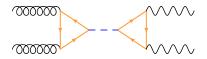
Exotic Higgs Decays: Searches and Challenges at the LHC


Jessie Shelton

Harvard University

Higgs Identification Mini-Program KITP, UC Santa Barbara December 21, 2012

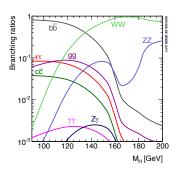
A light Higgs and physics beyond the Standard Model

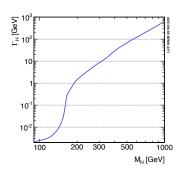
A 125 GeV Higgs is an exquisitely sensitive window onto BSM physics.

loop-induced production and decay vertices

A light Higgs and physics beyond the Standard Model

A 125 GeV Higgs is an exquisitely sensitive window onto BSM physics.

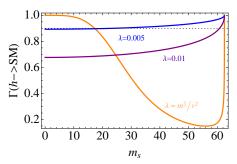

 Higgs portal: Higgs is leading place in SM to feel the effects of a hidden sector


$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{HS} + \sum_{i} \frac{1}{\Lambda^{d_i - 2}} |H|^2 \mathcal{O}_{HS,i}^{(d_i)}$$
$$+ \sum_{j} \frac{1}{\Lambda^{d_j - 2}} B_{\mu\nu} \mathcal{O}_{HS,j}^{\mu\nu(d_j)} + \dots$$

A light Higgs and physics beyond the Standard Model

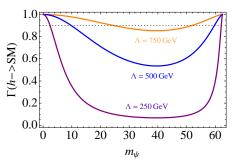
A 125 GeV Higgs is an exquisitely sensitive window onto BSM physics.

• Miniscule SM width: $\Gamma = 4$ MeV for 125 GeV Higgs



SM Higgs branching ratios

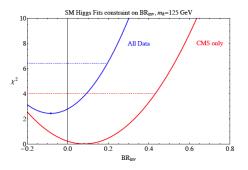
SM Higgs total width


Exotic Higgs decays

- Even very small couplings to new light degrees of freedom can give the Higgs an appreciable BSM branching ratio:
- Simplest example: new singlet scalar $\lambda S^2 |H|^2$

Exotic Higgs decays

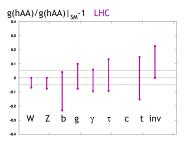
- Even very small couplings to new light degrees of freedom can give the Higgs an appreciable BSM branching ratio:
- Using $\Delta \mathcal{L} = \frac{2\mu}{\Lambda^2} |H|^2 \bar{\psi} \psi$ as a sample dim 6 hidden sector operator, and taking $2\mu \sim m_{\psi}$,



Exotic Higgs decays post-discovery

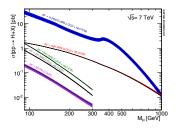
- Looking for BSM Higgs decays is a topic of longstanding interest
 - Precision electroweak motivation for a light, hidden Higgs
 - Many examples fall out naturally from extended Higgs sectors
- Discovery of a largely SM-like Higgs boson changes the nature of the searches
 - · Know exactly where to look...
 - ...and that $BR(h \rightarrow SM)$ cannot be too small.

Constraining $BR(h \rightarrow BSM)$


 For light Higgs: to excellent approximation, alter decays without altering production.

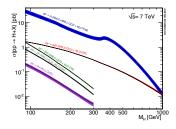
From Michael Trott's talk earlier this week: indirect limits on $BR(h \rightarrow BSM)$, assuming SM production

Constraining $BR(h \rightarrow BSM)$


 Determining Higgs couplings at the LHC is an O(10%) program:

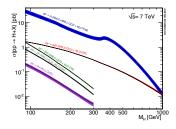
From Michael Peskin, 1207.2516

⇒ Benchmark BSM Higgs branching fractions of 10% are not only allowed by current LHC data but will remain reasonable targets for the long-term LHC physics program.


ullet As an example, consider $h o {\sf invisibles}$ (Eboli, Zeppenfeld; Bai, Draper,

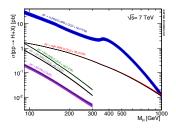
SM Higgs production cross-sections

- gluon fusion : h+ ≥ 1j: rate price for recoil
- WBF
- WH
- ZH


ullet As an example, consider $h o {\sf invisibles}$ (Eboli, Zeppenfeld; Bai, Draper,

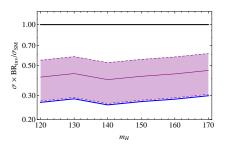
SM Higgs production cross-sections

- gluon fusion
- WBF : h + 2j, transverse boost
- WH
- ZH


ullet As an example, consider $h o {\sf invisibles}$ (Eboli, Zeppenfeld; Bai, Draper,

SM Higgs production cross-sections

- gluon fusion
- WBF
- WH: ℓ + h: guaranteed trigger (not useful for h → F̄_T)
- ZH

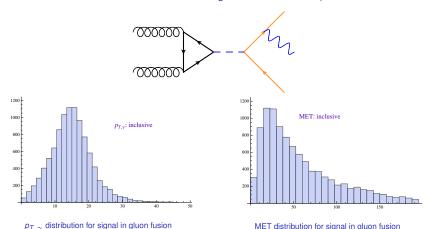

• As an example, consider $h o ext{invisibles}$ (Eboli, Zeppenfeld; Bai, Draper,

SM Higgs production cross-sections

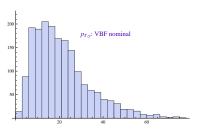
- gluon fusion
- WBF
- WH
- ZH: \(\ell \ell + h \): guaranteed trigger, but rate-limited

- First question: how are events collected?
 - WBF: events arrive on ₱_T trigger
 - Flat at $E_T = 120$ GeV: too high for best significance

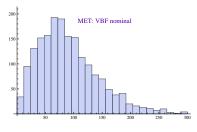
Triggering on Higgs daughters


- LHC triggers are designed for events with \(\geq \) hundreds of GeV
 - · for good reasons!
 - poor acceptance for multibody decays of a 125 GeV Higgs (Strassler)
 - ...especially if produced near rest (ggF)
- There are baselines to fall back on:
 - Ex: buried Higgs (Falkowski, Krohn, JS, Thalapillal, Wang): Vh, tth
 - but rate limited: reach in BSM BRs dependent on yield

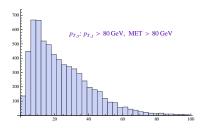
Target triggers for Higgs?


- Possibilities with WBF? (Shelton, Strassler, Volansky: informal study)
- Data parking: additional 300-350 Hz of data recorded on additional trigger streams for offline analysis
- CMS has two data parking triggers of particular interest for Higgs:
 - WBF jets: thresholds $M_{ij} > 650$ GeV, $|\Delta \eta_{ij}| > 3.5$
 - Monojet + $\not\equiv_T$: thresholds $p_{T,\gamma} > 30$ GeV, $\not\equiv_T > 25$ GeV

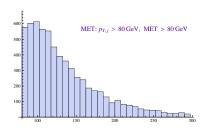
^{*} Numbers as of communication in September; subject to change, update; contact your friendly local CMS member!


- Consider 10% branching fraction into $h \to \chi_2^0 \chi_1^0$, followed by $\chi_2^0 \to \chi_1^0 \gamma$: "mostly invisible"
- Reference working point $m_{\chi_2^0} = 70$ GeV, $m_{\chi_1^0} = 50$ GeV

• WBF reference selection cuts: $M_{ii} > 750$ GeV, $|\Delta \eta_{ii}| > 4.0$



 $p_{T,\gamma}$ distribution for signal with WBF trigger cuts



MET distribution for signal with WBF trigger cuts

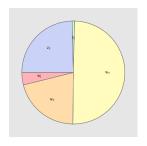
• ggF reference selection cuts: $p_{T,j} > 80$ GeV, $E_T > 80$ GeV

 $p_{T,\gamma}$ distribution for signal with monojet+MET trigger cuts

MET distribution for signal with monojet+MET trigger cuts

- Signal is fairly clean: single photon, sharp kinematic correlations with ₱_T
- · However, many backgrounds:

- $Z + \gamma$
- $W + \gamma$, lost lepton; treat ℓ , τ separately!
- $Z + (j \rightarrow \gamma)$
- $W + (j \rightarrow \gamma)$, lost lepton
- $W \rightarrow e\nu, e \rightarrow \gamma$


non-VBF background processes in the VBF channel.

Total: \sim 15 fb

 Use simple estimates for photon efficiencies and fake rates for j → γ, e → γ

- Signal is fairly clean: single photon, sharp kinematic correlations with ₱_T
- · However, many backgrounds:

- $Z + \gamma$
- $W + \gamma$, lost lepton; treat ℓ , τ separately!
- $Z + (j \rightarrow \gamma)$
- $W + (j \rightarrow \gamma)$, lost lepton
- $W \rightarrow e\nu, e \rightarrow \gamma$

VBF background processes in the VBF channel.

Total: \sim 9 fb

 Use simple estimates for photon efficiencies and fake rates for j → γ, e → γ

Illustration: photon + $\not\equiv_T$

- Kinematic features of signal allow good suppression of backgrounds in both channels
- Estimate 5.5σ in 5 fb⁻¹ for ggF
- In statistically more limited WBF channel, estimate 3.5σ in $5~{\rm fb^{-1}}$
- Key: signal acceptance not dependent on details of decay mode

Summary and discussion questions

- Exotic Higgs decays: possibly best hope for BSM at LHC?

 Though we are all hoping for TeV scale discoveries!
- Branching fractions below 10% to exotic modes can in many cases be seen or excluded, but reach can be dramatically extended if dedicated Higgsy triggers are in place and functional.
- How practical will low threshold 1j + ∉_T, 1γ + ∉_T, WBF jet triggers be?
- What other options for (potentially soft and high multiplicity)
 Higgs decays can be exploited?