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Introduction

• Hadron-collider processes are prime 
examples of multi-scale problems 
involving several hierarchical scales

• Due to light-like nature of these 
processes, scale separation cannot be 
performed using a conventional OPE 

• Instead, any field-theory description of 
these processes must be intrinsically 
non-local

QCD factorization theorems:
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Scale separation in Sudakov problems
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Separation of short-distance and long-
distance contributions is subtle:
• usually, large logarithms in QFT arise 

from hierarchy between a long-distance 
(soft) scale m and a short-distance 
(hard) scale             :

• in Sudakov problems, dependence on 
the hard scale Q is affected by long-
distance physics:
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Scale separation in Sudakov problems

Soft-collinear effective theory (SCET): convenient framework to study 
Sudakov problems by describing collinear and soft particles by effective 
quark and gluon fields with well-defined interactions and power counting

• factorization of short-distance and   
long-distance contributions follows from 
structure of the effective Lagrangian  

• resummation of Sudakov logarithms is 
accomplished by solving renormalization-
group equations (RGEs) 

• elegant method for re-deriving many 
known results in collider and heavy-flavor 
physics, several times going beyond 
existing calculations

• in few cases, new factorization theorems have been derived



Sudakov problems with scale hierarchy              
really involve three correlated scales: 

• hard scale Q
• (anti-)collinear scale P
• soft scale P2/Q

Region analysis of off-shell Sudakov form factor 
reveals that (with P2 = -p2):

SCET-I: Correlated scales
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SCET-I: Correlated scales
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Generic SCET-I factorization theorem:
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Figure 1. The mass-shell hyperbolae showing the distinction between the di↵erent sectors [5]. The
separation between soft and collinear modes is arbitrary and leads to rapidity divergences. The soft
sector has two distinct rapidity (UV) divergences that must cancel with rapidity (IR) divergences
arising from the collinear sector.

Let us now see how factorization of the soft from collinear modes leads to rapidity diver-

gences. Consider the full theory one loop vertex correction. The relevant scalar integral is

given by

If =

Z

[dnk]
1

(k2 � M2)

1

(k2 � n · kn̄ · p1 + i✏)

1
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(4.3)

This integral is finite in UV as well as the IR. In the e↵ective theory there are three

contributions. A soft integral coming from taking the limit kµ ! (M, M, M)

IS =

Z

[dnk]
1

(k2 � M2)

1

(�n · k + i✏)

1

(�n̄ · k + i✏)
(4.4)

and two collinear integrals (In, In̄) of the form

In =

Z
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1
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Given that the full theory graph is IR finite, so must be the sum of the e↵ective theory

graphs. Let us consider the soft graph integrating over k?.

IS ⇠
Z
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1
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(4.6)

We see that the relevant region of phase space lives on the hyperbola n · k n̄ · k ⇠ M2, shown

in figure 1. O↵ the hyperbola the integral becomes scaleless. Given this restriction, we note

that the integral diverges when the rapidity (n · k/n̄ · k) approaches infinity or zero. These

divergences are not regulated by dimensional regularization and correspond to the rapidity

divergences that arise when the soft integral overlaps with the two collinear rapidity regions.

This is illustrated in figure (4). On the other hand, if we consider the collinear n diagram
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In Drell-Yan processes                      near threshold, the jet functions are 
standard parton distribution functions (PDFs), 

and hence Sudakov logarithms can be resummed by evolving the hard 
function H and PDFs to the characteristic soft scale, using the RGE:

RG invariance of the cross section requires that the cusp logarithm must be 
cancelled by corresponding terms in the RGEs for collinear and soft functions, 
by virtue of: 

SCET-I: Drell-Yan processes near threshold
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Application I: Higgs-boson production



Poor convergence of fixed-order pert. theory
3
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(19)

and similarly for the function aγS . The perturba-
tive expansions of these functions obtained at NNLO in
renormalization-group improved perturbation theory can
be found in [20]. They can be simplified using relation
(16). To leading order we find
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where a ≡ a(m2
H). Note that the result is µ-independent at

this order. The relevant anomalous-dimension coefficients
are ΓA
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ΓA
1

ΓA
0

=

(

67

9
−

π2

3

)
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20

9
TF nf , (21)

where CA = Nc, TF = 1/2, and nf = 5 is the number
of light quark flavors. The coefficients of the β-function
follow from (14).

The expression for the evolution function simplifies con-
siderably if we treat a(m2

H) ≈ 0.2 as a parameter of order
αs. Inserting the values of the one-loop anomalous dimen-
sions from above, we then find

lnU(m2
H , µ2) =

CAπαs(m2
H)

2

[
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1

ΓA
0

αs(m2
H)

4π
+ O(α2

s)

]

.

(22)
This result makes explicit that the “π2-enhanced” correc-
tions are terms of the form (CAπαs)n in perturbation the-
ory and exponentiate at leading order. The simplest way
to implement our resummation in existing codes for Higgs-
boson production would be to multiply the fixed-order re-
sult with exp[CAπαs(m2

H)/2] and subtract the expanded
form of this factor from the perturbative series. This treat-
ment is sufficient for practical purposes.

Numerically, setting µ = mH = 120GeV we obtain
lnU = {0.563, 0.565, 0.565} at LO, NLO, and NNLO from
the exact expression for the evolution function derived from
(18), indicating that the leading-order terms give by far
the dominant effect after renormalization-group improve-
ment. The analytical expressions (20) and (22) provide
accurate approximations to the exact results. The first
equation gives lnU = 0.562, while the second one yields
lnU = 0.567. The close agreement of these two numbers
shows that the running of coupling constant between µ2

fixed order

mH (GeV)

σ
(p

b
)

200180160140120100

80

70

60

50

40

30

20

10

0

resummed

mH (GeV)

σ
(p

b
)

200180160140120100

80

70

60

50

40

30

20

10

0

FIG. 1: LO (light), NLO (medium), and NNLO (dark) pre-
dictions for the Higgs-production cross section at the LHC in
fixed-order perturbation theory (left) and after resummation of
the π

2-enhanced terms (right).

and −µ2 is a minor effect compared with the evolution
driven by the anomalous dimension of the effective two-
gluon operator in (2).

We are now in a position to discuss our improved results
for the hard function in the formula for the Higgs-boson
production cross section. Setting µ = mH = 120GeV, we
obtain

H(m2
H , m2

H) = {1.756 (LO), 1.907 (NLO), 1.906 (NNLO)} .
(23)

This should be compared with the poorly converging series
H = {1, 1.623, 1.844} obtained using fixed-order perturba-
tion theory. Figure 1 illustrates the impact of the resumma-
tion of the π2-enhanced terms on the cross-section predic-
tions for Higgs-boson production at the LHC. The bands in
each plot show results obtained at LO, NLO, and NNLO
using MRST2004 parton distributions [21]. Their width
reflects the scale variation obtained by varying the factor-
ization and renormalization scales between mH/2 and 2mH

(setting µr = µf ). The convergence of the expansion and
the residual scale dependence at NLO and NNLO are much
improved by the resummation. The new LO and NLO
bands almost coincide with the NLO and NNLO bands in
fixed-order perturbation theory, and the new NNLO band
is now fully contained inside the NLO band.

IV. DRELL-YAN PRODUCTION

The cross section for the Drell-Yan process receives the
same type of π2-enhanced corrections as the Higgs-boson
production cross section, however in this case no anoma-
lously large K-factors arise at NLO and NNLO. Let us
briefly discuss why this is the case.

The vector-current matching coefficient CV appearing in
the Drell-Yan case is defined in analogy with CS in (2), but
with the two-gluon operator replaced by the electromag-
netic current q̄γµq [9, 10, 11]. It obeys an evolution equa-
tion of the same structure as (6), in which the cusp anoma-
lous dimension in the adjoint representation is replaced by

LHC (√s=14 TeV)

Harlander, Kilgore 2002; Anastasiou, Melnikov 2002; 
Ravindran, Smith, van Neerven 2003
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The simplest hadron collider 
process, yet ...



Apply philosophy of effective field theory

• Separate contributions associated with different 
scales, turning a multi-scale problem into a series 
of single-scale problems

• Evaluate each contribution at its natural scale, 
leading to improved perturbative behavior

• Use renormalization group to evolve contributions 
to an arbitrary factorization scale, thereby 
exponentiating (resumming) large corrections

When this is done consistently, large K-factors
should not arise, since no large perturbative
corrections should be left unexponentiated !



Apply philosophy of effective field theory

• We will analyze the Higgs cross section assuming 
the scale hierarchy (                 )

• Treating one scale at a time leads to a sequence 
of effective theories:

• Effects associated with each scale are absorbed 
into matching coefficients

2mt ⇤ mH ⇥
⌅

ŝ⇤
⌅

ŝ(1� z)⇤ �QCD

z = M2
H/ŝ

Figure 2: Sequence of matching steps and associated effective theories leading to the factor-
ization theorem (13).

momentum transfer q2 = m2
H , and with infrared divergences subtracted using the MS scheme

[16, 25, 27]:

H(m2
H , µ2) =

∣∣CS(−m2
H − iε, µ2)

∣∣2 . (14)

On a technical level, the function CS appears as a Wilson coefficient in the matching of the
two-gluon operator in (11) onto an operator in SCET, in which all hard modes have been
integrated out. This matching takes the form

Gµν,a Gµν
a → CS(Q2, µ2) Q2 gµν A

µ,a
n⊥ A

ν,a
n̄⊥ , (15)

where Q2 = −q2 is (minus) the square of the total momentum carried by the operator. The
fields A

µ,a
n⊥ and A

ν,a
n̄⊥ are effective, gauge-invariant gluon fields in SCET [42]. They describe

gluons propagating along the two light-like directions n, n̄ defined by the colliding hadrons.
The two-loop expression for the Wilson coefficient CS can be extracted from the results of
[43]. We write its perturbative series in the form

CS(−m2
H − iε, µ2) = 1 +

∞∑

n=1

cn(L)

(
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4π

)n

, (16)

where L = ln[(−m2
H − iε)/µ2]. The one- and two-loop coefficients read
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20
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(
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4π2
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)
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1832
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−

5π2

9
−

92

9
ζ3

]
.

(17)

The soft function S in (13) is defined in terms of the Fourier transform of a vacuum
expectation value of a Wilson loop in the adjoint representation of SU(Nc). In SCET is
arises after the decoupling of soft gluons from the hard-collinear and anti-hard-collinear fields
describing the partons originating from the colliding beam particles [27]. The soft function
in the case of Higgs-boson production is closely related to an analogous function entering

7

2



Integrate out heavy modes

1. Integrate out top quark:

rather than a convolution arises because kT -type jet algorithms do not cluster soft and collinear
radiation inside the same jet at leading power in an expansion in pveto

T /mH . However, as for
pT resummation, the naive factorization is affected by a collinear anomaly [26], which induces
dependence on the Higgs mass in the product of beam-jet and soft functions. We derive the
all-order form of this anomaly and and give simple analytic formulae for the resummed cross
section. We present all ingredients necessary for a resummation at NNLL order except for
a single two-loop coefficient, for which we don not have an analytic expression at present.
This coefficient is determined numerically, using the existing NNLO fixed-order codes for the
Higgs-boson production cross section [21, 22].

In the next section, we will perform the computation of the cross section in SCET and will
use the effective theory to derive a factorization theorem for Higgs production in the presence
of a jet veto. The factorization theorem then allows for the resummation of the logarithmically
enhanced corrections. The ingredients for NNLL accuracy are given in Section 3. Phenomeno-
logical predictions are then given in Section 4. In the final section, we summarize our findings.
[Comment on non-global logs?]

2 Factorization and resummation of the cross section

In the heavy top-quark limit, the effective Lagrangian describing Higgs production via gluon-
gluon fusion reads [?]

Leff = Ct(m
2
t , µ)

αs(µ)

12π

H

v
Ga

µν Gµν,a , (1)

where the Wilson coefficient Ct = 1 + O(αs) accounts for higher-order loop effects. The
differential cross section for Higgs production at the LHC in the presence of a jet veto can
then be written as

dσ(pveto
T ) =

1

2s

(

αs(µ)

12πv

)2

C2
t (m

2
t , µ)

d3q

(2π)3 2Eq

∫

d4x e−iq·x

×
∑

X

′
〈P (p1)P (p2)|Ga

µν Gµν,a(x) |X〉 〈X|Gb
ρσ Gρσ,b(0) |P (p1)P (p2)〉 ,

(2)

where the prime on the sum indicates that we only sum over those hadronic final states X that
satisfy the jet veto. We work with the usual class of sequential recombination jet algorithms
[?], with distance measure

dij = min(pn
T i, p

n
Tj)

√

∆y2
ij + ∆φ2

ij

R
,

diB = pn
T i ,

(3)

where n = 1 corresponds to the kT algorithm, n = 0 gives the Cambridge-Aachen algorithm,
and n = −1 is the anti-kT algorithm. The particles with the smallest distance are combined
into a new “particle” whose momentum is the sum of the momenta of the parent particles. If
the smallest distance is diB, the particle is considered a jet and removed from the list. The

2

g

g

H

g

g

H

(a) (b)

Figure 1: Leading order diagram to the process gg → H: (a) in the full and (b) in
the effective theory. The “⊗” denotes the effective vertex of Eq. (2).

The dominant production mechanism for a Higgs boson with a mass below 1 TeV at the
LHC will be through gluon-gluon fusion (for a review see [3]). The coupling of the gluons
to the Higgs boson is mediated through a quark loop, Fig. 1 (a). In the heavy quark limit,
the corresponding form factor becomes independent of the quark mass. Thus, this process
can be used, for example, to count the number of heavy quarks that may exist beyond the
third generation.

The current theoretical prediction for this reaction carries an uncertainty of about a factor
of 1.5 to 2. It is therefore important to improve on the theoretical accuracy. In this paper
we provide a gauge invariant ingredient to the complete next-to-next-to-leading order
prediction, namely the virtual corrections up to order α4

s. The calculation is, to our
knowledge, the first application of a recently introduced method that allows to relate the
relevant set of vertex diagrams to the more familiar class of three-loop two-point functions.

2 Effective Lagrangian

As it was mentioned before, the coupling of the gluons to the Higgs boson is mediated
through a quark loop, Fig. 1 (a). Since all quarks except for the top are much lighter than
the current lower limit on the Higgs mass, we will neglect their masses in the following. In
this case, the top quark is the only one that couples directly to the Higgs boson, because
the Higgs-fermion vertex is proportional to the fermion mass. The leading order result
has been known for quite a while [4]. At the parton level it reads:

σLO(gg → H) =
GFα2

s(µ
2)

128
√

2π
τ2 δ(1 − z) |1 + (1 − τ)f(τ)|2 ,

f(τ) =







arcsin2 1√
τ

, τ ≥ 1 ,

−1
4

[

log 1+
√

1−τ
1−

√
1−τ

− iπ
]2

, τ < 1 ,

τ = 4M2
t /M2

H , z = M2
H/s ,

(1)

where s is the partonic cms energy and GF is the Fermi coupling constant. αs is the strong
coupling constant which depends on the renormalization scale µ. Mt is the pole mass of
the top quark, and MH is the Higgs mass. In order to arrive at the cross section for hadron
collisions, σLO has to be folded with the gluon distribution functions.

2

Matching coefficient exhibits good convergence 
at natural scale choice             :

Ct(m2
t , µ) = 1 +

11
4

�s

⇤
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��s
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⇧
2777
18

� 19 ln
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⇤
�67

6
� 16

3
ln

m2
t

µ2

⌅⌃
+ . . .

� 1 + 0.09 + 0.007 + . . . for µ = mt

µ � mt

Kramer, Laenen, Spira 1996; Chetyrkin, Kniehl, Steinhauser 1997



Integrate out heavy modes

1. Integrate out top quark:

2. Match scalar gluon current onto SCET operator:

rather than a convolution arises because kT -type jet algorithms do not cluster soft and collinear
radiation inside the same jet at leading power in an expansion in pveto

T /mH . However, as for
pT resummation, the naive factorization is affected by a collinear anomaly [26], which induces
dependence on the Higgs mass in the product of beam-jet and soft functions. We derive the
all-order form of this anomaly and and give simple analytic formulae for the resummed cross
section. We present all ingredients necessary for a resummation at NNLL order except for
a single two-loop coefficient, for which we don not have an analytic expression at present.
This coefficient is determined numerically, using the existing NNLO fixed-order codes for the
Higgs-boson production cross section [21, 22].

In the next section, we will perform the computation of the cross section in SCET and will
use the effective theory to derive a factorization theorem for Higgs production in the presence
of a jet veto. The factorization theorem then allows for the resummation of the logarithmically
enhanced corrections. The ingredients for NNLL accuracy are given in Section 3. Phenomeno-
logical predictions are then given in Section 4. In the final section, we summarize our findings.
[Comment on non-global logs?]

2 Factorization and resummation of the cross section

In the heavy top-quark limit, the effective Lagrangian describing Higgs production via gluon-
gluon fusion reads [?]

Leff = Ct(m
2
t , µ)

αs(µ)

12π

H

v
Ga

µν Gµν,a , (1)

where the Wilson coefficient Ct = 1 + O(αs) accounts for higher-order loop effects. The
differential cross section for Higgs production at the LHC in the presence of a jet veto can
then be written as

dσ(pveto
T ) =

1

2s

(

αs(µ)

12πv

)2

C2
t (m

2
t , µ)

d3q

(2π)3 2Eq

∫

d4x e−iq·x

×
∑

X

′
〈P (p1)P (p2)|Ga

µν Gµν,a(x) |X〉 〈X|Gb
ρσ Gρσ,b(0) |P (p1)P (p2)〉 ,

(2)

where the prime on the sum indicates that we only sum over those hadronic final states X that
satisfy the jet veto. We work with the usual class of sequential recombination jet algorithms
[?], with distance measure

dij = min(pn
T i, p

n
Tj)

√

∆y2
ij + ∆φ2

ij

R
,

diB = pn
T i ,

(3)

where n = 1 corresponds to the kT algorithm, n = 0 gives the Cambridge-Aachen algorithm,
and n = −1 is the anti-kT algorithm. The particles with the smallest distance are combined
into a new “particle” whose momentum is the sum of the momenta of the parent particles. If
the smallest distance is diB, the particle is considered a jet and removed from the list. The

2

procedure is iterated until all particles are grouped into jets: the algorithm is inclusive. The
corrections to the cross section which are logarithmically enhanced at small pveto

T arise from
emissions that are soft or collinear to the proton beams.

We will analyze the cross section using the formalism of SCET, in which highly energetic
particles aligned with the colliding protons are described in terms of collinear and anti-collinear
quark and gluon fields, and soft particles emitted from the beam jets are described in terms
of soft fields [23]. The effective theory implements an expansion of scattering amplitudes in
powers of the small parameter λ ∼ pveto

T /mH , where the jet veto sets the characteristic size
of all transverse momenta in the process. We introduce two light-like directions nµ and n̄µ

(satisfying n · n̄ = 2) parallel to the beam axis and decompose all 4-vectors in the light-cone
basis spanned by these vectors,

pµ = n · p
n̄µ

2
+ n̄ · p

nµ

2
+ pµ

⊥ ≡ pµ
+ + pµ

− + pµ
⊥ . (4)

The different types of modes are characterized by the scalings of their momenta (p+, p−, p⊥)
with powers of λ, namely pµ

c ∼ mH(λ2, 1, λ) for collinear particles, pµ
c̄ ∼ mH(1, λ2, λ) for anti-

collinear particles, and pµ
s ∼ mH(λ, λ, λ) for soft particles. Hence, the particles in these three

categories have transverse momenta of order the jet veto, but rather different rapidities.
At leading order in power counting, the gluon operator in (1) can be matched onto an

operator in SCET consisting of a gauge-invariant collinear gluon field Aµ
c and a gauge-invariant

anti-collinear gluon field Aµ
c̄ . The formalism of expressing SCET operators in terms of gauge-

invariant building blocks is described, e.g., in [?]. In the present case, the corresponding
matching relation reads [7]

Ga
µν Gµν,a → −2q2 CS(−q2 − iε, µ) g⊥

µν Aµ,a
c

(

S†
nSn̄

)abAν,b
c̄ . (5)

Here q2 = m2
H is the time-like momentum transfer carried by the current. Note that only

the physical (transverse) polarization states of the gluons appear. The objects Sn and Sn̄ are
soft Wilson lines in the directions of the light-like vectors n and n̄, which extend from the
interaction point to infinity. Assuming that all quantum fields vanish at infinity, the product
S†

nSn̄ corresponds to a gauge-invariant Wilson loop with a cusp at the point where the two
Wilson lines come together.

In (5) we have already applied the SCET decoupling transformation, which removes the
interactions between (anti-)collinear and soft fields from the SCET Lagrangian [?]. It is then
always possible to group the fields of different types together and factorize any SCET operator
into gauge-invariant products of collinear, anti-collinear, and soft fields. Likewise, the final
states |X〉 can be written in the factorized form |X〉 = |Xc〉⊗ |Xc̄〉⊗ |Xs〉. We now exploit the
fact that the jet clustering algorithm never groups particles with different momentum scalings
(collinear, anti-collinear, or soft) into the same jet. The reason is that, generically, the rapidity
difference between partons from different categories is of order ln(mH/pveto

T ). Only in corners
of the phase space, e.g. when a soft emission becomes collinear to the beam, soft and collinear
radiation can be combined. Since there are no additional singularities in the cross section
in the corresponding limit, such configurations only give power-suppressed contributions to
the cross section. It follows that, at leading power in λ, the cross section factorizes into the

3

                 +              +             + ... 

g

g

H

g

g

H

(a) (b)

Figure 1: Leading order diagram to the process gg → H: (a) in the full and (b) in
the effective theory. The “⊗” denotes the effective vertex of Eq. (2).

The dominant production mechanism for a Higgs boson with a mass below 1 TeV at the
LHC will be through gluon-gluon fusion (for a review see [3]). The coupling of the gluons
to the Higgs boson is mediated through a quark loop, Fig. 1 (a). In the heavy quark limit,
the corresponding form factor becomes independent of the quark mass. Thus, this process
can be used, for example, to count the number of heavy quarks that may exist beyond the
third generation.

The current theoretical prediction for this reaction carries an uncertainty of about a factor
of 1.5 to 2. It is therefore important to improve on the theoretical accuracy. In this paper
we provide a gauge invariant ingredient to the complete next-to-next-to-leading order
prediction, namely the virtual corrections up to order α4

s. The calculation is, to our
knowledge, the first application of a recently introduced method that allows to relate the
relevant set of vertex diagrams to the more familiar class of three-loop two-point functions.

2 Effective Lagrangian

As it was mentioned before, the coupling of the gluons to the Higgs boson is mediated
through a quark loop, Fig. 1 (a). Since all quarks except for the top are much lighter than
the current lower limit on the Higgs mass, we will neglect their masses in the following. In
this case, the top quark is the only one that couples directly to the Higgs boson, because
the Higgs-fermion vertex is proportional to the fermion mass. The leading order result
has been known for quite a while [4]. At the parton level it reads:

σLO(gg → H) =
GFα2

s(µ
2)

128
√

2π
τ2 δ(1 − z) |1 + (1 − τ)f(τ)|2 ,

f(τ) =







arcsin2 1√
τ

, τ ≥ 1 ,

−1
4

[

log 1+
√

1−τ
1−

√
1−τ

− iπ
]2

, τ < 1 ,

τ = 4M2
t /M2

H , z = M2
H/s ,

(1)

where s is the partonic cms energy and GF is the Fermi coupling constant. αs is the strong
coupling constant which depends on the renormalization scale µ. Mt is the pole mass of
the top quark, and MH is the Higgs mass. In order to arrive at the cross section for hadron
collisions, σLO has to be folded with the gluon distribution functions.

2

time-like gluon form factor



• Matching corrections appear to be huge for any 
choice of scale !?!

• Explains huge K-factor for Higgs production !
• Break-down of EFT approach ?
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Evolve Wilson coefficients to their natural scales
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Figure 1: Cross sections at the Tevatron for
√
s = 1.96 TeV and the LHC for

√
s = 7, 10,

14 TeV. Bands indicate scale uncertainties. Light, medium and dark bands represent LO
(NLL), NLO (NNLL) and NNLO (N3LL) in RG-improved perturbation theory, respectively.

for download1.
In [28], the authors have also updated their predictions for Higgs production via gluon

fusion combining soft gluon resummation and two-loop electroweak corrections. Our results
differ in several important aspects from theirs:

• We work at N3LL accuracy rather than NNLL.

• We resum the enhanced contributions arising from the analytic continuation of the gluon
form factor. This has been demonstrated to greatly improve the perturbative conver-
gence.

• We work directly in momentum space rather than in Mellin moment space, which avoids
the Landau pole ambiguity.

1http://projects.hepforge.org/rghiggs/
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Figure 1: Cross sections at the Tevatron for
√
s = 1.96 TeV and the LHC for

√
s = 7, 10,

14 TeV. Bands indicate scale uncertainties. Light, medium and dark bands represent LO
(NLL), NLO (NNLL) and NNLO (N3LL) in RG-improved perturbation theory, respectively.

for download1.
In [28], the authors have also updated their predictions for Higgs production via gluon

fusion combining soft gluon resummation and two-loop electroweak corrections. Our results
differ in several important aspects from theirs:

• We work at N3LL accuracy rather than NNLL.

• We resum the enhanced contributions arising from the analytic continuation of the gluon
form factor. This has been demonstrated to greatly improve the perturbative conver-
gence.

• We work directly in momentum space rather than in Mellin moment space, which avoids
the Landau pole ambiguity.

1http://projects.hepforge.org/rghiggs/
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Figure 6: The fixed-order (left) and RG-improved (right) cross-section predictions including
perturbative uncertainty bands due to scale variations for the Tevatron (upper) and LHC
(lower plots). In contrast to Figure 5, different PDF sets are used according to the order of
the calculation.

after RG improvement are fully contained in the lower-order ones and the K-factor is close
to 1, in particular for the LHC.1 In fixed-order calculations it is customary to use PDFs ex-
tracted from a fit using predictions of the same order. Doing so absorbs universal higher-order
corrections into the PDFs. Since resummed calculations contain contributions of arbitrarily
high orders, the optimal PDF choice is less clear. If the same large higher-order corrections
affect both the observable one tries to predict and the cross sections used to extract the PDFs,
it would be quite problematic to perform a resummation in one case and not the other. For
our case, the relevant input quantity is the gluon PDF at low x, which is mostly determined
by measurements of scaling violations in the DIS structure function, ∂F2(x, Q2)/∂Q2. The
higher-order corrections associated with the analytic continuation of the time-like gluon form
factor, which we resum, do not affect the DIS cross section, and so are not universal and

1For MRST2004 PDFs [52], the K-factors after resummation are somewhat larger, K ≈ 1.3 for the LHC,
see [18].

18
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Higgs production in gluon-gluon fusion

• Resummation at N3LL order, 
matched to NNLO fixed-order 
theory

• SCET analysis automatically 
resums an important class of 
large perturbative corrections 
related to the time-like 
nature of the fusion process

• Electroweak radiative 
corrections are included, and 
results are available for all 
modern PDF sets

• Most precise predictions 
available

scale uncertainty PDF & αs uncertainty

MSTW 2008 PDFs

 Ahrens, Becher, MN, Yang: 0809.4283 (EPJC), 1008.3162 (PLB)

mH [GeV] Tevatron LHC (7 TeV) LHC (10 TeV) LHC (14 TeV)

115 1.215+0.031+0.105
−0.007−0.095 18.34+0.54+0.95

−0.14−1.00 34.1+1.0+1.8
−0.2−1.9 58.8+1.7+3.1

−0.4−3.5

120 1.073+0.026+0.096
−0.005−0.087 16.86+0.49+0.87

−0.13−0.91 31.5+0.9+1.6
−0.2−1.8 54.7+1.6+2.9

−0.3−3.2

125 0.950+0.022+0.088
−0.005−0.079 15.54+0.45+0.80

−0.12−0.83 29.3+0.8+1.5
−0.2−1.6 51.1+1.4+2.6

−0.3−3.0

130 0.845+0.019+0.081
−0.004−0.072 14.36+0.41+0.74

−0.11−0.76 27.2+0.8+1.4
−0.2−1.5 47.8+1.3+2.5

−0.3−2.7

135 0.753+0.016+0.075
−0.004−0.067 13.31+0.37+0.68

−0.10−0.70 25.4+0.7+1.3
−0.2−1.4 44.8+1.2+2.3

−0.3−2.5

140 0.673+0.014+0.069
−0.003−0.061 12.35+0.34+0.63

−0.09−0.65 23.7+0.7+1.2
−0.2−1.3 42.1+1.1+2.1

−0.3−2.3

145 0.604+0.012+0.064
−0.003−0.057 11.50+0.31+0.59

−0.08−0.60 22.2+0.6+1.1
−0.2−1.2 39.7+1.1+2.0

−0.2−2.2

150 0.542+0.010+0.059
−0.002−0.052 10.71+0.29+0.55

−0.08−0.56 20.9+0.6+1.0
−0.1−1.1 37.4+1.0+1.9

−0.2−2.0

155 0.487+0.009+0.055
−0.002−0.049 9.99+0.26+0.51

−0.07−0.52 19.6+0.5+1.0
−0.1−1.0 35.2+0.9+1.7

−0.2−1.9

160 0.435+0.008+0.050
−0.002−0.045 9.24+0.24+0.48

−0.07−0.48 18.2+0.5+0.9
−0.1−0.9 33.0+0.9+1.6

−0.2−1.7

165 0.387+0.007+0.046
−0.002−0.041 8.52+0.22+0.44

−0.06−0.44 16.9+0.4+0.8
−0.1−0.9 30.7+0.8+1.5

−0.2−1.6

170 0.347+0.006+0.043
−0.002−0.038 7.91+0.20+0.41

−0.05−0.41 15.8+0.4+0.8
−0.1−0.8 28.8+0.7+1.4

−0.2−1.5

175 0.313+0.005+0.039
−0.001−0.035 7.38+0.19+0.38

−0.05−0.38 14.8+0.4+0.7
−0.1−0.7 27.2+0.7+1.3

−0.2−1.4

180 0.282+0.004+0.037
−0.001−0.032 6.89+0.17+0.36

−0.05−0.36 13.9+0.3+0.7
−0.1−0.7 25.7+0.6+1.2

−0.2−1.3

185 0.254+0.004+0.034
−0.001−0.030 6.43+0.16+0.34

−0.04−0.33 13.1+0.3+0.6
−0.1−0.7 24.2+0.6+1.1

−0.1−1.2

190 0.230+0.003+0.032
−0.001−0.028 6.02+0.15+0.32

−0.04−0.31 12.3+0.3+0.6
−0.1−0.6 22.9+0.6+1.1

−0.1−1.2

195 0.210+0.003+0.030
−0.001−0.026 5.67+0.14+0.30

−0.04−0.30 11.6+0.3+0.6
−0.1−0.6 21.8+0.5+1.0

−0.1−1.1

200 0.191+0.002+0.028
−0.001−0.024 5.35+0.13+0.29

−0.03−0.28 11.1+0.3+0.5
−0.1−0.5 20.8+0.5+1.0

−0.1−1.0

Table 2: Cross sections (in pb) for different Higgs masses at the Tevatron and the LHC, using
CT10 PDFs with αs(mZ) = 0.118.

Therefore, we believe that our results are the most precise predictions for the total Higgs pro-
duction cross sections to date. With the higher-order perturbative corrections under control,
the main uncertainties now arise from the experimental determinations of the PDFs and αs.
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180 0.280+0.004+0.040
−0.001−0.037 6.88+0.17+0.56

−0.05−0.54 13.8+0.3+1.0
−0.1−1.0 25.5+0.6+1.8

−0.2−1.8

185 0.252+0.003+0.036
−0.001−0.033 6.42+0.15+0.52

−0.04−0.50 13.0+0.3+1.0
−0.1−0.9 24.0+0.6+1.7

−0.1−1.7

190 0.228+0.003+0.033
−0.001−0.031 6.02+0.14+0.49

−0.04−0.47 12.2+0.3+0.9
−0.1−0.9 22.7+0.5+1.6

−0.1−1.6

195 0.207+0.002+0.031
−0.001−0.028 5.67+0.13+0.46

−0.04−0.45 11.6+0.3+0.9
−0.1−0.8 21.6+0.5+1.6

−0.1−1.5

200 0.189+0.002+0.028
−0.001−0.026 5.35+0.12+0.44

−0.03−0.42 11.0+0.3+0.8
−0.1−0.8 20.6+0.5+1.5

−0.1−1.4

Table 1: Cross sections (in pb) for different Higgs masses at the Tevatron and the LHC, using
MSTW2008NNLO PDFs. The first error accounts for scale variations, while the second one
reflects the combined uncertainty from the PDFs and αs.

mZ = 91.1876 GeV , GF (mZ) = 1.16208 · 10−5 GeV−2 ,

and by default use the MSTW2008NNLO PDFs [25] with αs(mZ) = 0.11707. The other elec-
troweak parameters are the same as in [14]. For comparison, we also show numbers obtained
using the CT10 and NNPDF2.0 PDFs [26,27] , with the corresponding values of αs(mZ). We
note, however, that these are NLO PDFs and therefore less well suited for our calculation.

Our main results are summarized in Table 1, where our best predictions for the cross
section at the Tevatron with

√
s = 1.96 TeV and the LHC with

√
s = 7, 10, 14 TeV using

MSTW2008NNLO PDFs are shown. In Figure 1, we show the cross sections as functions of
mH , with bands representing the scale uncertainties. We have also depicted the LO and NLO
RG-improved cross sections in Figure 1, to show the good perturbative convergence of our
result. In Figure 2, we plot the central values of the cross sections at the LHC for mH = 120,
160 and 200 GeV as functions of

√
s. For comparison, in Table 2 and 3 we also show the cross

sections using CT10 and NNPDF2.0 PDFs. They agree with the results in Table 1 within
errors. To make it simple to update our results in the future, we include a Fortran program

3

mH [GeV] Tevatron LHC (7 TeV) LHC (10 TeV) LHC (14 TeV)

115 1.341+0.037+0.143
−0.018−0.143 19.35+0.60+1.36

−0.29−1.36 35.4+1.1+2.4
−0.5−2.4 60.3+1.8+3.9

−0.7−3.9

120 1.184+0.032+0.129
−0.016−0.129 17.82+0.54+1.25

−0.29−1.25 32.8+1.0+2.2
−0.5−2.2 56.3+1.7+3.7

−0.7−3.7

125 1.049+0.027+0.116
−0.014−0.116 16.45+0.50+1.15

−0.28−1.15 30.5+0.9+2.0
−0.5−2.0 52.6+1.5+3.4

−0.8−3.4

130 0.932+0.023+0.105
−0.013−0.105 15.23+0.45+1.07

−0.28−1.07 28.5+0.8+1.9
−0.5−1.9 49.3+1.4+3.2

−0.8−3.2

135 0.831+0.020+0.096
−0.011−0.096 14.13+0.41+0.99

−0.27−0.99 26.6+0.8+1.8
−0.5−1.8 46.3+1.3+3.0

−0.8−3.0

140 0.742+0.017+0.087
−0.010−0.087 13.14+0.38+0.93

−0.26−0.93 24.9+0.7+1.7
−0.5−1.7 43.6+1.2+2.8

−0.8−2.8

145 0.665+0.015+0.080
−0.009−0.080 12.24+0.35+0.86

−0.25−0.86 23.3+0.7+1.5
−0.5−1.5 41.1+1.1+2.6

−0.8−2.6

150 0.597+0.013+0.073
−0.008−0.073 11.42+0.32+0.81

−0.24−0.81 21.9+0.6+1.5
−0.4−1.5 38.8+1.1+2.5

−0.7−2.5

155 0.536+0.011+0.067
−0.007−0.067 10.66+0.30+0.76

−0.23−0.76 20.6+0.6+1.4
−0.4−1.4 36.6+1.0+2.3

−0.7−2.3

160 0.478+0.010+0.061
−0.006−0.061 9.88+0.27+0.70

−0.22−0.70 19.2+0.5+1.3
−0.4−1.3 34.3+0.9+2.2

−0.7−2.2

165 0.425+0.008+0.055
−0.005−0.055 9.11+0.25+0.65

−0.21−0.65 17.8+0.5+1.2
−0.4−1.2 32.0+0.9+2.0

−0.7−2.0

170 0.380+0.007+0.050
−0.005−0.050 8.46+0.24+0.61

−0.19−0.61 16.6+0.5+1.1
−0.4−1.1 30.0+0.8+1.9

−0.6−1.9

175 0.342+0.006+0.046
−0.004−0.046 7.90+0.22+0.57

−0.18−0.57 15.6+0.4+1.0
−0.4−1.0 28.4+0.8+1.8

−0.6−1.8

180 0.308+0.005+0.042
−0.003−0.042 7.38+0.20+0.53

−0.17−0.53 14.7+0.4+1.0
−0.3−1.0 26.8+0.7+1.7

−0.6−1.7

185 0.277+0.005+0.039
−0.003−0.039 6.90+0.19+0.50

−0.16−0.50 13.8+0.4+0.9
−0.3−0.9 25.3+0.7+1.6

−0.6−1.6

190 0.250+0.004+0.036
−0.002−0.036 6.46+0.18+0.47

−0.15−0.47 13.0+0.4+0.9
−0.3−0.9 23.9+0.7+1.5

−0.5−1.5

195 0.227+0.004+0.033
−0.002−0.033 6.08+0.17+0.44

−0.14−0.44 12.3+0.4+0.8
−0.3−0.8 22.8+0.6+1.4

−0.5−1.4

200 0.207+0.003+0.031
−0.002−0.031 5.74+0.17+0.42

−0.13−0.42 11.7+0.3+0.8
−0.3−0.8 21.7+0.6+1.4

−0.5−1.4

Table 3: Cross sections (in pb) for different Higgs masses at the Tevatron and the LHC, using
NNPDF2.0 PDFs with αs(mZ) = 0.119.
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Collinear factorization anomaly



SCET-I: Correlated scales

Q
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hard
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collinear
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(�2, 1,�) (1,�2,�)

Generic SCET-I factorization theorem:
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Figure 1. The mass-shell hyperbolae showing the distinction between the di↵erent sectors [5]. The
separation between soft and collinear modes is arbitrary and leads to rapidity divergences. The soft
sector has two distinct rapidity (UV) divergences that must cancel with rapidity (IR) divergences
arising from the collinear sector.

Let us now see how factorization of the soft from collinear modes leads to rapidity diver-

gences. Consider the full theory one loop vertex correction. The relevant scalar integral is

given by

If =

Z

[dnk]
1

(k2 � M2)

1

(k2 � n · kn̄ · p1 + i✏)

1

(k2 � n̄ · kn · p2 � i✏)
(4.3)

This integral is finite in UV as well as the IR. In the e↵ective theory there are three

contributions. A soft integral coming from taking the limit kµ ! (M, M, M)

IS =

Z

[dnk]
1

(k2 � M2)

1

(�n · k + i✏)

1

(�n̄ · k + i✏)
(4.4)

and two collinear integrals (In, In̄) of the form

In =

Z

[dnk]
1

(k2 � M2)

1

(k2 � n · k n̄ · p1 + i✏)

1

(�n̄ · k + i✏)
. (4.5)

Given that the full theory graph is IR finite, so must be the sum of the e↵ective theory

graphs. Let us consider the soft graph integrating over k?.

IS ⇠
Z

[d2k](n · k n̄ · k � M2)�2✏ 1

(�n · k + i✏)

1

(�n̄ · k + i✏)

(4.6)

We see that the relevant region of phase space lives on the hyperbola n · k n̄ · k ⇠ M2, shown

in figure 1. O↵ the hyperbola the integral becomes scaleless. Given this restriction, we note

that the integral diverges when the rapidity (n · k/n̄ · k) approaches infinity or zero. These

divergences are not regulated by dimensional regularization and correspond to the rapidity

divergences that arise when the soft integral overlaps with the two collinear rapidity regions.

This is illustrated in figure (4). On the other hand, if we consider the collinear n diagram

– 9 –
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virtuality
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SCET-II: Absence of the third (soft) scale
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• Naively violates RG invariance, since collinear and 
soft particles have same virtuality; hence one cannot 
generate               from their anomalous dimensions
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Figure 1. The mass-shell hyperbolae showing the distinction between the di↵erent sectors [5]. The
separation between soft and collinear modes is arbitrary and leads to rapidity divergences. The soft
sector has two distinct rapidity (UV) divergences that must cancel with rapidity (IR) divergences
arising from the collinear sector.
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We see that the relevant region of phase space lives on the hyperbola n · k n̄ · k ⇠ M2, shown

in figure 1. O↵ the hyperbola the integral becomes scaleless. Given this restriction, we note

that the integral diverges when the rapidity (n · k/n̄ · k) approaches infinity or zero. These

divergences are not regulated by dimensional regularization and correspond to the rapidity

divergences that arise when the soft integral overlaps with the two collinear rapidity regions.

This is illustrated in figure (4). On the other hand, if we consider the collinear n diagram
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SCET-II: Absence of the third (soft) scale

Q

collinear
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collinear
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• Problem is cured by an anomaly of the effective 
theory SCET-II: collinear factorization anomaly
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Figure 1. The mass-shell hyperbolae showing the distinction between the di↵erent sectors [5]. The
separation between soft and collinear modes is arbitrary and leads to rapidity divergences. The soft
sector has two distinct rapidity (UV) divergences that must cancel with rapidity (IR) divergences
arising from the collinear sector.
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This integral is finite in UV as well as the IR. In the e↵ective theory there are three

contributions. A soft integral coming from taking the limit kµ ! (M, M, M)
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in figure 1. O↵ the hyperbola the integral becomes scaleless. Given this restriction, we note

that the integral diverges when the rapidity (n · k/n̄ · k) approaches infinity or zero. These

divergences are not regulated by dimensional regularization and correspond to the rapidity

divergences that arise when the soft integral overlaps with the two collinear rapidity regions.
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SCET-II: Collinear factorization anomaly

collinear

Generic (anti-)collinear loop integrals in SCET-II are ill-defined in dimensional 
regularization and require an additional regulator
• integrals such as                   can be defined using analytic regulators, e.g.:

• poles in 1/α cancel when one adds the collinear and anti-collinear 
contributions, but an anomalous dependence on the hard scale Q remains

• a variant of the analytic regularization scheme is the rapidity regularization 
scheme proposed in Chiu, Jain, Neill, Rothstein: 1202.0814

R1
0 dk+/k+

1

k+
! ⌫2↵ p�

(k+ p�)
1+↵

for an all-order analytic regularization 
scheme, see:

Becher, Bell: 1112.3907



SCET-II: Collinear factorization anomaly

collinear

Generic (anti-)collinear loop integrals in SCET-II are ill-defined in dimensional 
regularization and require an additional regulator
• integrals such as                   can be defined using analytic regulators, e.g.:

• poles in 1/α cancel when one adds the collinear and anti-collinear 
contributions, but an anomalous dependence on the hard scale Q remains

• a variant of the analytic regularization scheme is the rapidity regularization 
scheme proposed in Chiu, Jain, Neill, Rothstein: 1202.0814 

In SCET-II, this phenomenon can be interpreted as an anomaly: the breaking 
of a classical symmetry of the effective Lagrangian by quantum effects

• as a result, the functional dependence on Q is highly constrained and can 
be derived from simple differential equations w.r.t. regulator

R1
0 dk+/k+

1

k+
! ⌫2↵ p�

(k+ p�)
1+↵

for an all-order analytic regularization 
scheme, see:

Becher, Bell: 1112.3907

Many applications: EW Sudakov, qT resummation, jet broadening, jet veto, ...



Application II: Transverse-momentum 
resummation for Z and Higgs production



Drell-Yan production at small qT

Drell-Yan production of Z, W or Higgs bosons 
at small transverse momentum (               ) is 
a classical two-scale process, for which the 
resummation of Sudakov logs                             
is essential
• no reasonable fixed-order perturbative 

approximation can be obtained, even            
if                      

Factorization theorem obtained using the 
collinear anomaly: 

qT ⌧ M

⇠ ↵n
s ln2n(M/qT )

qT � ⇤QCD

d�

dq
T

⇠ H(M)

Z
d2x

T

e�iqT ·xT [I(x
T

)⌦ �] [I(x
T

)⌦ �] (M2x2
T

)�Fqq̄(xT )

beam functions anomalous M dependence is
a pure power in xT space

Figure 1: The qT spectrum at the LHC with MH = 125 GeV and y = 0: results at NNLL+NLO
(solid line) and NLO (dashed line) accuracy. The inset plot shows the ratio K (see Eq. (15)) of
the corresponding qT cross sections, fixing y = 0 (solid line) and integrating them over the full
rapidity range (dashed line).

large qT , the perturbative expansion at any fixed order has no pathological behaviour: it leads to
a positive cross section, whose value decreases as qT increases. When qT → 0, instead, any fixed-
order calculation diverges alternatively to ±∞ depending on the perturbative order. Therefore, to
go smoothly from the large-qT behaviour to the small-qT limit, the NLO (or N3LO, and so forth)
calculation of the cross section has to show at least one peak in the intermediate-qT region.

We recall once more that the label NLO in Fig. 1 refers to (and originates from) the perturbative
expansion at large qT . To avoid possible misunderstandings (coming from such a label) when
interpreting the dashed (NLO) curve in the small-qT region, we point out that, the only difference
produced in Fig. 1 by the NNLO calculation at small qT (this calculation can be carried out, for
example, by using the NNLO codes of Refs. [14, 15]) is a spike around the point qT = 0. More
precisely, as long as qT #= 0, the dashed curve is exactly the result of the NNLO calculation of the
qT cross section at small qT . The only difference introduced in the plot by this NNLO calculation
would occur in the first bin (with arbitrarily small size) that includes the point qT = 0. The
NNLO value of the qT cross section in this first bin is positive and fixed by the value of the NNLO
total cross section††. Of course, owing to the increasingly negative behaviour of the qT distribution
when qT → 0, the NNLO value of the qT cross section in the first bin increases by decreasing the
size of that bin.

The resummed NNLL+NLO result in Fig. 1 is physically well-behaved at small qT (it vanishes

††By definition, the integral over qT of d2σ/(dqT dy) at NNLO is equal to dσ/dy at NNLO.
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Infrared protection at very small qT

A careful analysis reveals that the spectrum              is short-distance 
dominated (but genuinely non-perturbative) all the way down to zero 
transverse momentum

The appropriate choice of μ eliminating large logarithms from the Fourier 
integral is:

➡  yields 1.9 GeV for Z production, and 7.7 GeV for Higgs production 

Scale     controls the size of long-distance hadronic corrections, which can 
be noticable for Z production but are very small for Higgs production

µ ⇠ max

�
qT , q⇤

�
q⇤ ⇡ M exp

✓
� 2⇡

(4CF/A + �0)↵s(M)

◆
with:

d�/dqT

q⇤

Becher, MN, Wilhelm: 1109.6027 (JHEP)



Z-boson production at Tevatron

Tevatron, Run I
CDF results
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Figure 7: Comparison with Tevatron Run I data from CDF, with and without long-distance
corrections. The lower panels show the deviation from the default theoretical prediction.

have discussed in the previous section that long-distance corrections will shift the peak to the
right, and Figure 4 shows that a shift of 0.75GeV corresponds to a value of ΛNP = 0.6GeV.
In Figure 7, we compare again to the CDF data [26] and plot the theoretical prediction for
both ΛNP = 0 and ΛNP = 0.6GeV. In the lower panels, we give the ratio of the experimental
and theoretical results to our default prediction. Including a non-perturbative shift, a good
description of the data is achieved over the entire qT range. In Figure 8, we repeat the same
comparison for the Tevatron Run II results from DØ [31, 32] and for the LHC result of the
ATLAS collaboration [33]. Since this data is not finely binned in the peak region, it difficult to
draw firm conclusions on the necessity for long-distance corrections. However, in both cases,
the first data bin is below the prediction without including a long-distance correction.

The systematic experimental uncertainties which affect the low qT experimental results are
substantial, because it is highly sensitive to lepton transverse momentum resolution. Recently,
two new variables aT and φ∗

η were introduced, which probe the same physics but have reduced
sensitivity to the momentum resolution [34, 35]. DØ has now performed a very precise mea-
surement of the variable φ∗

η [36]. It would be interesting to include the lepton decay in our
results and to study these variables. In the traditional framework, resummed results for these
quantities were presented recently in [37, 38].

The region of larger qT ! 20GeV is not affected by long-distance corrections and should be
described well by fixed-order perturbation theory. In this region the data lies somewhat above
the prediction, in particular for the case of the ATLAS results. A comparison to the existing
fixed-order results is given in Figure 9. The red bands correspond to the O(α2

s) fixed-order
result for the spectrum, which the highest order currently known. To compute this result we

22

• First complete calculation of Z-boson and Higgs production at NNLL+NLO
• Extension to N3LL+NNLO is technically possible (work in progress) 
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Z-boson production at LHC

• First complete calculation of Z-boson and Higgs production at NNLL+NLO
• Extension to N3LL+NNLO is technically possible (work in progress) 
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Figure 8: Comparison to Tevatron Run II and ATLAS data, with and without long-distance
corrections. The lower panels show the deviation from the default theoretical prediction.

use the numerical code QT [39]. For the sake of comparison, we have evaluated all results
using the MRST2008NNLO PDF set. The fixed-order results diverge to ±∞ for vanishing
transverse momentum. Since the fixed-order result depends both on qT and MZ it is not clear
which value one should choose for the renormalization and factorization scales. The edges of
the fixed-order band in Figure 9 correspond to the two choices µ = qT and µ = MZ . The
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same hadronic parameter 
as for Tevatron!

pp! Z + X ! `+`� + X



Higgs-boson production at LHC

• Higgs qT spectrum is predicted with similar accuracy, only that long-
distance hadronic corrections are much smaller in this case

• Eagerly awaiting data ... 

Becher, MN, Wilhelm: 1212.2621 (today!)
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Figure 4: Comparison of the resummed and matched transverse-momentum distributions of
Higgs bosons produced at the LHC, for

√
s = 8TeV (left) and

√
s = 13TeV (right). The

default matching scheme is adopted. Note the different scales in the plots.

hard function at the fixed default scale µ = qT + q∗. Doing so has the same qualitative effect
on the matching correction, but as shown in the third plot the strong cancellation of scale
dependence is not observed. To be conservative, we adopt this last choice as our “default
matching” prescription.

Since the matching correction for Higgs-boson production is several times larger than that
for the Drell-Yan case (see e.g. [7]), it would be preferable to extend the matching to the fixed-
order cross section to two-loop order. This requires some effort, but it is possible since the
corresponding fixed-order result is known [27–29] and has been implemented in several public
codes, e.g. MCFM [30] and HNNLO [31]. We note that the quark beam function Iq→q(z, x2

T , µ)
has recently been computed to two-loop accuracy [32]. Once this result is extended to the
gluon channel, all two-loop ingredients for the resummed expression (15) will be known, and
the matching should then be extended to O(α2

s).
Our final results for the resummed and matched differential cross sections for Higgs pro-

duction at the LHC, for
√
s = 8TeV and 13TeV, are shown in Figure 4. The shape of the two

spectra is very similar, the main effect of the higher center-of-mass energy being an increase
in the cross section by about a factor of 2. The scale uncertainty is around ±10% in the peak
region and increases for larger qT , as indicated in the panels below the plots. Our results are
fully compatible with the NNLL order results of [4] obtained in the traditional resummation
framework developed in [1]. The uncertainties found in that paper are slightly smaller in the
peak region, but about a factor of 2 smaller at large qT . The reason for the reduced scale
uncertainty is that this work implements matching to O(α2

s) as well as the hard-collinear
two-loop corrections, which were calculated in [33].
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→ public code CuTe available at:  http://cute.hepforge.org

http://projects.hepforge.org/rghiggs/
http://projects.hepforge.org/rghiggs/


Higgs-boson production at LHC

• Higgs qT spectrum is predicted with similar accuracy, only that long-
distance hadronic corrections are much smaller in this case

• Eagerly awaiting data ... 

Becher, MN, Wilhelm: 1212.2621 (today!)
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Figure 2: Comparison of the importance of long-distance hadronic effects on the differential
cross sections dσ/dqT for Z-boson (left) and Higgs-boson production (right) at the LHC with√
s = 8TeV. We adopt the gaussian model (32) and vary ΛNP between 0 and 1GeV. The cross

sections for Z-boson production include a factor of Br(Z → "+"−) = 3.37%.

transverse distances and is parameterized in terms of a hadronic scale ΛNP. For simplicity,
we will assume that this form factor is independent of ξ. The above ansatz inserts a factor
[fhadr(xTΛNP)]2 under the integral over xT in (26), which suppresses the region of very large
xT values. We will employ the gaussian model

f gauss
hadr (xTΛNP) = exp

(

−Λ2
NP x

2
T

)

(32)

for the form factor. It was shown in [7] that the functional form of the model function only
has a minor impact on the results, which are mainly sensitive to the value of the parameter
ΛNP. Choosing ΛNP ≈ 600MeV shifts the position of the peak of the qT distribution for Z-
boson production at the LHC from 3.17GeV to 3.51GeV and yields to a significantly better
agreement with the data. A similar effect is seen for Tevatron data.

In Figure 2, we compare the situation in Drell-Yan production of Z bosons, for which the
characteristic scale q∗ ≈ 1.75GeV is rather low, with that in Higgs production at the LHC,
for which q∗ ≈ 7.7GeV is safely in the perturbative domain. As expected, we find that the
impact of hadronic effects is significantly reduced in the latter case. With ΛNP ≈ 600MeV,
for instance, the peak position shifts by merely 110MeV (from 9.09GeV to 9.20GeV), which
is hardly visible on the scale of the plot. We will see in the next section that perturbative
uncertainties are significantly larger than this effect. It is therefore safe to ignore the potential
impact of long-distance effects for all practical purposes.

3 Predictions for the LHC

Having discussed the factorization of the cross section and its behavior at very small qT , we now
present our final results for the transverse-momentum spectrum of Higgs bosons produced in

12

hadronic corrections: Z-boson case hadronic corrections: Higgs case 

→ public code CuTe available at:  http://cute.hepforge.org

http://projects.hepforge.org/rghiggs/
http://projects.hepforge.org/rghiggs/


Application III: 
Higgs production with a jet veto



Higgs production with a jet veto

Searches for Higgs boson require stringent 
cuts to suppress background events

Since backgrounds are very different when 
the Higgs is produced in association with 
jets, the searches are performed in jet bins  
• require precise predictions for H+n jets, in 

particular for the 0-jet bin, i.e., the cross 
section with a jet veto:   

Until very recently, no resummed results for 
the cross section defined with a jet veto were 
available beyond LL order (parton shower)

pjetT < pvetoT ⇡ 15�30GeV

jets



Higgs production with a jet veto

Fixed-order predictions naively suggest that 
the cut rate has smaller uncertainties than the 
total cross section

Effect is due to an accidental cancellation 
of large corrections from two sources: 
• large positive corrections to total cross 

sections from analytic continuation of 
scalar form factor to time-like region

• large negative corrections from Sudakov 
logarithms  

True perturbative uncertainty is most likely 
significantly larger 

σ(fb) LO NLO NNLO

µ = Mh
2 152.63 ± 0.06 270.61 ± 0.25 301.23 ± 1.19

µ = 2Mh 103.89 ± 0.04 199.76 ± 0.17 255.06 ± 0.81

Table 1: The cross-section through NNLO with no experimental cuts applied.

K(N)NLO(µ) =
σ(N)NLO(µ)

σLO(µ)
, (4.1)

range from 1.77 to 1.92 at NLO and from 1.97 to 2.45 at NNLO, depending on the scale

choice 4.

It is important to compare the perturbative expansions for the inclusive cross-section

and differential Higgs boson observables. We find many kinematic distributions which

exhibit a different perturbative pattern than the inclusive cross-section. We present here

integrated differential distributions

σ(X) =

∫ X ∂σ

∂x
dx;

the result for a bin x ∈ [X1,X2] can be obtained from the difference

σ(x ∈ [X1,X2]) = σ(X2) − σ(X1).

Figure 1: On the left plot, the cross-section to produce a Higgs boson vetoing events with jets
in the central region |η| < 2.5 and pjet

T > pveto
T (no other cut is applied). On the right plot, the

K-factor as a function of pveto
T . The dashed horizontal lines correspond to the NLO and NNLO

K-factors for the inclusive cross-section. The vertical solid line denotes the value of pveto
T in the

signal cuts of Section 3.

4Note that the K-factor is often defined in the literature as the ratio of the NLO or the NNLO cross-

section at a scale µ over the LO cross-section at a fixed scale µ0 (e.g. µ0 = Mh). Since we allow with our

definition in Eq. 4.1 both numerator and denominator to vary, a large scale variation of the K-factor does

not necessarily indicate a big scale variation of the NLO or the NNLO cross-section in the numerator.

– 6 –

Anastasiou, Dissertori, Stöckli (2007)

 Ahrens, Becher, MN, Yang (2008)

↵n
s ln2n(mH/pvetoT )

Stewart, Tackmann, Waalewijn (2010) 
Stewart, Tackmann (2011)



Higgs production with a jet veto

Updated fixed-order predictions for two different default scale choices (R=0.4):

    ⇒ bands likely do not reflect true uncertainties!
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Figure 1: The jet-veto cross section σ(pvetoT ) and efficiency ε(pvetoT ) for Higgs production at
the LHC, at NLO (shaded light bands) and NNLO (dark bands) in fixed-order perturbation
theory. The first two panels compare the scale choices µ ∼ mH and µ ∼ pvetoT . The right
panels show predictions for the veto efficiency, defined either as a perturbative series in αs

(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables

2



Resummation at NLL and beyond

Recently, it has been shown that the jet veto 
can be resummed at NLL order using the 
numerical resummation code CAESAR  

• “jet veto is, trivially, in the scope of 
CAESAR”

• Is it also in the scope of SCET ? 

Banfi, Salaam, Zanderighi: 1203.5773 
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Figure 3: NLL+NNLO jet-veto efficiency for Higgs (left) and Z-boson production (right)
using three different matching prescriptions. For each one, the thick solid line corresponds
to the result obtained with µR = µF = Q = MH/Z/2, while the band shows the scale
uncertainty as obtained from the envelope of the choices of Eq. (3.14) and from Q-scale
variation (taking Q = {MB/4,MB/2,MB} for µR = µF = MH/Z/2). The lower panels
show the results normalised to the central scale choice for scheme a.
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Tackmann, Walsh, Zuberi: 1206.4312 



Resummation at NLL and beyond

Recently, it has been shown that the jet veto 
can be resummed at NLL order using the 
numerical resummation code CAESAR  

• “jet veto is, trivially, in the scope of 
CAESAR”

• Is it also in the scope of SCET ? 

NLL+NNLO calculation still suffers from 
significant perturbative uncertainties and 
scheme dependences; hence calculate cut 
efficiency instead of cross section

Worthwhile to go to higher orders (N≥2LL) 
using SCET 

Banfi, Salaam, Zanderighi: 1203.5773 

 Becher, MN: 1205.3806
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Figure 3: NLL+NNLO jet-veto efficiency for Higgs (left) and Z-boson production (right)
using three different matching prescriptions. For each one, the thick solid line corresponds
to the result obtained with µR = µF = Q = MH/Z/2, while the band shows the scale
uncertainty as obtained from the envelope of the choices of Eq. (3.14) and from Q-scale
variation (taking Q = {MB/4,MB/2,MB} for µR = µF = MH/Z/2). The lower panels
show the results normalised to the central scale choice for scheme a.
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Cross section with a jet veto can be factorized 
and resummed in SCET !

Tackmann, Walsh, Zuberi: 1206.4312 



Distance measure: 

Find the smallest of all dij, diB. If it is a dij, combine particles i and j into one 
particle. If it is a diB, call particle i a jet and remove it from the list. Repeat until 
all particles are clustered in jets

Since two different SCET modes have a large rapidity gap, the jet algorithm 
clusters soft particles with soft ones and collinear particles with collinear ones, 
except in corners of phase space (power-suppressed effects)

Inclusive jet clustering algorithm

rather than a convolution arises because kT -type jet algorithms do not cluster soft and collinear
radiation inside the same jet at leading power in an expansion in pveto

T /mH . However, as for
pT resummation, the naive factorization is affected by a collinear anomaly [26], which induces
dependence on the Higgs mass in the product of beam-jet and soft functions. We derive the
all-order form of this anomaly and and give simple analytic formulae for the resummed cross
section. We present all ingredients necessary for a resummation at NNLL order except for
a single two-loop coefficient, for which we don not have an analytic expression at present.
This coefficient is determined numerically, using the existing NNLO fixed-order codes for the
Higgs-boson production cross section [21, 22].

In the next section, we will perform the computation of the cross section in SCET and will
use the effective theory to derive a factorization theorem for Higgs production in the presence
of a jet veto. The factorization theorem then allows for the resummation of the logarithmically
enhanced corrections. The ingredients for NNLL accuracy are given in Section 3. Phenomeno-
logical predictions are then given in Section 4. In the final section, we summarize our findings.
[Comment on non-global logs?]

2 Factorization and resummation of the cross section

In the heavy top-quark limit, the effective Lagrangian describing Higgs production via gluon-
gluon fusion reads [?]

Leff = Ct(m
2
t , µ)

αs(µ)

12π

H

v
Ga

µν Gµν,a , (1)

where the Wilson coefficient Ct = 1 + O(αs) accounts for higher-order loop effects. The
differential cross section for Higgs production at the LHC in the presence of a jet veto can
then be written as

dσ(pveto
T ) =

1

2s

(

αs(µ)

12πv

)2

C2
t (m

2
t , µ)

d3q

(2π)3 2Eq

∫

d4x e−iq·x

×
∑

X

′
〈P (p1)P (p2)|Ga

µν Gµν,a(x) |X〉 〈X|Gb
ρσ Gρσ,b(0) |P (p1)P (p2)〉 ,

(2)

where the prime on the sum indicates that we only sum over those hadronic final states X that
satisfy the jet veto. We work with the usual class of sequential recombination jet algorithms
[?], with distance measure

dij = min(pn
T i, p

n
Tj)

√

∆y2
ij + ∆φ2

ij

R
,

diB = pn
T i ,

(3)

where n = 1 corresponds to the kT algorithm, n = 0 gives the Cambridge-Aachen algorithm,
and n = −1 is the anti-kT algorithm. The particles with the smallest distance are combined
into a new “particle” whose momentum is the sum of the momenta of the parent particles. If
the smallest distance is diB, the particle is considered a jet and removed from the list. The

2

n=1:  kT

n=0:  C/A
n=-1: anti-kT

→ jet veto can be applied separately in each sector of SCET
(simple factorization theorem) 



Based on SCET analysis, propose first all-order factorization formula for the 
cross section with a jet veto:

  

• without loss of generality, the soft function has                                          
been absorbed into the beam functions I

All-order factorization theorem

J
J J

J J
J

J

H

anomalous mH dependence is
a pure power in pT space

�(pvetoT ) ⇠ H(mH)
⇥
I(pvetoT )⌦ �

⇤ ⇥
I(pvetoT )⌦ �

⇤✓ m2

H

(pvetoT )2

◆�F veto

gg (pveto

T )

 Becher, MN: 1205.3806



Based on SCET analysis, propose first all-order factorization formula for the 
cross section with a jet veto:

Note close similarity with case of qT resummation:

All-order factorization theorem

J
J J

J J
J

J

H

anomalous mH dependence is
a pure power in pT space

�(pvetoT ) ⇠ H(mH)
⇥
I(pvetoT )⌦ �

⇤ ⇥
I(pvetoT )⌦ �

⇤✓ m2

H

(pvetoT )2

◆�F veto

gg (pveto

T )

d�

dqT
⇠ H(mH)

Z
d2xT e�iqT ·xT [I(xT )⌦ �] [I(xT )⌦ �]

�
m2

H x2
T

��Fgg(xT )

 Becher, MN: 1205.3806



Matching to fixed-order results

anomalous mH dependence is
a pure power in pT space

�(pvetoT ) ⇠ H(mH)
⇥
I(pvetoT )⌦ �

⇤ ⇥
I(pvetoT )⌦ �

⇤✓ m2

H

(pvetoT )2

◆�F veto

gg (pveto

T )

Study two different schemes:

• perform matching in naive way  (scheme A)
• factor out hard function H times anomaly term  (scheme B)

Since hard function H contains the large corrections affecting the total cross 
section (time-like scalar form factor), scheme B is expected to work better than 
scheme A



Preliminary NNLL+NNLO results

NNLL+NNLO predictions for Higgs production cross section with a jet veto:
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Figure 3: Resummed results with naive matching.
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Figure 4: Resummed results with matching. The hard function is factored out before the
matching is performed.
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Figure 5: Resummed results with matching. The hard function and the anomaly are both
factored out before the matching is performed.
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Figure 4: Resummed results with matching. The hard function is factored out before the
matching is performed.
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Figure 5: Resummed results with matching. The hard function and the anomaly are both
factored out before the matching is performed.

4

Scheme B (factor out hard function and anomaly)

PRELIMINARY

Scheme A (naive matching)



Preliminary NNLL+NNLO results

Large corrections at small R encoded in two-loop anomaly coefficient:

  ⇒ at small R, clustering logarithms ln(R) would need to be resummed!
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Preliminary NNLL+NNLO results

Results agree with NNLL+NNLO predictions for jet-veto efficiency obtained in 
Banfi, Monni, Salam, Zanderighi: 1206.4998

Jet veto efficiency NNLL+NNLO results
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NNLL+NNLO
compared to
NNLO and

POWHEG+Pythia
good agreement!

NNLL reduces
uncertainties from
∼ 15% →∼ 9%

[0-jet / ≥ 1-jet
correlations
available too]

public code at

http://jetvheto.hepforge.org
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Conclusions

SCET provides efficient tools for addressing difficult collider-
physics problems: systematic factorization and resummation 

Many applications exist for Drell-Yan processes (production of  
Z, W, H bosons) and top-quark pair production

In several cases, SCET methods have pushed the limits of what 
has been accomplished using traditional techniques

Collinear anomaly is an important ingredient to factorization 
analyses based on SCET-II 

Have developed a consistent framework for qT resummation at 
small and very small transverse momenta


