MRASTA

• LSTM RNNs: filter banks sufficient, though
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Statistical Approach,

Acoustic Modeling

Speaking Rate Variation

• fundamental problem in ASR:
variation in speaking rate,
necessitates non-linear time alignment

• stochastic finite state machine:
– linear chain of states s = 1, ..., S
– transitions: forward, loop and skip

• trellis:
– unfold over time t = 1, ...,T
– path: state sequence sT1 = s1...st...sT
– observations: xT1 = x1...xt...xT

S
T

A
T

E
  
IN

D
E

X

TIME  INDEX

2 31 5 64

general view:
• two sequences without synchronization: acoustic vectors and states (with labels)

• mechanism that takes care of the synchronization (=alignment) problem
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Statistical Approach,

Acoustic Modeling

Hidden Markov Models (HMM)

The acoustic model p(X |W ) provides the link between
sentence hypothesis W and observations sequence X = xT1 = x1...xt...xT :
• acoustic probability p(xT1 |W ) using hidden state sequences sT1 :

p(xT1 |W ) =
∑
sT1

p(xT1 , s
T
1 |W ) =

∑
sT1

∏
t

[p(st|st−1,W ) · p(xt|st ,W )]

• two types of distributions:
– transition probability p(s|s ′,W ): not important
– emission probability p(xt|s,W ): key quantity

realized by GMM: Gaussian mixtures models (trained by EM algorithm)

• phonetic labels (allophones, sub-phones): (s,W )→ α = αsW

p(xt|s,W ) = p(xt|αsW )

• typical approach: models for phonemes with left and right phonetic context (triphones):
decision tree (CART) clustering for finding equivalence classes

• temporal context: augment feature vector with context window around position t
• exploit first-order HMM structure for efficient search and training
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Statistical Approach,

Acoustic Modeling

Baseline HMM training:
• maximum likelihood by EM (expectation/maximization) algorithm

• looks like the ultimate and perfect solution

Positive properties:
• FULL generative model: pθ(W ,X ) = pθ(W ) · pθ(X |W )

along with HMM for pθ(X |W ): describes the problem completely
• natural training criterion:

– maximum likelihood, i.e. maxθ
{∑

r log pθ(Wr ,Xr)
}

– virtually closed form solutions by EM algorithm
– nice from the mathematical point of view

Negative properties:
• EM or maximum likelihood criterion

– solves a problem that is more complex than required, i.e. pθ(W ,X ) vs. pθ(W |X )
– VERY hard from the estimation (learning) point of view

• well-known in classical pattern recognition, but ignored/overlooked in ASR:
density estimation, i.e. learning pθ(X |W ) or pθ(xt|α), is much harder than
classification, i.e. learning pθ(W |X ) or pθ(α|xt)
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Statistical Approach,

Language Modeling

Statistical Modeling of Syntax and Semantics

Definition of a language model (LM):
• p(wN

1 ) : (prior) probability of the word sequence wN
1 := w1...wn...wN

Need for language model in Bayes decision rule in ASR (also SMT!):

xT1 → ŵ N̂
1

(
xT1
)

= argmax
N ,wN

1

{
p(wN

1 ) · p(xT1 |wN
1 )
}

Observations about the language model p(wN
1 ):

• it can be learned from text only (unlabeled data!)
• it can improve performance dramatically

Perplexity:
• quality measure for LM (based on text data, i.e. w/o a recognition experiment)
• geometric average of probability per word by computing N-th root:

PP :=
(
p(wN

1 )
)−1/N

=
( N∏

n=1

p(wn|wn−1
1 )

)−1/N define w 0
1 as

empty sequence

• geometric average of inverse probability → interpretation: average effective vocabulary size
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Schlüter et al. — Human Language Technology and Pattern Recognition
RWTH Aachen University — June 26, 2017



Statistical Approach,

Language Modeling

Markov Chain, Count Models

Conventional approach:
• assume Markov chain of order k :

limit the dependence on the full history wn−1
0 to the immediate k predecessor words:

p(wn|wn−1
0 ) := pϑ(wn|wn−1

n−k )

terminology: (k + 1)-gram, e.g. four-, tri-, bi-, unigram (wn−1
n defines empty context for unigram)

• free parameters ϑ to be learned from training data:
conditional probabilities pϑ(wn|wn−1

n−k ) for the (k + 1)-gram events

• natural training criterion for a corpus wN
1 : minimum perplexity

max
ϑ

{ 1

N

N∑
n=1

log pϑ(wn|wn−1
n−k )

}
N→∞−→ max

ϑ

{∑
w ,hk1

pr(w |hk1 ) · log pϑ(w |hk1 )
}

– equivalent to cross-entropy training (or maximum likelihood)
– resulting estimates: relative frequencies based on event counts
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Schlüter et al. — Human Language Technology and Pattern Recognition
RWTH Aachen University — June 26, 2017



Statistical Approach,

Language Modeling

Unseen Events, Smoothing

Problem:
• most of the events are never seen in training data

• example: vocabulary of 100k = 105 words results in 1015 possible trigrams

• result: virtually all event counts are zero

Remedy:
• interpolation/combination of LMs of various orders k ,

e.g. fivegrams, fourgram, trigram, bigram and unigram events
• various strategies:

– models: interpolation or back-off
– estimation: cross-validation or leave-one-out
– concept of generalized marginal distributions, e.g. going from trigrams to bigrams

• most strategies implemented in LM toolkit by SRI
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Statistical Approach,
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Statistical Approach,

Search

Search Space

Combinatorial complexity
• Bayes decision rule involves optimization over all

possible word sequences and alignments

• Number of word sequences and number of
alignment paths rise exponential with length

Dynamic programming
• Markov assumptions in HMM and LM can be

exploited for efficient search

• Recursion equations reduce complexity to being linear
in input length and polynomial in vocabulary size

• For limited vocabularies and LM context exact
solution of optimization problem possible.
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Statistical Approach,

Search

Beam Search

Large vocabulary
• even for moderate LM context, for large vocabularies (& 10k), exhaustive search becomes

prohibitive

• approximations are needed for efficient search

• utilize probabilistic scoring for hypothesis pruning

Dynamic programming hypothesis pruning
• time-synchronous propagation of partial dynamic programming hypotheses

• discard hypotheses relative to current best hypotheses

• goal: complexity overall linear in input

Interrelation with Modeling
• more sophisticated models usually introduce higher complexity into system

• however: scores become more pronounced

• allows for tighter pruning, compensates increase in complexity
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Neural Network and Statistical Approach,

Basics
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Neural Network and Statistical Approach,

Basics

(First) NN Renaissance around 1986

Various interpretations/justifications:
• human/biological brain

• massive parallelism

• mathematical viewpoint:
modelling ANY input-output relation

Typical ANN structure:
• MLP: feedforward multi-layer perceptron

• with input, hidden and output layers

Theoretical results:
• one hidden layer should be sufficient (!?)

[Cybenko 1989, Hornik & Stinchcombe+ 1989]

Training:
• (hard) optimization problem with millions of free parameters (= weights)
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Neural Network and Statistical Approach,

Basics

Classical Architecture:

Feedforward Multi-Layer Percerptron (FF-MLP)
• task: classification with observation vector x ∈ IRD and associated class c

Architecture:
• several layers (feedforward links only, no recurrence)

• input layer = observation vector x :
each node represents a vector component

• between layers:
– matrix-vector product for layer pair
– nonlinear activation function

• output layer:
– softmax normalization
– each output node represents a class c and its

associated score pϑ(c, x)

• set ϑ of all weights (parameters) of the FF-MLP
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Neural Network and Statistical Approach,

Basics

ANN Activation Functions

Examples of activation functions:
• sigmoid function (also called logistic function):

u → σ(u) =
1

1 + exp(−u)
∈ [0, 1]

• hyperbolic tangent:

u → tanh(u) = 2 σ(2u)− 1 ∈ [−1, 1]

– in principle: no difference to sigmoid σ(·)
– in practice: difference due to side effects

• rectifying linear unit: u → r(u) = max{0, u}
– so far: not useful in symbolic processing (?)

• softmax function:

uc → S(uc) =
exp(uc)∑
c̃ exp(uc̃)

with
∑
c

S(uc) = 1.0

– generates normalized output for (probability distribution over) each node c of the layer under
consideration (typically: output layer)
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Neural Network and Statistical Approach,
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Neural Network and Statistical Approach,

Training and Probabilistic Interpretation

Classification with Artificial Neural Networks

Decision rule for observation (vector) x :

x → ĉx := argmaxc

{
pϑ(c, x)

} Ideal values at output nodes:
• correct class: 1

• wrong class: 0

Distinguish varying conditions for decision rule:
• no context, in isolation (here)
• context of a sequence (see later)

Training criteria:
• squared error: unconstrained output: pϑ(c , x) ∈ IR

FSE(ϑ) :=
1

N

N∑
n=1

∑
c

[pϑ(c , xn)− δ(c , cn)]2

• cross-entropy: normalized output: pϑ(c , x) ∈ [0, 1] :
∑

c pϑ(c , x) = 1

FCE(ϑ) :=
1

N

N∑
n=1

log pϑ(cn|xn)
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Neural Network and Statistical Approach,

Training and Probabilistic Interpretation

Training Criteria: Interpretation & Relation to Error Rate

Straightforward analysis shows important result for both training criteria:
• ANN outputs are (estimates of) true class posterior probabilities!
• result independent of any training strategy (e.g. type of backpropagation)
• assumes sufficient flexibility and parameters in ANN
• generalization capability from training to test set: not addressed

Gradient search (backpropagation):
• we can only find a local optimum
• there may be a huge number of local optima; but most of them seem to be equivalent
• experimental evidence: backpropagation able to find local optimum that’s typically ’good enough’
• generalization capability: implicitly taken into account by cross-validation (early stopping) ?

Relation between error rate and training criteria?
• we need a strict distinction:

– error rate for the true distribution: Bayes classification error
– error rate for the learned distribution: model classification error

• training criteria: tight upper bound for squared difference between these two error rates [Ney 2003]
• remark: this result does not address the generalization problem
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Neural Network and Statistical Approach,
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Neural Network and Statistical Approach,

Softmax Revisited: Relation to Generative Modeling

Conventional view: consider MLP with softmax output
• input layer: raw input vector z
• hidden layers perform feature extraction:

x = f (z)

with feature vector x ∈ IRD before output layer
note: no dependence on class labels c = 1, ...,C

• output layer: probability distribution over classes c

p(c |x) =
exp(λTc · x + γc)∑
c ′ exp(λTc ′ · x + γc ′)

with output layer weights λc ∈ IRD and offsets (biases) γc ∈ IR

Interpretation of MLP with softmax output:
• feature extraction followed by a log-linear classifier

Relation to generative modeling [Heigold & Schlüter+ 2012]:
• softmax operation results from using class posterior distribution of a Gaussian model
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Neural Network and Statistical Approach,

Recurrent Neural Networks for Sequence Processing
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Neural Network and Statistical Approach,

Recurrent Neural Networks for Sequence Processing

Sequence Processing

So far:
• handling of (input, output) pairs (c , x) in isolation

• no internal structure in c or x (unlike sequences)

From single events to sequences:
• consider a pair of synchronized input and output sequence over time t:

(ct , xt), t = 1, ...,T

with input vectors xt and class labels ct
• goal: model the conditional probability p(cT1 |xT1 ) of the sequence cT1

(assuming causality and a special start symbol c0):

p(cT1 |xT1 ) =
∏
t

p
(
ct|...

)
with ANN output vector yt = p(ct|...) at each time t

35 of 78 Automatic Speech Recognition: State-of-the-Art in Transition - A Neural Paradigm Change?
KITP Workshop on the Physics of Hearing, KITP, Santa Barbara, CA
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Neural Network and Statistical Approach,

Recurrent Neural Networks for Sequence Processing

Sequences with Synchronisation

Illustration:
• model with 1:1 correspondence between class labels cT1 and observations xT1
• sequence length T is known

observations xT1 : x1 x2 ... xt−1 xt xt+1 ... xT−1 xT
| | | | | | | | |

class labels xT1 : c1 c2 ... ct−1 ct ct+1 ... cT−1 cT

typical problems:
• spelling correction (character level)

• POS tagging (POS: parts of speech)

• frame labelling in ASR (incl. pronunciation and language models!)
and acoustic scores in hybrid HMMs

• recognition problems with no problems of boundary detection:
isolated words, printed character recognition, ...
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Neural Network and Statistical Approach,

Recurrent Neural Networks for Sequence Processing

Factorization of Conditional Probability p(cT1 |xT1 )

• conditional independence in cT1 with look-ahead for xT1 : p(cT1 |xT1 ) =
∏T

t=1 pt
(
ct|xT1

)
observations xT1 : x1 x2 ... xt−1 xt xt+1 ... xT−1 xT

| | | | | | | | |
class labels cT1 : − − ... − ct − ... − −

• conditional dependence in cT1 without look-ahead in xT1 : p(cT1 |xT1 ) =
∏T

t=1 p
(
ct|c t−1

0 , x t1
)

observations xT1 : x1 x2 ... xt−1 xt − ... − −
| | | | | | | | |

class labels cT1 : c1 c2 ... ct−1 ct − ... − −

• conditional dependence in cT1 with look-ahead in xT1 : p(cT1 |xT1 ) =
∏T

t=1 p
(
ct|c t−1

0 , xT1
)

observations xT1 : x1 x2 ... xt−1 xt xt+1 ... xT−1 xT
| | | | | | | | |

class labels cT1 : c1 c2 ... ct−1 ct − ... − −
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Neural Network and Statistical Approach,

Recurrent Neural Networks for Sequence Processing

Recurrent Neural Network (RNN): Principle

principle:
• introduce a memory (or context) component to keep track of history

• result: there are two types of input: memory ht−1 and observation xt
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Neural Network and Statistical Approach,

Recurrent Neural Networks for Sequence Processing

Unfolding RNN over Time
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The architecture of RNN can be unfolded over time:
• We get a feedforward network with a special deep architecture.

• The application of the backpropagation algorithm to this
unfolded network is called backpropagation through time.
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Neural Network and Statistical Approach,

Recurrent Neural Networks for Sequence Processing

LSTM RNN [Hochreiter & Schmidhuber 1997, Gers & Schraudolph+ 2002]

extension of (simple) RNN by
LSTM: long short-term memory
• problems of simple RNN:

– vanishing/exploding gradients
– no protection of memory ht

• remedy by LSTM architecture:
control the access to its internal memory
by introducing gates/switches

• refinements:

– bidirectional structure
– several hidden layers

Input Gate

Output Gate

Net Input

Net Output

1.0

g

f

Cell State

Forget Gate
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Neural Network and Statistical Approach,

Recurrent Neural Networks for Sequence Processing

LSTM RNN [Hochreiter & Schmidhuber 1997, Gers & Schraudolph+ 2002]

LSTM approach:
• split RNN hidden vector ht into

(memory) cell state ct and net output st
• overall LSTM operations involve three

’input’ vectors at time t: st−1, ct−1, xt
• update operations at time t:

cell state: ct = ct(st−1, ct−1, xt)
net output: st = st(st−1, ct−1, xt)
output layer: yt = yt(st) with softmax

• introduce three gates (input, output, forget)
to control the information flow

Input Gate

Output Gate

Net Input

Net Output

1.0

g

f

Cell State

Forget Gate
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Neural Network and Statistical Approach,

Recurrent Neural Networks for Sequence Processing

LSTM Architecture
• three vectors (over time t): ct , st , xt
• gates (or switches): use sigmoid function σ(·)
• full matrices (A2,R ;Ai ,Ri ,Af ,Rf ,Ao,Ro) and diagonal matrices (Wi ,Wf ,Wo)

• usual matrix and vector operations and element-wise multiplication �
• Net Input (like update formula of simple RNN):

zt = tanh(A2xt + Rst−1)

• Should this Net Input zt access the Cell State ct?
Input Gate: it = σ(Aixt + Rist−1 + Wict−1)

• Should the Cell State ct−1 be forgotten?
Forget Gate: ft = σ(Af xt + Rf st−1 + Wf ct−1)

• Based on it and ft , update the Cell State ct :
ct = ft � ct−1 + it � zt

• Should this update ct be output?
Output Gate: ot = σ(Aoxt + Rost−1 + Woct)

• Based on ot , compute the Net Output:
st = ot � ct

Input Gate

Output Gate

Net Input

Net Output

1.0

g

f

Cell State

Forget Gate
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Neural Network and Statistical Approach,

Recurrent Neural Networks for Sequence Processing

RNN and probabilities: What does a general RNN compute?

note: general RNN includes LSTM as a special case
two sequences over time t = 1, ...,T :

input: sequence of observations: xT1 = x1...xt...xT
output: sequence of class labels: cT1 = c1...ct...cT

consider the posterior probabilty of the output sequence:

factorization over time t: p(cT1 |xT1 ) =
T∏
t=1

p(ct|c t−1
0 , xT1 )

marginalization for time t:
∑

cT1 :ct=c

p(cT1 |xT1 ) = pt(c|xT1 )

more ...

notation for RNN output vector with nodes = classes c = 1, ...,C :

yt = [yt(c)] = [pt(c|...)]
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Neural Network and Statistical Approach,

Recurrent Neural Networks for Sequence Processing

RNN: Variant 1

uni-directional, no feedback of output labels

. . . yt−1 yt . . .

. . . ht−1 ht . . .

. . . xt−1 xt . . .

RNN output vector:

yt(c) = pt(c|x t1)
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Neural Network and Statistical Approach,

Recurrent Neural Networks for Sequence Processing

RNN: Variant 2

uni-directional, with feedback of output labels

. . . yt−1 yt . . .

. . . ht−1 ht . . .

. . . xt−1 xt . . .

RNN output vector:

yt(c) = pt(c|c t−1
0 , x t1)
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Neural Network and Statistical Approach,

Recurrent Neural Networks for Sequence Processing

RNN: Variant 3

bi-directional, no feedback of output label

. . . yt−1 yt yt+1 . . .

. . . h−
t−1 h−

t h−
t+1 . . .

. . . h+
t−1 h+

t h+
t+1 . . .

. . . xt−1 xt xt+1 . . .

Internal Structure: Separate Forward and Backward Hidden Layers
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Neural Network and Statistical Approach,

Recurrent Neural Networks for Sequence Processing

RNN: Variant 3

bi-directional, no feedback of output label

. . . yt−1 yt yt+1 . . .

. . . ht−1 ht ht+1 . . .

. . . xt−1 xt xt+1 . . .

RNN output vector:

yt(c) = pt(c|xT1 )
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Neural Network and Statistical Approach,

Recurrent Neural Networks for Sequence Processing

RNN: Variant 4

bi-directional, with uni-directional feedback of output label

. . . yt−1 yt yt+1 . . .

. . . ht−1 ht ht+1 . . .

. . . xt−1 xt xt+1 . . .

RNN output vector:

yt(c) = pt(c|c t−1
0 , xT1 )
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Schlüter et al. — Human Language Technology and Pattern Recognition
RWTH Aachen University — June 26, 2017



Neural Network and Statistical Approach,

Recurrent Neural Networks for Sequence Processing

RNN: Variant 5

bi-directional, with bi-directional feedback of output label

. . . yt−1 yt yt+1 . . .

. . . ht−1 ht ht+1 . . .

. . . xt−1 xt xt+1 . . .

RNN output vector:

yt(c) = pt(c|c t−1
0 , cTt+1, x

T
1 )
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Neural Network and Statistical Approach,

Recurrent Neural Networks for Sequence Processing

Overview of RNN Outputs

label feedback no uni-direct. bi-direct.

uni-dir. RNN pt(c|x t1) pt(c|c t−1
0 , x t1) ——–

bi-dir. RNN pt(c|xT1 ) pt(c|c t−1
0 , xT1 ) pt(c|c t−1

0 , cTt+1, x
T
1 )

• experiments: typically pt(c |xT1 )

• exploitation of recurrency within each layer
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Deep Learning for Acoustic Modelling,

Approach & History

Hybrid Approach

consider modeling the acoustic vector xt in an HMM:
• phonetic labels (allophones, sub-phones): (s,W )→ α = αsW

(typical approach: decision trees, e.g. CART):

p(xt|s,W ) = p(xt|αsW )

• re-write the emission probability for label α and acoustic vector xt :

p(xt|α) =
p(xt) · p(α|xt)

p(α)

– prior probability p(α): estimated as relative frequencies (alternatively averaged NN posteriors)
– for recognition purposes: term p(xt) can be dropped

• result: rather than the state emission distribution p(xt|α),
model the label posterior probability by an NN:

xt → p(α|xt)
• justification:

– easier learning problem: labels α = 1, ..., 5000 vs. vectors xt ∈ IRD=40

– well-known result in pattern recognition (but ignored in ASR!)
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Deep Learning for Acoustic Modelling,

Approach & History

History: Artificial Neural Networks in Acoustic Modeling

approaches in ASR:
• [Waibel & Hanazawa+ 1988]: phoneme recognition using time-delay neural networks

• [Bridle 1989]: softmax operation for probability normalization in output layer
• [Bourlard & Wellekens 1990]:

– for squared error criterion, NN outputs can be interpreted as
class posterior probabilities (rediscovered: Patterson & Womack 1966)

– they advocated the use of MLP outputs
to replace the emission probabilities in HMMs

• [Robinson 1994]: recurrent neural network
– competitive results on WSJ task
– his work remained a singularity in ASR

• ...

experimental situation:
until 2011, NNs were never really competitive with(out) Gaussian Mixture Models
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Deep Learning for Acoustic Modelling,

Approach & History

History: Artificial Neural Networks in Acoustic Modeling

related approaches:
• [LeCun & Bengio+ 1994]: convolutional neural networks

• A. Waibel’s team [Fritsch & Finke+ 1997]: hierarchical mixtures of experts

• [Hochreiter & Schmidhuber 1997]: long short-term memory neural computation (LSTM RNN)
with extensions [Gers & Schraudolph+ 2002]

(second) renaissance of NN: concepts of deep learning and related ideas:
• [Hermansky & Sharma 1998]: TRAPS: learning temporal patterns of spectral energies

• [Hermansky & Ellis+ 2000]: tandem approach - multiple layers of processing
by combining Gaussian model and NN for ASR

• [Utgoff & Stracuzzi 2002]: many-layered learning for symbolic processing

• [Hinton & Osindero+ 2006]: introduced what they called deep learning (belief nets)

• [Graves & Liwicki+ 2008]: good results for LSTM RNN on handwriting task
• Microsoft Research [Seide & Li+ 2011, Dahl & Yu+ 2012]:

– combined Hinton’s deep learning with hybrid approach
– significant improvement by deep MLP on a large-scale task

• since 2012: other teams confirmed reductions of WER by 20% to 30%

53 of 78 Automatic Speech Recognition: State-of-the-Art in Transition - A Neural Paradigm Change?
KITP Workshop on the Physics of Hearing, KITP, Santa Barbara, CA
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Deep Learning for Acoustic Modelling,

Approach & History

What is Different Now after 25 Years? - A (Simplified) Summary

Comparison of today’s systems vs. 1989-1994:
• number of hidden layers: 10 (or more)

rather than 2-3

• number of output nodes: 5000 (or more)
rather than 50

• optimization strategy:
practical experience and heuristics,
e.g. layer-by-layer pretraining

• computation power: much more

Terminology (for feedforward and recurrent nets):
• deep neural network

• deep learning
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Schlüter et al. — Human Language Technology and Pattern Recognition
RWTH Aachen University — June 26, 2017



Deep Learning for Acoustic Modelling,

Training

Outline

Human Language Technology: Overview & History

Statistical Approach

Neural Network and Statistical Approach

Deep Learning for Acoustic Modelling
Approach & History
Training
Empirical Overview of Current Methods

Deep Learning for Language Modelling

Current State-of-the-Art in ASR

References

Automatic Speech Recognition: State-of-the-Art in Transition - A Neural Paradigm Change?
KITP Workshop on the Physics of Hearing, KITP, Santa Barbara, CA
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Deep Learning for Acoustic Modelling,

Training

Training Strategies

Frame level: cross-entropy log pθ(αst ,W |xt)
• required: single best path for each training sentence

• re-alignments during backprop learning: yes ... occasionally ... no

→ simple implementation due to decoupling of best path and backprop

Sentence level: discriminative sequence training:
• includes language model p(W )

• requires sentence level posterior probability p(W |xT1 )

• improvement: use exponents for language model,
transition probabilities and acoustic model

• approximations: single best path, lattice with/without re-computation, ...
• three types of discriminative criteria:

– logarithm of posterior probability
– MPE applied to phones: 1 out of 5̃0
– MPE applied to CART labels: 1 out of 5̃000

→ complex implementation
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Deep Learning for Acoustic Modelling,

Empirical Overview of Current Methods

Experimental Setup

Experimental conditions:
• QUAERO task: English broadcast news and conversations

(evaluation campaign 2011)

• training data: two conditions: 50 and 250 hours

• test data: dev and eval sets, each 3 hours

• language model: vocabulary size of 150k (OOV: 0.4%) and perplexity of 130

Baseline Gaussian mixture HMM based acoustic model:
• feature vector: 16 MFCC (mel frequency cepstral coefficients)

• augmented feature vector: 9 · 16 = 144

• high-performance baseline system:
Gaussian mixtures with pooled diagonal covariance matrix:

– reduction by LDA to 45-dimensional vector
– 4501 CART labels
– 680k densities
– total number of free parameters: 680k · (45 + 1) = 31.3M
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Deep Learning for Acoustic Modelling,

Empirical Overview of Current Methods

Gaussian Mixture Models (GMM): Influence of Training Criteria

Training Criterion WER [%]
50h 250h

dev eval dev eval

Maximum likelihood 24.4 31.6 22.1 28.6
MMI at frame level 23.9 30.9 22.1 28.6
MMI at sentence level 24.1 31.2 21.7 28.1
Minimum phone error 23.6 30.2 20.4 26.2

remarks:
• best improvement over maximum likelihood:

5-10% relative by MPE (Minimum Phone Error)

• comparative evaluations in QUAERO:
competitive results with LIMSI Paris and KIT Karlsruhe
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Deep Learning for Acoustic Modelling,

Empirical Overview of Current Methods

Deep MLP: Number of Hidden Layers

• WER vs. number of hidden layers
for 50-h training corpus

• Structure of MLP:
– input dimension:

493 (window + derivatives)
– 2000 nodes per hidden layer
– nonlinearity: sigmoid
– number of parameters for 6-layer MLP:

493 · 2000

+5 · 20002

+2000 · 4501

= 30M

• improvement over best GMM:
20% relative

hidden WER [%]
layers dev eval

1 24.5 31.3
2 22.0 28.3
3 20.5 26.7
4 19.8 26.1
5 20.1 26.0
6 19.6 25.4
7 19.7 25.5
8 19.6 25.7
9 19.3 25.3

best GMM 23.6 30.2
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Deep Learning for Acoustic Modelling,

Empirical Overview of Current Methods

Discriminative Sequence Training: MPE vs. CE

Comparison of two training criteria (MLP with 6 hidden layers, 2000 nodes each):
• baseline: cross-entropy = frame MMI

• MPE: minimum phone error (context of pron. lexicon and language model)

Model Criterion
WER [%]

50h 250h
dev eval dev eval

MLP
frame MMI 19.6 25.4 15.2 20.4

MPE 17.5 23.3 14.1 19.2

best GMM MPE 23.6 30.2 20.4 26.4

experimental result: improvement of 5-10% by MPE over frame MMI
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Deep Learning for Acoustic Modelling,

Empirical Overview of Current Methods

Activation Function: Sigmoid vs. RLU

• activation functions:
– sigmoid function: u → f (u) = 1/(1 + e−u)
– RLU=rectified linear unit: u → f (u) = max{0, u}

• structure of MLP:
– 6 hidden layers, each with 2000 nodes
– training condition:

* (frame-wise) cross-entropy
* L2 regularization (weight decay): important
* momentum term

• word error rates for activations functions: sigmoid vs. RLU:
WER [%]

activation 50h 250h
function dev eval dev eval

sigmoid 19.6 25.4 15.2 20.4
RLU 17.7 23.5 14.7 19.6

best GMM 23.6 30.2 20.4 26.4
• experimental result: improvement of 5-10% by RLU over sigmoid

60 of 78 Automatic Speech Recognition: State-of-the-Art in Transition - A Neural Paradigm Change?
KITP Workshop on the Physics of Hearing, KITP, Santa Barbara, CA
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Deep Learning for Acoustic Modelling,

Empirical Overview of Current Methods

Deep LSTM-RNN

50h QUAERO training corpus:

• baseline: best MLP:

– input: 50 Gammatone features
– 9 hidden layers
– RLU
– training criterion: cross-entropy

• LSTM-RNN structure:

– input: 50 Gammatone features
– training criterion: cross-entropy
– bidirectional with several hidden layers
– 500 nodes per hidden layer
– training on a single GPU

• eval improvements:

– 14% relative over MLP
– 42% relative over GMM

LSTM
#params

time / WER [%]
layers epoch dev eval

1 6.7M 0:28h 17.6 22.7
2 12.7M 1:00h 14.6 18.8
3 18.7M 1:11h 14.0 18.4
4 24.7M 1:33h 13.5 17.7
5 30.7M 1:48h 13.6 17.7
6 36.7M 2:10h 13.5 17.5
7 42.7M 2:36h 13.8 18.0
8 48.7M 3:14h 14.2 18.4

best MLP
42.7M 0:35h 15.3 20.3

(9x2000)
best GMM 31.3M – 23.6 30.2
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Deep Learning for Acoustic Modelling,

Empirical Overview of Current Methods

Effect of ANNs in Acoustic Modelling

Compare three types of emission models in HMMs:
• GMM: Gaussian mixture model

• MLP: deep multi-layer perceptron

• LSTM RNN: recurrent neural network with long short-term memory

Experimental results for QUAERO English 2011:

approach layers WER[%]

conventional: best GMM – 30.2
hybrid: best MLP 9 20.3
hybrid: best LSTM RNN 6 17.5

Remarks:
• comparative evaluations in QUAERO 2011:

competitive results with LIMSI Paris and KIT Karlsruhe

• best improvement over Gaussian mixture models
by 40% relative using an LSTM RNN
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Deep Learning for Language Modelling,

History of Neural Networks in Language Modeling

History of Neural Networks in Language Modeling

• [Nakamura & Shikano 1989]:
English word category prediction based on neural networks.

• [Castano & Vidal+ 1993]:
Inference of stochastic regular languages through simple recurrent networks

• [Bengio & Ducharme+ 2000]:
A neural probabilistic language model

• [Schwenk 2007]:
Continuous space language models

• [Mikolov & Karafiat+ 2010]:
Recurrent neural network based language model

• RWTH Aachen [Sundermeyer & Schlüter+ 2012]:
LSTM recurrent neural networks for language modeling

• RWTH Aachen [Sundermeyer & Tüske+ 2014]:
long range LM rescoring beyond N-best lists

Today: neural network based language models show competitive results.
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Deep Learning for Language Modelling,
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Deep Learning for Language Modelling,

Perplexity vs. Word Error Rate

Reminder: perplexity (PP)
• geometric average of inverse probability → interpretation: average effective vocabulary size

PP :=
(
p(wN

1 )
)−1/N

=
( N∏

n=1

p(wn|wn−1
1 )

)−1/N define w 0
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empty sequence
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Deep Learning for Language Modelling,

Perplexity vs. Word Error Rate

Extended Range: Perplexity vs. Word Error Rate
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• empirical results, originally proposed by [Klakow & Peters 2002]
• analytical error bound exists [Schlüter & Nußbaum-Thom+ 2013] (upper bound only)
• proof of approximate power law still missing
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Deep Learning for Language Modelling,

Perplexity vs. Word Error Rate

Word Error Rate vs. Local Perplexity (3-word window, 20 bins)
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Deep Learning for Language Modelling,

Neural Network based Language Modeling

Neural Network based Language Modeling

• distinguish:
– sub-symbolic processing: speech/audio, text images, image/video (computer vision)
– symbolic processing: language modeling (and machine translation)

• word sequence wN
1 := w1...wn...wN

• language model: conditional probability p(wn|wn−1
0 ) (with artificial start symbol w0):

p(wN
1 ) =

N∏
n=1

p(wn|wn−1
0 )

• approaches to modeling p(wn|wn−1
0 )

– count models (Markov chain):
* limit history wn−1

0 to k predecessor words
* smooth relative frequencies (e.g. SRI toolkit)

– MLP models:
* limit history, too
* use predecessor words as input to MLP

– RNN models:

* unlimited history! [Mikolov & Karafiat+ 2010]
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Deep Learning for Language Modelling,

Neural Network based Language Modeling

Structure of Neural Network for Language Modeling

• input layer: k predecessor words with 1-of-V coding (V = vocabulary size)
• first layer: projection layer

– idea: dimension reduction (e.g. from 150k to 600!)
– a linear operation (matrix multiplication) without sigmoid activation
– shared accross all predecessor words of the history h

• output layer:
– conditional probability of language model p(w |h)
– softmax operation for normalization

• training criterion:
– perplexity: equivalent to cross-entropy
– early stopping using cross-validation on dev corpus

• properties of softmax operation:
– computationally expensive (sum over full vocabulary)
– remedy: word classes (automatically trained)
– normalized outputs of softmax fit nicely into perplexity criterion
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Deep Learning for Language Modelling,

Neural Network based Language Modeling

Word Classes

MLP w/o and with Word Classes: Trigram LM

factorization of conditional language model probability p(w |h) for each history h:

p(w |h) = p(g |h) · p(w |g , h)

using a unique word class g for each word w
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Deep Learning for Language Modelling,

Neural Network based Language Modeling

Word Classes

RNN without and with Word Classes
• NN with memory for sequence processing

• left-to-right processing of word sequence w1...wn....wN

p(wN
1 ) =

∏
n

p(wn|wn−1
0 ) =

∏
n

p(wn|wn−1, hn−1)

• input to RNN in position n:
– output hn−1 of hidden layer at position (n − 1)
– immediate predecessor word wn−1
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Deep Learning for Language Modelling,

Neural Network based Language Modeling

LSTM RNN [Hochreiter & Schmidhuber 1997, Gers & Schraudolph+ 2002]

refinement of RNN:
LSTM = long-short term memory
• RNN: problems with vanishing/exploding gradients

• remedy: cells with gates rather than nodes

• details: see literature
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Deep Learning for Language Modelling,

Empirical Overview of Current Methods

Empirical Overview of Current Methods

• results on QUAERO English (like before):
– vocabulary size: 150k words
– training text: 50M words
– dev and eval sets: 39k and 35k words

• MLP: structure:
– projection layer: 300 nodes
– hidden layer: 600 nodes
– size of MLP is dominated

by input and output layers:
150k · 300 + 600 · 150k = 135M

• RNN (and LSTM RNN): structure
– projection and hidden layer: each 600 nodes
– size of RNN is dominated

by input and output layers:
150k · 600 + 600 · 150k = 180M

perplexity PPL on dev data:

approach hidden PPL
layers

count model – 163.7

10-gram MLP
1 136.5
2 130.9

RNN 1 125.2

LSTM-RNN
1 107.8
2 100.5

observation:
(huge) improvement by 40%
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Deep Learning for Language Modelling,

Empirical Overview of Current Methods

Complexity: Computation Times

Training times (without GPUs!) for training corpus of 50 Million words:

Models PPL CPU Time (Order)
Count model 163.7 30 min
MLP 136.5 1 week
LSTM-RNN 107.8 3 weeks

• problem: high computation times
• remedy: two types of language models:

– count model: trained on a huge corpus: 3.1 Billion words
– NN models: trained on a small corpus: 50 Million words

• resulting language model:
linear interpolation of two models

73 of 78 Automatic Speech Recognition: State-of-the-Art in Transition - A Neural Paradigm Change?
KITP Workshop on the Physics of Hearing, KITP, Santa Barbara, CA
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Deep Learning for Language Modelling,

Empirical Overview of Current Methods

Interpolated Language Models: Perplexity and WER

• linear interpolation of two models: count model + NN model

• perplexity and word error rate on test data:

Models PPL WER[%]

count model 131.2 12.4

+ 10-gram MLP 112.5 11.5
+ Recurrent NN 108.1 11.1
+ LSTM-RNN 96.7 10.8

+ 10-gram MLP with 2 layers 110.2 11.3
+ LSTM-RNN with 2 layers 92.0 10.4

• experimental result:

– significant improvements by NN language models
– best improvement in perplexity: 30% reduction (from 131 to 92)
– best improvement in WER: 16% reduction (from 12.4% to 10.4%)
– empirical observation:

power law between WER and perplexity (cube to square root)
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Current State-of-the-Art in ASR,

Net Effect of NN Modeling in ASR

Overall Improvements by ANNs in ASR

QUAERO English Eval 2013
Language Model PP Acoustic Model WER[%]

Count Fourgram 131.2 Gaussian Mixture 19.2
deep MLP 10.7
LSTM RNN 10.4

+ LSTM-RNN 92.0 Gaussian Mixture 16.5
deep MLP 9.3
LSTM RNN 9.3

Remarks:
• overal improvements by ANNS: 50%

• lion’s share of improvement: acoustic model

• acoustic input features: optimized for model
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Current State-of-the-Art in ASR,

State-of-the-Art Results Switchboard

Recent Switchboard State-of-the-Art Systems

Acoustic modeling
• convolutional models:

– visual geometry group (VGG) - very deep convolutional network (adopted from CV)
– residual nets (ResNet) - even deeper, incl. short-cut connections (adopted from CV)
– layer-wise context expansion with attention (LACE) - TDNN + short-cuts + attention mask

• bidirectional long-short term memory (BLSTM) recurrent network (IBM+MSR)

Language modeling
• N-gram vs. LSTM-NN

Experimental results:
• challenging task

• training on 2000h

• single systems
• sites compared:

– IBM Research [Saon & Kurata+ 17]
– Microsoft Research (MSR)

[Xiong & Droppo+ 17]

site acoustic LM, WER [%]
model N-gram LSTM RNN

SWB CH SWB CH

IBM BLSTM 7.2 12.7 - -
ResNet 7.6 14.5 - -

MSR BLSTM 8.3 14.9 6.7 13.0
ResNet 8.6 14.8 6.6 12.5

VGG 9.1 15.7 7.1 13.2
LACE 8.4 15.0 6.7 13.0
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Current State-of-the-Art in ASR,

ASR vs. Human Performance

Human - Machine Comparison

How does state-of-the-art ASR compare against human performance?
• current best ASR systems obtained using system combination

• two human speech recognition studies

Results on Switchboard task cited from
• IBM Research [Saon & Kurata+ 17]

• Microsoft Research (MSR) [Xiong & Droppo+ 17]

recognition site WER [%]
SWB CH

machine MSR 5.8 11.0
IBM 5.5 10.3

human MSR 5.9 11.3
IBM 5.1 6.8
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Thank you for your attention

Any questions?
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F. Grézl, M. Karafiát, M. Janda: “Study of probabilistic and bottle-neck features
in multilingual environment,” IEEE Workshop on Automatic Speech Recognition
and Understanding (ASRU), pp. 359–364, Waikoloa, HI, Dec. 2011.
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M. Sundermeyer, Z. Tüske, R. Schlüter, H. Ney: “Lattice Decoding and
Rescoring with Long-Span Neural Network Language Models,” Interspeech, pp.
661–665, Singapore, Sep. 2014.

102 of 78 Automatic Speech Recognition: State-of-the-Art in Transition - A Neural Paradigm Change?
KITP Workshop on the Physics of Hearing, KITP, Santa Barbara, CA
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