Compactified M/string theory prediction (August 2011) of the Higgs boson mass and properties

ightarrow M_h pprox 126 GeV, SM-like

Ultimately we would like an underlying predictive theory – M/string theory seems to provide a good framework – some predictions not flexible

Gordy Kane, University of Michigan KITP, Dec 2012

☐ Introduction – making string theory predictions for data
assumptions
stabilizing moduli
μ in string theory
☐ Higgs mass derivation
☐ Results
☐ Implications – little hierarchy problem reduced
☐ Associated LHC predictions for gluinos, charginos
☐ Naturalness?
☐ Final remarks

Philosophy to compute Higgs mass, properties:

Divide all compactified string/M theories into two classes

- ➤ Some generically have TeV scale physics, REWSB, etc study these if our world is described by a compactified string/M theory it will look like these turns out it's easy to find them
- > The rest

Find many – "compactified constrained string/M theories, CCST"

Calculate M_h/M_Z for those solutions

PAPERS ABOUT M-THEORY COMPACTIFICATIONS ON G_2 MANIFOLDS (11 D - 7 small D = our 4D)

Earlier work (stringy, mathematical):

- Review of supergravity work, Duff hep-th/0201062
- Papadopoulos, Townsend th/9506150, 7D manifold with G₂ holonomy preserves
 N=1 supersymmetry
- Acharya, hep-th/9812205, non-abelian gauge fields localized on singular 3 cycles
- Acharya, hep-th/0011289
- Atiyah and Witten, hep-th/0107177
- Atiyah, Maldacena, Vafa, hep-th/0011256
- Acharya and Witten, hep-th/0109152, chiral fermions supported at points with conical singularities
- Witten, hep-ph/0201018 shows **embedding MSSM probably ok**
- Beasley and Witten, hep-th/0203061, Kahler form
- Friedmann and Witten, th/0211269
- Lukas, Morris hep-th/0305078, gauge kinetic function
- Acharya and Gukov, hep-th/0409101 review good summary of known results about singularities, holonomy and supersymmetry, etc all G₂ moduli geometric gravity mediated because two 3-cycles won't interact directly in 7D manifold

We started M/string compactification fall of 2005, interested in moduli stabilization, susy breaking, Higgs, since LHC coming

Do the derivation in M-theory case since those calculations effectively complete — results may hold in some or all other corners of string theory since they depend on only a few generic features

Our M-theory papers

--Review arXiv:1204.2795 , Acharya, Kane, Kumar

[Acharya, Kane, Piyush Kumar, Bobkov, Kuflik, Shao, Ran Lu, Watson, Bob Zheng]

- M-Theory Solution to Hierarchy Problem th/0606262
- Stabilized Moduli, TeV scale, squark masses = gravitino mass, gaugino masses suppressed 0701034
- Spectrum, scalars heavy, wino-like LSP, large trilinears (no R-symmetry) 0801.0478
- \circ Study moduli, Nonthermal cosmological history– generically moduli \gtrsim 30 TeV so gravitino \gtrsim 30 TeV, squarks \approx gravitino so squarks \ge 30 TeV 0804.0863
- o CP Phases in M-theory (weak CPV OK) and EDMs 0905.2986
- Lightest moduli masses < gravitino mass 1006.3272 (Douglas Denef 2004; Gomez-Reino, Scrucca 2006)
- Axions stabilized, strong CP OK, string axions OK 1004.5138
- Gluino, Multi-top searches at LHC (also Suruliz, Wang) 0901.336
- No flavor problems, (also Velasco-Sevilla Kersten, Kadota)
- \square Theory, phenomenology of μ in M-theory 1102.0566 via Witten
- o Baryogenesis, ratio of DM to baryons (also Watson, Yu) 1108.5178
- o String-motivated approach to little hierarchy problem, (also Feldman) 1105.3765
- O Higgs Mass Prediction 1112.1059

Will explain details as relevant during talk – to take Higgs results fully seriously good to know other problems OK in same theory

"GENERIC" ≈ perhaps not theorem, but holds very generally – just calculate naturally without special assumptions – have to work hard to find or construct (non-generic) exceptions (if possible), and to show possible exceptions don't have problems that exclude them

Nima, "Generic = not clever"

Our approach top-down, all results derived – could view it as the successful ultraviolet completion (in place 2007) of bottom-up approach a la Jared Kaplan, Nima and Savas, etc

Make assumptions, not closely related to Higgs sector

- CC problem orthogonal won't know for sure until solved
- Our world is described by compactified M-theory on G₂ manifold
 can try to repeat for other corners of string theory
- Compactify M-theory on G₂ manifold in fluxless sector
 can stabilize moduli
- Assume Hubble parameter H at end of inflation larger than M_{3/2}
- \circ Assume top quark with yukawa coupling \sim 1
- \square Include μ following Witten 2002, via discrete symmetry
- Use generic Kahler potential (Beasley, Witten, 2002) include volume dependence on Kahler
- Use generic gauge kinetic function from Lukas, Morris, 2003
- □Assume gauge group and matter content at compactification is MSSM – can repeat for any other gauge group and matter content

☐ Moduli, gravitino constraint from Big Bang nucleosynthesis

In early universe, when Hubble scale H decreases, moduli begin to oscillate in their potential, and quickly dominate energy density of universe – Early universe matter dominated, a "non-thermal" history

When H \sim moduli decay width, $\Gamma_{\rm mod} \sim {\rm M^3}_{\rm mod}/{\rm m^2}_{\rm pl}$ then the moduli decay \rightarrow need ${\rm M_{mod}} \gtrsim$ 30 TeV so decay occurs before nucleosynthesis – moduli decay dilutes DM, decay regenerates DM \rightarrow wino-like LSP

Then theorem relating lightest moduli and gravitino $\rightarrow M_{3/2} \gtrsim 30 \text{ TeV}$ – Then supergravity \rightarrow scalar masses (squarks, higgs scalars) $\gtrsim 30 \text{ TeV}$

Avoid BBN problem by late inflation? – Randall, Thomas 9407208-extremely difficult – many attempts – de Gouvea, Moroi, Murayama ph/9701244 – Fan, Reece, Wang 1106.6044 – Choi et al recent ☐ Generic relation between lightest moduli mass and gravitino mass — basically that the gravitino is not lighter than lightest modulus — assumes supersymmetry breaking is involved in stabilizing at least one moduli

[Denef and Douglas hep-th/0411183, Gomez-Reino and Scrucca hep-th/0602246, Acharya Kane Kuflik 1006.3272]

Moduli mix with scalar goldstino, which generically has gravitino mass

Consider moduli mass matrix (but don't need to calculate it) -- Sgoldstino 2x2 piece of moduli mass matrix has mass scale $M_{3/2}$

For pos def mass matrix smallest eigenvalue of full matrix is smaller than any eigenvalue of (diagonal) submatrices

$$M_{\min}^2 < m_{3/2}^2 \left(2 + \frac{|r|}{m_{pl}^2} \right)$$

$$M_{3/2} \gtrsim M_{mod} \gtrsim 30 \text{ TeV (BBN)}$$

MODULI STABILIZATION

- All G₂ moduli fields have axionic partners which have a shift symmetry in the absence of fluxes (different from heterotic or IIB) – such symmetries can only be broken by nonperturbative effects
- So in zero-flux sector only contributions to superpotential are non-perturbative, from strong dynamics (e.g. gaugino condensation or instantons) – focus on former
- In M theory the superpotential, and gauge kinetic function, in general depend on all the moduli – all moduli geometric, on equal footing
- The hidden sector gaugino condensation produces an effective potential that stabilizes all moduli

A set of Kahler potentials, consistent with G₂ holonomy and known to describe some explicit examples, was given by Beasley-Witten th/0203061; Acharya, Denef, Valandro th/0502060, with

$$K = -3\ln(4\pi^{1/3}V_X)$$

$$V_X = \prod_{i=1}^N s_i^{a_i}, \text{ with } \sum_{i=1}^N \underline{a_i} = 7/3$$

$$[V_X = V_7]$$

We assume we can use this. More generally the volume will be multiplied by a function with certain invariances.

Assume hidden sector gaugino condensation

$$W = \sum_{k=1}^{M} A_k e^{ib_k f_k}$$
 gauge kinetic function

Sometimes keep two terms – enough to find solutions with good properties such as being in supergravity regime, simple enough to do most calculations semi-analytically (as well as numerically)

 $b_k=2\pi/c_k$ where c_k are dual coxeter numbers of hidden sector gauge groups --- A_k are constants of order unity, and depend on threshold corrections to gauge couplings, some computed by Friedmann and Witten

$$b_1 = 2\pi/P$$
, $b_2 = 2\pi/Q$

(Not "racetrack" – once moduli have any interaction they are stabilized)

The gauge kinetic functions here are integer linear combinations of all the moduli (Lukas, Morris th/0305078),

$$f_k = \sum_{i=1}^N N_i^k z_i.$$

The microscopic constants a_i , b_k , A_k , N_i^k are determined for a given G_2 manifold (but not yet fully known) --they completely characterize the vacua – not dependent on moduli

For semi-analytic examples focus on the (well-motivated) case where two hidden sector gauge kinetic functions are equal (the corresponding three-cycles are in the same homology class)]

Include generic massless hidden sector chiral fermion states Q with N_c colors, N_f flavors, $N_f < N_c$ -- then (Affleck, Dine, Seiberg PRL 51(1983)1026, Seiberg hep-th/9402044, hep-th/9309335, Lebedev, Nilles, Ratz th/0603047)

$$W = A_1 e^{i\frac{2\pi}{N_c - N_f} \sum_{i=1}^{N} N_i^{(1)} z_i} \det(Q\tilde{Q})^{-\frac{1}{N_c - N_f}} = A_1 \phi^a e^{ib_1 f_1}$$

and define an effective meson field

$$\phi \equiv \left(\det(Q\tilde{Q}) \right)^{1/2} = \phi_0 e^{i\theta}$$

Chiral fermions localized at pointlike conical singularities, so bulk moduli should have little effect on local physics, so assume matter Kahler potential slowly varying

$$W = A_1 \phi^a e^{ib_1 f} + A_2 e^{ib_2 f}$$

$$K = -3\ln(4\pi^{1/3} V_X) + \phi \bar{\phi}$$

Calculate F terms \rightarrow F_{matter} \sim M_{3/2} M_{pl}, F_{mod} \sim $\alpha_{\rm gut}$ M_{3/2} M_{pl}

The N=1 SUGRA scalar potential is then given by:

$$V = \frac{e^{\phi_0^2}}{48\pi V_X^3} [(b_1^2 A_1^2 \phi_0^{2a} e^{-2b_1 \vec{\nu} \cdot \vec{a}} + b_2^2 A_2^2 e^{-2b_2 \vec{\nu} \cdot \vec{a}} + 2b_1 b_2 A_1 A_2 \phi_0^a e^{-(b_1 + b_2) \vec{\nu} \cdot \vec{a}} \cos((b_1 - b_2) \vec{N} \cdot \vec{t} + a\theta))$$

$$\times \sum_{i=1}^{N} a_i (\nu_i)^2 + 3(\vec{\nu} \cdot \vec{a}) (b_1 A_1^2 \phi_0^{2a} e^{-2b_1 \vec{\nu} \cdot \vec{a}} + b_2 A_2^2 e^{-2b_2 \vec{\nu} \cdot \vec{a}} + (b_1 + b_2) A_1 A_2 \phi_0^a e^{-(b_1 + b_2) \vec{\nu} \cdot \vec{a}}$$

$$\times \cos((b_1 - b_2) \vec{N} \cdot \vec{t} + a\theta)) + 3(A_1^2 \phi_0^{2a} e^{-2b_1 \vec{\nu} \cdot \vec{a}} + A_2^2 e^{-2b_2 \vec{\nu} \cdot \vec{a}} + 2A_1 A_2 \phi_0^a e^{-(b_1 + b_2) \vec{\nu} \cdot \vec{a}}$$

$$\times \cos((b_1 - b_2) \vec{N} \cdot \vec{t} + a\theta)) + \frac{3}{4} \phi_0^2 (A_1^2 \phi_0^{2a} \left(\frac{a}{\phi_0^2} + 1\right)^2 e^{-2b_1 \vec{\nu} \cdot \vec{a}} + A_2^2 e^{-2b_2 \vec{\nu} \cdot \vec{a}}$$

$$+2A_1 A_2 \phi_0^a \left(\frac{a}{\phi_0^2} + 1\right) e^{-(b_1 + b_2) \vec{\nu} \cdot \vec{a}} \cos((b_1 - b_2) \vec{N} \cdot \vec{t} + a\theta))].$$

$$(101)$$

$$m_{3/2} \equiv m_p^{-2} e^{\frac{K}{2m_p^2}} |W|$$

Semi-analytic example

$$m_{3/2} = m_{pl} \frac{\alpha_{GUT}^{7/2}}{\sqrt{\pi}} \frac{|Q-P|}{Q} e^{-\frac{P_{eff}}{Q-P}}$$

Q,P ranks of typical gauge groups from 3-cycle singularities

$$P_{eff} = \frac{14(3(Q-P)-2)}{3(3(Q-P)-2\sqrt{6(Q-P)})} \sim 60 \text{ when } Q-P=3$$

$$\rightarrow$$
 m_{3/2} \approx 50 TeV

(e^-20
$$pprox$$
 10⁻⁹ , $lpha_{\text{GUT}}^{7/2} pprox$ 10⁻⁵)

DE SITTER VACUUM, GAUGINO MASSES SUPRESSED

- -- With only compactifiation moduli one gets AdS extrema minima, maxima, saddle points (no go theorems, Maldacena and Nunez...) some break susy, some preserve it
- -- For M theory, positive F terms from chiral fermion condensates automatically present, cancel the 3W² and give deS minima "uplift"
- -- also, in M theory case the deS minima come from susy preserving extremum if ignore meson F terms, so the minima is near a susy preserving point in field space where gaugino masses would vanish
- -- so SM gaugino masses are doubly suppressed vanish at susy preserving point, and get no contribution from large F terms of mesons

$$M_{1/2} \sim K_{mn} F_m \partial_n f_{SM}$$

- -- can't calculate suppression precisely, estimate \sim 1/50
- -- general situation not known gauginos suppressed in heterotic?

arXiv:1102.0556, Acharya, Kane, Kuflik, Lu

- Normally μ and tan β treated as parameters, constrained to get EWSB
- Ultimately want to derive them from first principles
- If μ in W then it should be of order string scale
- Need symmetry to set μ =0
- Witten, hep-ph/0201018 found discrete symmetry for G₂ compactification, closely connected to doublet-triplet splitting problem, proton lifetime, R-parity
- Witten did not break discrete symmetry so $\mu \equiv 0$ when moduli are stabilized the effects generally not invariant so in M-theory with moduli stabilized the symmetry is broken
- μ proportional to $M_{3/2}$ since $\mu \to 0$ if susy unbroken
- Also μ proportional to moduli vev since $\mu \rightarrow 0$ if moduli not stabilized
- Stabilization led to moduli vev/M_{pl} < 0.1
- So finally expect $\mu < 0.1 M_{3/2}$
- Witten discrete symmetry anomalous, Z₁₈ ok

☐ WHY IS M_H LIGHT? -- QUICK SUMMARY

-- Recall no EWSB at high scale, generated by RGE running

High scale, compactified M theory, orbifold and conical singularities → gauge and chiral matter → gaugino and meson condensates, F-terms, supersymmetry-breaking, moduli stabilization, deS vacuum

Typical gauge groups ightarrow gaugino condensation \sim 10⁻⁴⁻⁵ M_{planck} , cubed in superpotential, so M_{3/2} \sim 50 TeV (top down)

 $M_{3/2}$ > smallest eigenvalue of moduli mass matrix \gtrsim 30 TeV, from BBN

Calculate soft-breaking Lagrangian: scalars, trilinears, b -- ALL \sim $\rm M_{3/2}$

 μ superpotential term zero from Witten discrete symmetry – broken by moduli stabilization, so $\mu_{eff}\sim$ (moduli vev/M $_{pl}$)M $_{3/2}$ < few TeV

At high scale Higgs sector soft terms $\sim \rm M_{3/2}$, no EWSB

Then M²_{HII} runs down, satisfies EWSB conditions (REWSB)

Now go through details

Higgs sector

In supersymmetric theory two higgs doublets present for anomaly cancellation – by "Higgs mass" mean mass of lightest CP-even neutral scalar in Higgs sector

Precise value depends on all the soft-breaking parameters including B, μ

Why 125 GeV? – not simple, must do RGE running, relate terms, smallest eigenvalue of matrix

Higgs potential at any scale – calculated at compactification scale, no parameters, then do RGE running to other scales

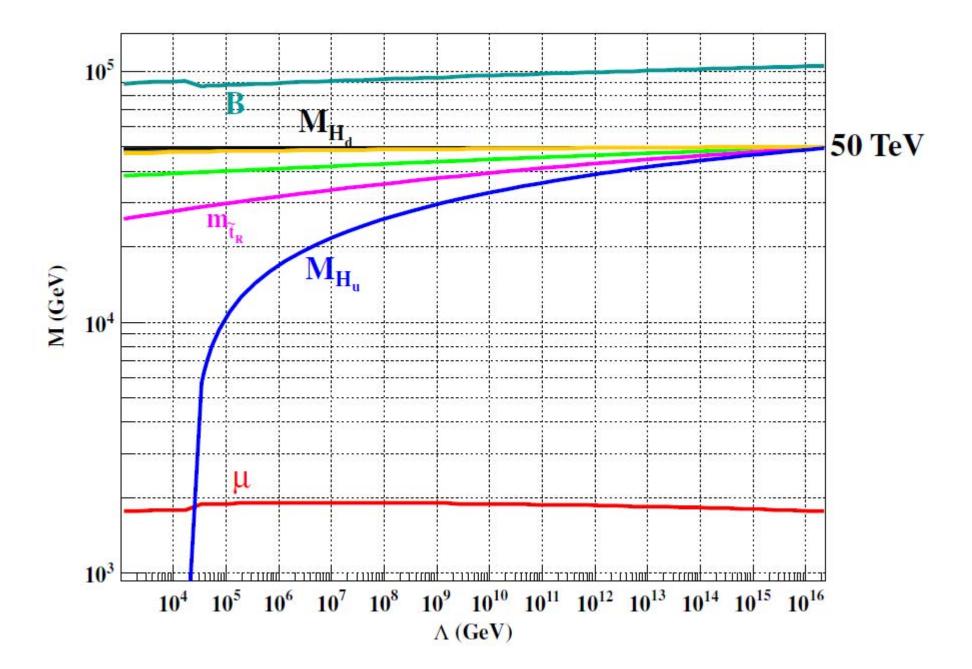
$$V = (|\mu|^2 + m_{H_u}^2)|H_u^0|^2 + (|\mu|^2 + m_{H_d}^2)|H_d^0|^2 - (b\,H_u^0H_d^0 + \text{c.c.}) + \text{D terms}$$

$$\rightarrow \text{Higgs mass matrix} \begin{pmatrix} m_{H_u}^2 + \mu^2 & -b \\ -b & m_{H_u}^2 + \mu^2 \end{pmatrix}$$

Need negative eigenvalue for EWSB

 $\tan\beta = v_u/v_d$ only meaningful after EWSB, doesn't exist at high scales

Renormalization Group Equations


$$8\pi^{2}\frac{dm_{H_{u}}^{2}}{dt} = 3|\lambda_{t}|^{2}\left(m_{H_{u}}^{2} + m_{Q}^{2} + m_{T}^{2} + |A_{top}|^{2}\right)$$

$$8\pi^2 \frac{dm_T^2}{dt} = 2|\lambda_t|^2 \left(m_{H_u}^2 + m_Q^2 + m_T^2 + |A_{top}|^2\right)$$

$$8\pi^{2}\frac{dm_{Q}^{2}}{dt} = |\lambda_{t}|^{2} \left(m_{H_{u}}^{2} + m_{Q}^{2} + m_{T}^{2} + |A_{top}|^{2}\right)$$

$$8\pi^2 \frac{d A_{top}}{dt} = 6\lambda_t^2 A_{top}$$

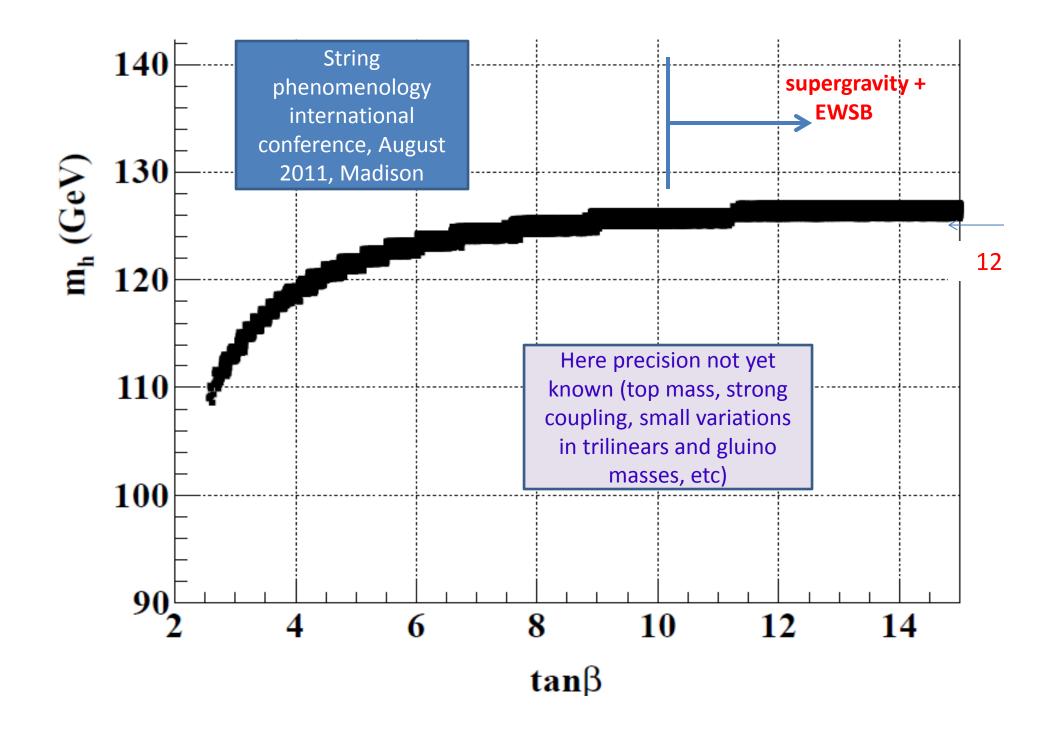
$$8\pi^2 \frac{dB}{dt} = 3\lambda_t^2 A_{top}$$

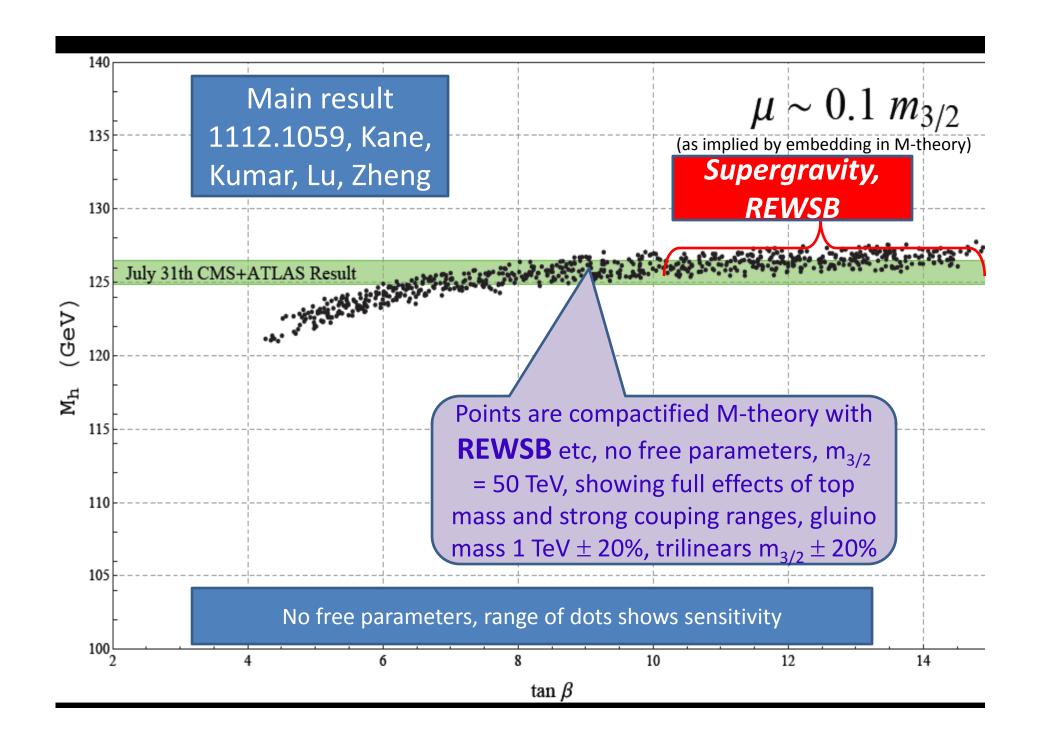
THEORY AT HIGH SCALE, TECHNICAL DETAILS OF COMPUTING M_H

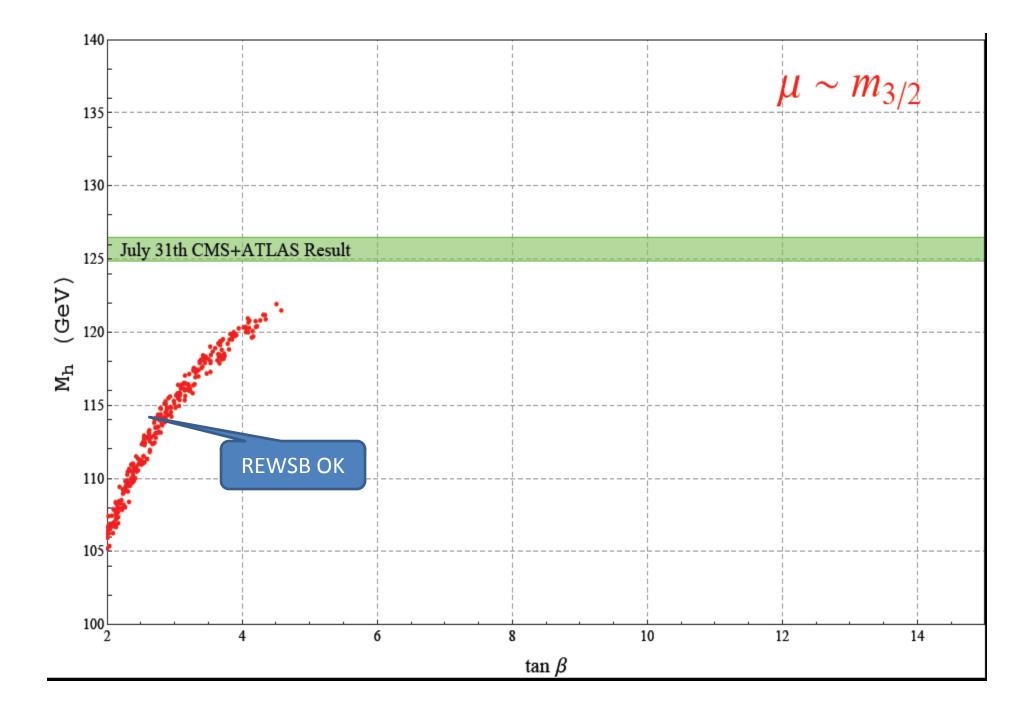
- Write theory at scale $\sim 10^{16}$ GeV, fix soft-breaking Lagrangian parameters by theory no free parameters
- Run down, maintain REWSB
- Use "match-and-run" and also SOFTSUSY and Spheno, compare –
 match at (M_{stop1}M_{stop2})^{1/2} two-loop RGEs expect public software to
 work since scalars not too large
- Main sources of imprecision for given $M_{3/2}$ are M_{top} (1 GeV uncertainly in M_{top} gives 0.8 GeV in M_h), α_{strong} , theoretical gluino mass (allow 600 GeV to 1.2 TeV), trilinear couplings (allow 0.8-1.5 M_0)

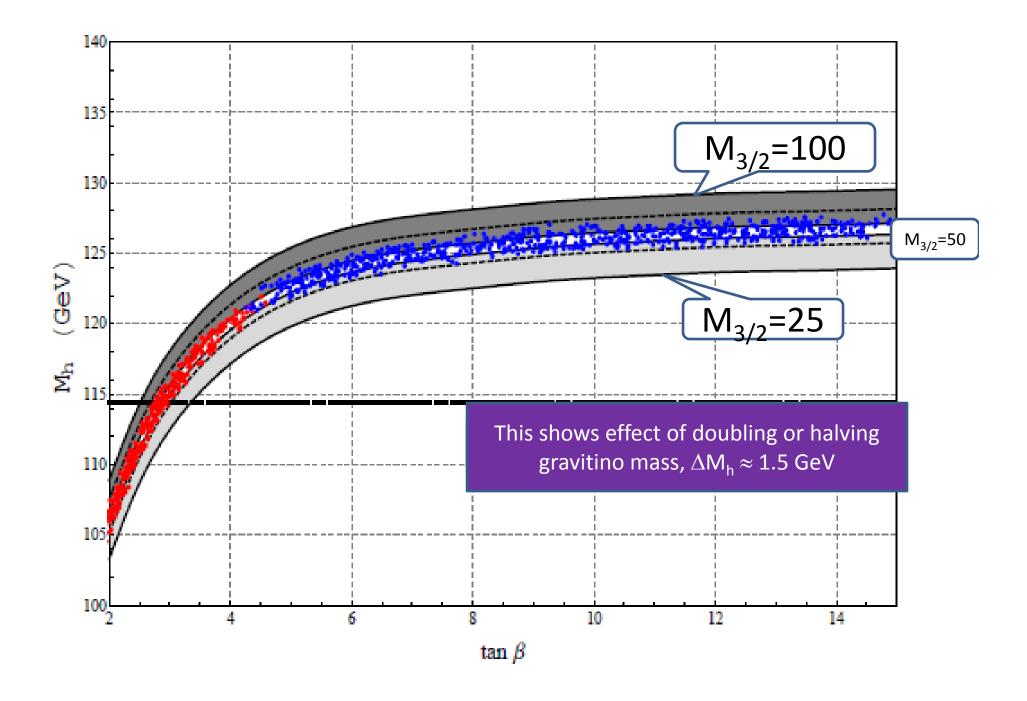
EWSB, μ , tan β , naturalness

Usual EWSB conditions [so higgs potential minimum away from origin]:


$$M_Z^2 = -2\mu^2 + 2(M_{Hd}^2 - M_{Hu}^2 \tan^2\beta)/\tan^2\beta = -2\mu^2 + 2M_{Hd}^2/\tan^2\beta - 2M_{Hu}^2$$


$$2B\mu = \sin 2\beta (M_{Hu}^2 + M_{Hd}^2 + 2\mu^2)$$


 M_{Hu}^2 runs to be small, M_{Hd}^2 and B don't run much, μ suppressed, $\sin 2\beta \approx 2/\tan \beta$


If no μ from superpotential, and visible sector Kahler metric and Higgs bilinear coefficient independent of meson field, and if F_{mod} << F_{ϕ} then B (high scale) \approx 2 $M_{3/2}$ – recall μ <0.1 $M_{3/2}$

$$ightarrow$$
 tan $eta pprox M^2_{Hd}/B\mu pprox M^2_{3/2}/B\mu
ightarrow aneta pprox M_{3/2}/2\mu \ (\sim 15)$

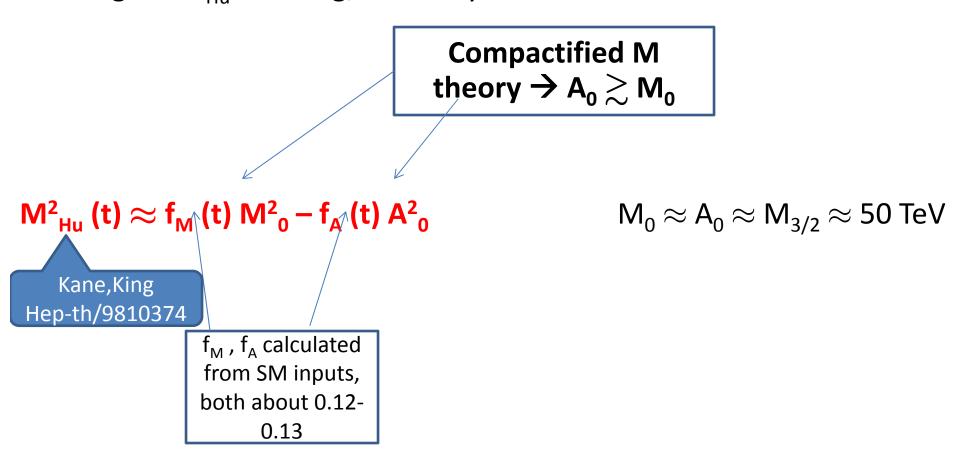
Is h SM-like?

Theory -- all scalar terms in the soft-breaking Lagrangian predicted to be of order gravitino mass, \gtrsim 30 TeV so "decoupling" limit

Still supersymmetric Higgs sector of course, but H, A, H $^{\pm}$ also about equal to the gravitino mass \gtrsim 30 TeV, h light and SM-like

h is the lightest eigenvalue of the supersymmetric higgs mass matrix, in the decoupling limit -> BR are SM-like

Typically chargino and neutralino loops give few per cent deviations


 $(\sigma \text{ x BR summed})_{\text{data}} / (\sigma \text{ x BR summed})_{\text{SM}} = 1.11 \pm 0.16$ [but watch $\gamma \gamma$, etc, channels]

We assumed MSSM is gauge group and matter content at compactification – must calculate one gauge group and matter content at a time because of RGE running etc

- Can find models extending MSSM that give M_h same value as MSSM
 - Some U(1) extensions with no extra matter do not change mass value or BR
 - -- SO(10) with RH ν , no other extra matter gives 126
 - -- MSSM plus U(1) plus singlet charged under U(1) does not generically give 126
- -- We have no examples with M_h =126 and increased $\gamma\gamma$ width larger than \sim 10 %

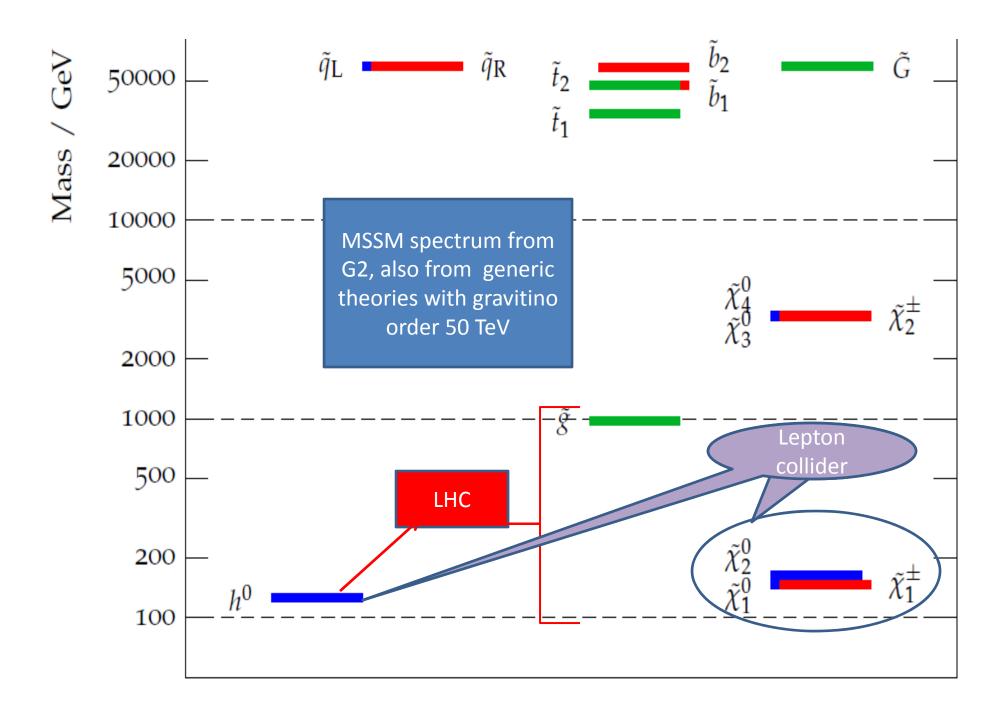
Little hierarchy problem

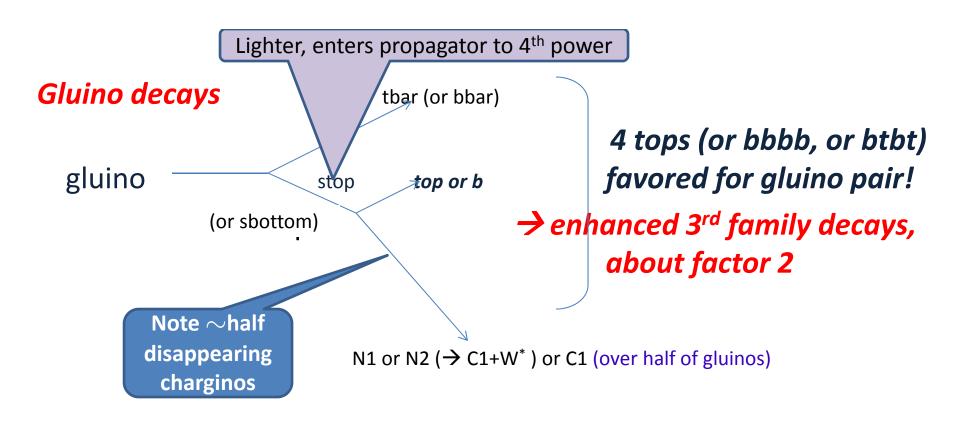
Running of M²_{HII} in string/M theory [arXiv:1105.3765 Feldman, GK, Kuflik, Lu]

So stringy prediction is a decrease \sim 50 in $\rm M^2_{Hu}$ – if trilinears not large get order of magnitude less decrease in $\rm M^2_{Hu}$

Greatly reduces "little hierarchy problem" – covers gap from $M_{3/2}$ to TeV

[If calculated M_h directly instead of ratio to Z, would get larger number, e.g. $M_Z \sim$ 1-2 TeV


Interesting to think about how precisely Higgs vev is constrained in order to give our world


 Donoghue, Dutta, Ross, Tegmark 0903.1024 argued that the higgs vev can vary a factor of a few without any change in SM physics]

>String/M theory crucial for *deriving* results!

- -- Must have theory with **stabilized** *moduli* and **spontaneous supersymmetry breaking** compactified string theories
- -- Must have gravitino-moduli connection to get lower limit on gravitino mass
- -- Must derive soft terms, otherwise could choose anything e.g. large trilinears important, but people in past guessed they were small string theory gave prediction of large trilinears
- -- Must have μ embedded in string theory
- -- Must exhibit string solutions with REWSB
- -- Must have effectively no parameters
- -- No R symmetry, since trilinears heavy and gauginos light

Some LHC predictions

Gluino lifetime $\sim 10^{-19}$ sec, decays in beam pipe

Gluino decays flavor-violating

Current limit for gluinos with enhanced 3rd family decays, very heavy scalars, ~ 900 GeV

Papers LHC14,0901.3367; LHC7, 1106.1963

Realistic Branching Fraction

$$m_{3/2}$$
=50 TeV

 $M_{\rm gluino}$ =900 GeV

 $M_{\rm LSP}$ =145 GeV

$$\begin{split} m_{3/2} = 50 \,\mathrm{TeV} & BR\left(\tilde{g} \to t \,\bar{t} \,\tilde{\chi}^0\right) \approx 0.15 \\ M_{\mathrm{gluino}} = 900 \,\mathrm{GeV} & BR\left(\tilde{g} \to t \,\bar{b} \,\tilde{\chi}^- + h.c.\right) \approx 0.28 \\ M_{\mathrm{LSP}} = 145 \,\mathrm{GeV} & BR\left(\tilde{g} \to b \,\bar{b} \,\tilde{\chi}^0\right) \approx 0.08 \end{split}$$

So **BR** (third family) $\approx \frac{1}{2}$, BR (1st + 2nd families $\approx \frac{1}{2}$) per gluino

If wino-like LSP, chargino and LSP are nearly degenerate, so chargino \rightarrow LSP plus very soft $\pi^+ \rightarrow$ disappearing charginos in gluino decays -- $\gamma c \tau \approx 10$ cm

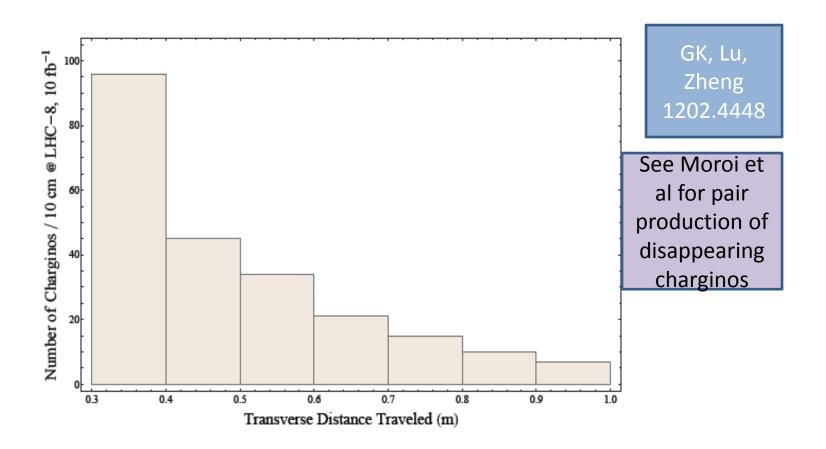
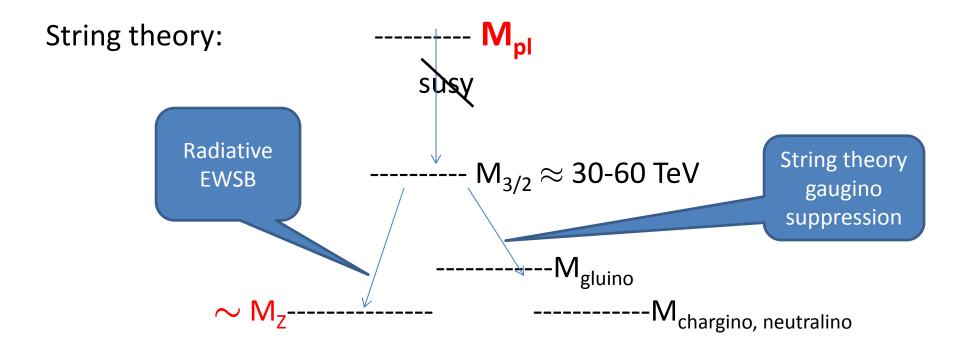



FIG. 1: Charged Winos resulting from gluino pair production, binned as a function of transverse distance traveled from the beam line. These results correspond to 10 fb⁻¹ of LHC-8 data ($\sigma_{\tilde{g}\tilde{g}} \sim 235$ fb), with $m_{\tilde{g}} = 750$ GeV, $m_{\tilde{W}} = 150$ GeV. For graphical purposes, charginos traveling a transverse distance < 30 cm are not shown.

Naturalness? Fine-tuning? Little hierarchy?

Suppose string theory gives a successful description of our string vacuum – *Can string theory be unnatural?*

GENERIC PREDICTIONS

- Squarks, sleptons 30-60 TeV
- $B_s \rightarrow \mu\mu$ within 1-2% of SM
- (g-s)_u within 5-10% of SM
- $tan\beta \sim 15$
- $M_h = 126\pm 2$, susy higgs sector decoupling so H, A,H $^{\pm} > 30$ TeV
- No invisible h decays
- Gluino \sim 1 TeV, gluino decays flavor violating, $3^{\rm rd}$ family larger
- EDMe $\approx 10^{-30}$
- LSP wino-like but μ small
- Relic density of LSPs, axions both order 1
- $\sigma_{\text{SI}} \sim 10^{-46}$

Final remarks

- Higgs data looks like data from compactified constrained string theory with stabilized moduli should look! – 126 GeV not unnatural! – SM-like Higgs not surprising!
- Higgs looks like a fundamental particle normal susy h in decoupling region – not weird
- □ String theory finally maturing into a useful predictive framework that relates many explanations, tests
- M theory compactified on G₂ manifold looks like good candidate for describing our string vacuum – explains many phenomena, predicts some -- Many features generic for other corners of string theory too
- Compactified M/string theory, squarks, sleptons 30-60 TeV
- μ , tan β included in theory, not free parameters