NMSSM and Type II 2HDM Higgs in Light of the LHC Higgs Searches

 Shufang Su • U. of Arizona

 Shufang Su • U. of Arizona}

KITP, Santa Barbara

Dec 20, 2012

In collaboration with
N. Christensen, T. Han, Zhen Liu, 1301.xxxx (NMSSM)
S. Su

Barath Coleppa, Felix Kling, 1301.xxxx (2HDM)

Outline

※ Introduction: Higgs searches @ LHC (skip)
© A little bit on MSSM...
© NMSSM Higgs sector

- general discussion
- H1 126 GeV
- H2 126 GeV
- H3 126 GeV (?)
© Type II 2HDM Higgs sector
- general discussion
- $h^{0} 126 \mathrm{GeV}$
- $\mathrm{H}^{0} 126 \mathrm{GeV}$
s. Su \mp Conclusion

Outline

```
※ Introduction: Higgs searches @ LHC (skip)
\& A little bit on MSSM...
© NMSSM Higgs sector
- general discussion
- H1 126 GeV
- H2 126 GeV
- H3 126 GeV (?)
* Type II 2HDM Higgs sector
- general discussion
- \(h^{0} 126 \mathrm{GeV}\)
- \(\mathrm{H}^{0} 126 \mathrm{GeV}\)
s. Su Conclusion

\section*{Strategy}
- Focus on the Higgs sector (and stop sector)
- Only consider Higgs search results flavor? g-2? DM? ...

Study the consequence of
(I) current Higgs search limit of \(95 \%\) CL limit on \(\sigma \mathrm{XBr}\)
(II) \(\mathrm{H}_{\mathrm{i}}\) in the mass range of \(124-128 \mathrm{GeV}\)
(III) \(\sigma \mathrm{XBr}\left(\mathrm{gg} \rightarrow \mathrm{H}_{\mathrm{i}} \rightarrow \mathrm{YY}\right)\) nMssm, 2HDM \(>80 \%(\sigma \mathrm{XBr}) \mathrm{sm}\) \(\sigma X B r\left(\mathrm{gg} \rightarrow \mathrm{H}_{\mathrm{i}} \rightarrow \mathrm{WW} / \mathrm{ZZ}\right)_{\text {nмssm, } 2 \mathrm{Hdm}}>40 \%(\sigma X B r)_{\text {sm }}\)

\section*{MSSM Higgs Sector}
- Type II Two Higgs Doublet Model
\[
\begin{aligned}
& H_{u}=\binom{H_{u}^{+}}{H_{u}^{0}} v_{u} / \sqrt{2} \quad H_{d}=\binom{H_{d}^{0}}{H_{d}^{-}} v_{d} / \sqrt{2} \\
& v_{u}^{2}+v_{d}^{2}=v^{2}=(246 \mathrm{GeV})^{2} \quad \tan \beta=v_{u} / v_{d}
\end{aligned}
\]
after EWSB
5 physical Higgses CP-even Higgses: \(\mathbf{h}^{0}, \mathbf{H}^{0}\) CP-odd Higgs: A \({ }^{0}\) Charged Higgses: \(\mathbf{H}^{ \pm}\)
- tree level masses determined by \(\mathrm{m}_{\mathrm{A}}, \tan \beta\)
\[
\begin{aligned}
& m_{h^{0}, H^{0}}^{2}=\frac{1}{2}\left(\left(m_{A}^{2}+m_{Z}^{2}\right) \mp \sqrt{\left(m_{A}^{2}-m_{Z}^{2}\right)^{2}+4 m_{A}^{2} m_{Z}^{2} \sin ^{2} 2 \beta}\right) \\
& m_{H^{ \pm}}^{2}=m_{A}^{2}+m_{W}^{2}, \quad \cos ^{2}(\beta-\alpha)=\frac{m_{h^{0}}^{2}\left(m_{Z}^{2}-m_{h^{0}}^{2}\right)}{m_{A}^{2}\left(m_{H^{0}}^{2}-m_{h^{0}}^{2}\right)}
\end{aligned}
\]
S. Su

4

\section*{Stop Masses}

purple: pass exp
black dots: \(123<\mathrm{m}_{\mathrm{ho}}\) or \(\mathrm{m}_{\mathrm{H} 0}<127 \mathrm{GeV}\)
S. Su
blue dots: \(\sigma \mathrm{XBr}\left(\mathrm{gg} \rightarrow \mathrm{h}^{0}, \mathrm{H}^{0} \rightarrow \mathrm{yy}\right)\) mssm \(>80 \%(\sigma \mathrm{XBr}) \mathrm{sm}\)

\section*{non-decoupling vs. decoupling region}


S. Su
black dots: \(123<m_{\mathrm{h} 0}\) or \(\mathrm{m}_{\mathrm{H} 0}<127 \mathrm{GeV}\)
blue dots: \(\sigma \mathrm{XBr}\left(\mathrm{gg} \rightarrow \mathrm{h}^{0}, \mathrm{H}^{0} \rightarrow \mathrm{Yy}\right)\) mssm \(>80 \%(\sigma \mathrm{XBr})\) sm

\section*{non-decoupling vs. decoupling region}
- decoupling limit
\[
\begin{aligned}
& m_{A} \gg m_{Z} \\
& \sin (\beta-\alpha) \sim 1, \cos (\beta-\alpha) \sim 0
\end{aligned}
\]
- \(\mathbf{h}^{0}\) light, \(S M\) like,
- \(\mathrm{H}^{0}, \mathrm{~A}^{0}, \mathrm{H}^{ \pm}\)heavy, nearly degenerate
- \(\mathrm{H}^{0} \mathbf{W W}, \mathrm{H}^{0} \mathrm{ZZ}\) coupling suppressed
\(\sim \cos (\beta-\alpha)\)
decoupling region

(b)
black dots: \(123<\mathrm{m}_{\mathrm{h} 0}\) or \(\mathrm{m}_{\mathrm{H} 0}<127 \mathrm{GeV}\)
blue dots: \(\sigma X B r\left(\mathrm{gg} \rightarrow \mathrm{h}^{0}, \mathrm{H}^{0} \rightarrow \mathrm{Yy}\right)\) mssm \(>80 \%(\sigma \mathrm{XBr})_{\mathrm{sm}}\)

\section*{non-decoupling vs. decoupling region}
- decoupling limit

\section*{non-decoupling region}
decoupling region
\[
m_{A} \gg m_{Z}
\]
\(\sin (\beta-\alpha) \sim 1, \cos (\beta-\alpha) \sim 0\)
- \(h^{0}\) light, \(S M\) like,
- \(\mathrm{H}^{0}, \mathrm{~A}^{0}, \mathrm{H}^{ \pm}\)heavy, nearly degenerate
- \(\mathrm{H}^{0} \mathrm{WW}, \mathrm{H}^{0} \mathrm{ZZ}\) coupling suppressed
\(\sim \cos (\beta-\alpha)\)
( non-decoupling limit
\(m_{A} \sim m_{Z}\)
\(\sin (\beta-\alpha) \sim 0, \cos (\beta-\alpha) \sim 1\)
- all Higgses light
- \(\mathrm{H}^{0}\) SM like

- \(h^{0} \mathbf{W W}, h^{0} Z Z\) coupling suppressed S. Su
black dots: \(123<\mathrm{m}_{\mathrm{h} 0}\) or \(\mathrm{m}_{\mathrm{H} 0}<127 \mathrm{GeV}\)
blue dots: \(\quad \sigma \mathrm{XBr}\left(\mathrm{gg} \rightarrow \mathrm{h}^{0}, \mathrm{H}^{0} \rightarrow \mathrm{Yy}\right) \mathrm{mssm}>80 \%(\sigma \mathrm{XBr})_{\mathrm{sm}}\)

\section*{non-decoupling vs. decoupling region}
- \(\mathrm{h}^{0}\) SM-like: large \(\mathrm{mA} \geq 300 \mathrm{GeV}\)
- small man mz: \(\mathrm{H}^{0}\) SM-like

Not always true in NMSSM!

\section*{non-decoupling region}

\section*{decoupling region}

S. Su
black dots: \(123<\mathrm{m}_{\mathrm{h} 0}\) or \(\mathrm{m}_{\mathrm{H} 0}<127 \mathrm{GeV}\)
blue dots: \(\sigma X B r\left(\mathrm{gg} \rightarrow \mathrm{h}^{0}, \mathrm{H}^{0} \rightarrow \mathrm{Yy}\right)\) mssm \(>80 \%(\sigma X B r)\) sm

\section*{NMSSM Higgs Sector}
- Type II Two Higgs Doublet Model plus singlet S
\(W_{\mathrm{NMSSM}}=Y_{u} \bar{u} H_{u} Q+Y_{d} \bar{d} H_{d} Q+Y_{e} \bar{e} H_{d} L+\lambda S H_{u} H_{d}+\frac{1}{3} \kappa S^{3}\)
\(\left.V_{H, S o f t}=m_{H_{u}}^{2} H_{u}^{\dagger} H_{u}+m_{H_{d}}^{2} H_{d}^{\dagger} H_{d}+M_{S}^{2}|S|^{2}+\lambda A_{\lambda} H_{t}^{T} \epsilon H_{d}\right) S+\frac{1}{3} \kappa A_{\kappa} S^{3}+\) c.c. \()\)
- SSB
\[
H_{u}=\binom{H_{u}^{+}}{H_{u}^{0}} v_{u} / \sqrt{2} \quad H_{d}=\binom{H_{d}^{0}}{H_{d}^{-}} \quad v_{d} / \sqrt{2} \quad \begin{aligned}
& S \rightarrow v_{s} / \sqrt{2} \\
& \left(\mu=\lambda v_{s} / \sqrt{2}\right)
\end{aligned}
\]
\[
\begin{gathered}
v_{u}^{2}+v_{d}^{2}=v^{2}=(246 \mathrm{GeV})^{2} \\
\tan \beta=v_{u} / v_{d}
\end{gathered}
\]
after EWSB, 7 physical Higgses CP-even Higgses: \(\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}\) CP-odd Higgs: \(\mathrm{A}_{1}, \mathrm{~A}_{2}\) Charged Higgses: \(\mathbf{H}^{ \pm}\)

\section*{NMSSM: Masses for Higgses}

\section*{- Charged Higgs}
\[
\begin{aligned}
H_{d}^{-} & =H^{-} \sin \beta-G^{-} \cos \beta \\
H_{u}^{+} & =H^{+} \cos \beta+G^{+} \sin \beta
\end{aligned}
\]
\[
m_{H^{ \pm}}^{2}=m_{A}^{2}+m_{W}^{2}
\]
- CP-odd Higgses
\[
\binom{A_{\mathrm{MSSM}}}{G^{0}}=\left(\begin{array}{cc}
\sin \beta & \cos \beta \\
-\cos \beta & \sin \beta
\end{array}\right)\binom{\sqrt{2} \operatorname{Im} H_{d}^{0}}{\sqrt{2} \operatorname{Im} H_{u}^{0}}, \quad A_{\mathrm{S}}=\sqrt{2} \operatorname{Im} S
\]
\[
\frac{1}{2}\left(A_{\text {MSSM }}, A_{\mathrm{S}}\right)\left(\begin{array}{ll}
m_{A}^{2} &
\end{array}\right)\binom{A_{\mathrm{MSSM}}}{A_{\mathrm{S}}}
\]
S. Su
\[
m_{A}^{2}=\frac{\lambda v_{s}}{\sin 2 \beta}\left(\sqrt{2} A_{\lambda}+\kappa v_{s}\right)
\]

\section*{NMSSM: Masses for Higgses}

\section*{- Charged Higgs}
\[
\begin{aligned}
H_{d}^{-} & =H^{-} \sin \beta-G^{-} \cos \beta \\
H_{u}^{+} & =H^{+} \cos \beta+G^{+} \sin \beta
\end{aligned}
\]
\[
m_{H^{ \pm}}^{2}=m_{A}^{2}+m_{W}^{2}-\frac{1}{2}(\lambda v)^{2}
\]
- CP-odd Higgses
\[
\binom{A_{\mathrm{MSSM}}}{G^{0}}=\left(\begin{array}{cc}
\sin \beta & \cos \beta \\
-\cos \beta & \sin \beta
\end{array}\right)\binom{\sqrt{2} \operatorname{Im} H_{d}^{0}}{\sqrt{2} \operatorname{Im} H_{u}^{0}}, \quad A_{\mathrm{S}}=\sqrt{2} \operatorname{Im} S
\]
\[
\frac{1}{2}\left(A_{\text {MSSM }}, A_{\mathrm{S}}\right)\left(\begin{array}{ll}
m_{A}^{2} &
\end{array}\right)\binom{A_{\text {MssM }}}{A_{\mathrm{S}}}
\]
\[
m_{A}^{2}=\frac{\lambda v_{s}}{\sin 2 \beta}\left(\sqrt{2} A_{\lambda}+\kappa v_{s}\right)
\]

\section*{NMSSM: Masses for Higgses}

\section*{- Charged Higgs}
\[
\begin{aligned}
H_{d}^{-} & =H^{-} \sin \beta-G^{-} \cos \beta \\
H_{u}^{+} & =H^{+} \cos \beta+G^{+} \sin \beta
\end{aligned}
\]
\[
m_{H^{ \pm}}^{2}=m_{A}^{2}+m_{W}^{2}-\frac{1}{2}(\lambda v)^{2}
\]
- CP-odd Higgses
\[
\binom{A_{\mathrm{MSSM}}}{G^{0}}=\left(\begin{array}{cc}
\sin \beta & \cos \beta \\
-\cos \beta & \sin \beta
\end{array}\right)\binom{\sqrt{2} \operatorname{Im} H_{d}^{0}}{\sqrt{2} \operatorname{Im} H_{u}^{0}}, \quad A_{\mathrm{S}}=\sqrt{2} \operatorname{Im} S
\]
\(\frac{1}{2}\left(A_{\mathrm{MSSM}}, A_{\mathrm{S}}\right)\left(\begin{array}{cc}m_{A}^{2} & \frac{1}{2}\left(m_{A}^{2} \sin 2 \beta-3 \lambda \kappa v_{s}^{2}\right) \frac{v}{v_{s}} \\ *\left(\frac{1}{4}\left(m_{A}^{2} \sin 2 \beta+3 \lambda \kappa v_{s}^{2}\right) \frac{v^{2}}{v_{s}^{2}} \sin 2 \beta-\frac{3}{\sqrt{2}} \kappa v_{s} A_{\kappa}\right.\end{array}\right)\binom{A_{\mathrm{MSSM}}}{A_{\mathrm{S}}}\)
S. Su
\[
\left.m_{A}^{2}=\frac{\lambda v_{s}}{\sin 2 \beta}\left(\sqrt{2} A_{\lambda}+\kappa v_{s}\right)\right)
\]

\section*{NMSSM: Masses for Higgses}
- CP-even Higgses
\[
\underbrace{\binom{h_{\mathrm{SM}}}{H}=\binom{-\sin \beta \cos \beta}{\cos \beta \sin \beta}\binom{\sqrt{2}\left(\operatorname{Re} H_{d}^{0}-v_{d}\right)}{\sqrt{2}\left(\operatorname{Re} H_{u}^{0}-v_{u}\right)}, \quad S=\sqrt{2}\left(\operatorname{ReS}-v_{s}\right)}
\]


\section*{NMSSM: Masses for Higgses}
- CP-even Higgses
\[
\binom{h_{\mathrm{SM}}}{H}=\binom{-\sin \beta \cos \beta}{\cos \beta \sin \beta}\binom{\sqrt{2}\left(\operatorname{Re} H_{d}^{0}-v_{d}\right)}{\sqrt{2}\left(\operatorname{Re} H_{u}^{0}-v_{u}\right)}, \quad S=\sqrt{2}\left(\operatorname{ReS}-v_{s}\right)
\]
\(\frac{1}{2}\left(H, h_{\mathrm{SM}}, S\right)\left(\begin{array}{ccc}m_{A}^{2}+m_{Z}^{2} \sin ^{2} 2 \beta & * & * \\ * & m_{Z}^{2} \cos ^{2} 2 \beta & * \\ * & * & \end{array}\right)\left(\begin{array}{c}H \\ -\frac{1}{2}(\lambda v)^{2} \sin ^{2} 2 \beta \\ *\end{array}\right.\)

\section*{NMSSM: Masses for Higgses}
- CP-even Higgses
\[
\binom{h_{\mathrm{SM}}}{H}=\binom{-\sin \beta \cos \beta}{\cos \beta \sin \beta}\binom{\sqrt{2}\left(\operatorname{Re} H_{d}^{0}-v_{d}\right)}{\sqrt{2}\left(\operatorname{Re} H_{u}^{0}-v_{u}\right)}, \quad S=\sqrt{2}\left(\operatorname{ReS}-v_{s}\right)
\]
\(\frac{1}{2}\left(H, h_{\mathrm{SM}}, S\right)\left(\begin{array}{ccc}m_{A}^{2}+m_{Z}^{2} \sin ^{2} 2 \beta & * & * \\ * & m_{Z}^{2} \cos ^{2} 2 \beta & * \\ * & * & \\ \hline \frac{+\frac{1}{2}(\lambda v)^{2} \sin ^{2} 2 \beta}{}\left(\lambda v \sin ^{2} 2 \beta\right. & & \\ * & & \end{array}\right)\left(\begin{array}{c}H \\ \\ h_{\mathrm{SM}} \\ S\end{array}\right)\)

\section*{NMSSM: Masses for Higgses}
- CP-even Higgses
\[
\binom{h_{\mathrm{SM}}}{H}=\binom{-\sin \beta \cos \beta}{\cos \beta \sin \beta}\binom{\sqrt{2}\left(\operatorname{Re} H_{d}^{0}-v_{d}\right)}{\sqrt{2}\left(\operatorname{Re} H_{u}^{0}-v_{u}\right)}, \quad S=\sqrt{2}\left(\operatorname{ReS}-v_{s}\right)
\]

\section*{NMSSM: Masses for Higgses}
- Effects of singlet
- lift \(\left(\mathbf{m}_{\text {hsm }}\right)_{\text {tree }}\), small tan \(\boldsymbol{\beta}\), large \(\boldsymbol{\lambda}\left(m_{h_{\mathrm{SM}}}^{2}\right)_{\text {tree }}=m_{Z}^{2} \cos ^{2} 2 \beta+\frac{1}{2}(\lambda v)^{2} \sin ^{2} 2 \beta\)
- mixing with singlet: change \(H_{i} W W / Z Z, H_{i} b b, H_{i} g g, H_{i Y Y}\)
- Lots of work on (125 GeV) Higgs in NMSSM framework ...

Gunion et. al, 1201.0982
Ellwanger 1112.3548
King et. al., 1201.2671
Cao et. al., 1202.5821
EllWanger et. al., 1203.5048
Benbrik et. al., 1207.1096
Gunion et. al., 1207.1545
Gunion et. al., 1208.1817
Cheng et. al., 1207.6392
Belanger et. al., 1208.4952
Agashe et. al., 1209.2115
Belanger et. al., 1210.1976

Heng, 1210.3751
Choi et. al., 1211.0875
King et. al., 1211.5074
Dreiner et. al., 1211.6987
... many other Jack's paper ...
(incomplete list)
- H3 heavy, mA large
- H1 126 or H2 126
- hsm/S mixing

\section*{NMSSM: Masses for Higgses}
- CP-even Higgses

S. Su
- mass splitting: off-diag comparing to average of diag
o state mixing: off-diag comparing to difference of diag

\section*{NMSSM: ma decouple case}
- push down: \(\mathrm{m}_{\mathrm{hsm}}<\mathrm{ms}_{\mathrm{s}}\)

- \(\mathrm{H}_{1}\) (SM-like) still heavy enough \(\geq 124 \mathrm{GeV}\)
\(\Rightarrow\) not too large mass mixing
(to push down \(\mathrm{m}_{\mathrm{H} 1}\) too low)
- push up: \(\mathrm{m}_{\mathrm{hsm}}>\mathrm{ms}_{\mathrm{s}}\)

- \(\mathrm{H}_{1}\) (singlet-like) not ruled out by LEP
\(\Rightarrow\) not too large state mixing
(to have too much \(H_{1} Z Z\) coupling)

Agashe et. al., 1209.2115

\section*{NMSSM: ma decouple case}
- push down: \(\mathrm{m}_{\mathrm{hsm}}<\mathrm{ms}_{\mathrm{s}}\)

- push up: \(\mathrm{m}_{\mathrm{hsm}}>\mathrm{ms}_{\mathrm{s}}\)

- \(\mathrm{H}_{1}\) (singlet-like) not ruled out by LEP
\(\Rightarrow\) not too large state mixing
(to have too much \(H_{1} Z Z\) coupling)

Need some tuning to make it work
Agashe et. al., 1209.2115 (without too much help from stops)

\section*{NMSSM: Masses for Higgses}

Our work: Focus on the NMSSM "non-decoupling" region: small mA

\section*{All Higgses light}
- could have large mixing effects
- can be probed experimentally
\[
\left(m_{h_{\mathrm{SM}}}^{2}\right)_{\text {tree }}=m_{Z}^{2} \cos ^{2} 2 \beta+\frac{1}{2}(\lambda v)^{2} \sin ^{2} 2 \beta
\]
\[
\left(m_{H}^{2}\right)_{\text {tree }}=m_{A}^{2}+\left(m_{Z}^{2}-\frac{1}{2}(\lambda v)^{2}\right) \sin ^{2} 2 \beta
\]
- ignore singlet for now...

\section*{MSSM}
- \(m_{A^{2}} \geq m^{2}(\cos 4 \beta): H_{1}\) SM-like
\(-m_{A}{ }^{2} \leq m z^{2}(\cos 4 \beta): H_{2} S M\)-like
S. Su

NMSSM (small ma)
- \(\mathrm{H}_{1}\) or \(\mathrm{H}_{2} \mathrm{SM}\)-like, depending on \(\mathrm{m}_{\mathrm{A}}, \lambda, \tan \beta\)
- large \(m_{A}\), large \(\lambda\), small \(\tan \beta, H_{2} S M\)-like

\section*{NMSSM: Masses for Higgses}


\section*{NMSSM: Masses for Higgses}


\section*{NMSSM non-decoupling cases}


\section*{NMSSM parameters}

\section*{parameters}
\begin{tabular}{|l|}
\hline O NMSSM \\
\(m_{A}, \tan \beta, \mu,(v)\) \\
M3SQ, M3SU, \(A_{t}\) \\
\hline
\end{tabular}
- NMSSM
\[
\lambda, \kappa, A_{\lambda}, A_{\kappa}, \tan \beta, v_{s},(v)
\]

M3SQ, M3SU, At
- NMSSM
\[
\lambda, \kappa, m_{A}, A_{\kappa}, \tan \beta, \mu,(v)
\]

M3SQ, M3SU, \(A_{t}\)

\section*{Parameter Scan}
\[
\begin{gathered}
1<\tan \beta<10 \\
0 \mathrm{GeV}<\mathrm{m}_{\mathrm{A}}<200 \mathrm{GeV} \\
100 \mathrm{GeV}<\mu<1000 \mathrm{GeV} \\
0<\lambda<1 \\
0<\mathrm{K}<1 \\
-1500 \mathrm{GeV}<A K<500 \mathrm{GeV} \\
100 \mathrm{GeV}<\mathrm{M}_{3 \mathrm{Su}}, \mathrm{M}_{3 \mathrm{SQ}}<2000 \mathrm{GeV} \\
-4000 \mathrm{GeV}<\mathrm{A}_{\mathrm{t}}<4000 \mathrm{GeV} \\
\text { decoupling other parameters }(3 \mathrm{TeV})
\end{gathered}
\]

\section*{Parameter Scan}
\[
\begin{gathered}
1<\tan \beta<10 \\
0 \mathrm{GeV}<\mathrm{m}_{\mathrm{A}}<200 \mathrm{GeV}-\text { non-decoupling region } \\
100 \mathrm{GeV}<\mu<1000 \mathrm{GeV} \\
0<\lambda<1 \\
0<\mathrm{K}<1 \\
-1500 \mathrm{GeV}<\mathrm{AK}^{2}<500 \mathrm{GeV} \\
100 \mathrm{GeV}<\mathrm{M}_{3 \mathrm{Su}}, \mathrm{M}_{3 \mathrm{SQ}}<2000 \mathrm{GeV}
\end{gathered}
\]
\(-4000 \mathrm{GeV}<\mathrm{A}_{\mathrm{t}}<4000 \mathrm{GeV}\)
decoupling other parameters ( 3 TeV )
NMSSMTools
S. Su

17

\section*{H1 126 GeV , SM-like}

\section*{\(H_{1}\) as 126 GeV SM-like Higgs}

\title{
\(\mathrm{H}_{1} 126 \mathrm{GeV}\) : mas
}


\section*{- Mhi vs \(_{\text {ma }}\)}



\title{
\(\mathrm{H}_{1} 126 \mathrm{GeV}\) : mas
}


\section*{- Mhi vs \(_{\text {ma }}\)}



\title{
\(\mathrm{H}_{1} 126 \mathrm{GeV}\) : parameter regions
}
- green, purple, black: satisfy \(\sigma X B r(y y, W W)\)

\begin{tabular}{|c|c|c|c|}
\hline \(\tan \beta\) & 1 to 3.5 & \(\sim 2\) & 1 to 3.5 \\
\hline \(\mathrm{~m}_{\mathrm{A}}\) & 0 to 200 GeV & 150 to 200 GeV & 100 to 200 GeV \\
\hline\(\lambda\) & \(\geq 0.55\) & 0.55 to 0.6 & \(\geq 0.55\) \\
\hline K & \(\geq 0.3\) & 0.3 to 0.5 & \(\geq 0.5\) \\
\hline
\end{tabular}

\title{
\(\mathrm{H}_{1} 126 \mathrm{GeV}\) : parameter regions
}
- green, purple, black: satisfy \(\sigma X B r(y y, W W)\)

\begin{tabular}{|c|c|c|c|}
\hline \(\tan \beta\) & 1 to 3.5 & \(\sim 2\) & 1 to 3.5 \\
\hline \(\mathrm{~m}_{\mathrm{A}}\) & 0 to 200 GeV & 150 to 200 GeV & 100 to 200 GeV \\
\hline\(\lambda\) & \(\geq 0.55\) & 0.55 to 0.6 & \(\geq 0.55\) \\
\hline K & \(\geq 0.3\) & 0.3 to 0.5 & \(\geq 0.5\) \\
\hline
\end{tabular}

\section*{\(\mathrm{H}_{1} 126 \mathrm{GeV}\) : stops}

S. Su

\section*{\(H_{1} 126 \mathrm{GeV}\) : stops}


Thursday, December 20, 2012

\section*{Parameter regions}
\begin{tabular}{|c|c|c|c|}
\hline & \(H_{1} 126\) & perturbativity & \(m_{A 1}<m_{H 1} / 2\) \\
\hline \(\tan \beta\) & 1 to 3.5 & \(\sim 2\) & 1 to 3.5 \\
\hline\(m_{A}\) & 0 to 200 GeV & 150 to 200 GeV & 100 to 200 GeV \\
\hline\(\mu\) & \(\mu \leq 500 \mathrm{GeV}\) & 100 to 150 GeV & 100 to 200 GeV \\
\hline\(\lambda\) & \(\geq 0.55\) & 0.55 to 0.6 & \(\geq 0.55\) \\
\hline K & \(\geq 0.3\) & 0.3 to 0.5 & \(\geq 0.5\) \\
\hline\(A_{K}\) & -1200 to 200 GeV & \(-\mathbf{- 1 5 0}\) to 100 GeV & -50 to 30 GeV \\
\hline \(\mathrm{A}_{\lambda}\) & -650 to 300 GeV & \(\mathbf{- 3 0}\) to 230 GeV & -150 to 150 GeV \\
\hline\(\left|A_{t}\right|\) & & \(\geq 1200 \mathrm{GeV}\) & \\
\hline
\end{tabular}
S. Su

\section*{\(H_{1} 126 \mathrm{GeV}\) : cross sections}

○ \(\sigma_{\mathrm{Yy}}\) Vs \(\sigma_{\mathrm{Ww}}\)

o \(\mathrm{Br}_{w w}\) vs \(\mathrm{Br}_{\text {bb }}\)

- pass exp
- green, purple, black: satisfy \(\sigma X B r(y Y, W W)\)
    S. Su
- purple: \(\mathrm{H}_{1} \rightarrow \mathrm{~A}_{1} \mathrm{~A}_{1}\)
- black: perturbativity till mpl




pass exp
- yellow dots: \(124<\mathrm{mm}<128 \mathrm{GeV}\)
- green, purple, black: satisfy \(\sigma\) XBr( \(\mathrm{y} Y\), WW)
- purple: \(\mathrm{H}_{1} \rightarrow \mathrm{~A}_{1} \mathrm{~A}_{1}\)
black: perturbativity till \(\mathrm{mpl}_{\mathrm{pl}}\)


\(\mathrm{H}_{1} 126 \mathrm{GeV}:\) hsm-, H-, S- fraction \(^{2}\)
- pass exp
- green, purple, black: satisfy \(\sigma \mathrm{XBr}(\mathrm{yY}, \mathrm{WW})\)
- purple: \(\mathrm{H}_{1} \rightarrow \mathrm{~A}_{1} \mathrm{~A}_{1}\)
- black: perturbativity till \(\mathrm{mpl}_{\mathrm{pl}}\)

S. Su
\(\mathrm{H}_{1} 126 \mathrm{GeV}:\) hsm-, H-, S- fraction \(^{2}\)
pass exp
- green, purple, black: satisfy \(\sigma\) XBr( \(\mathrm{yY}, \mathrm{WW})\)
- purple: \(\mathrm{H}_{1} \rightarrow \mathrm{~A}_{1} \mathrm{~A}_{1}\)
- black: perturbativity till \(\mathrm{mpl}_{\mathrm{pl}}\)

S. Su
\(\mathrm{H}_{1} 126 \mathrm{GeV}:\) hsm-, H-, S- fraction
pass exp
- green, purple, black: satisfy \(\sigma\) XBr( \(\mathrm{yY}, \mathrm{WW})\)
- purple: \(\mathrm{H}_{1} \rightarrow \mathrm{~A}_{1} \mathrm{~A}_{1}\)
- black: perturbativity till \(\mathrm{mpl}_{\mathrm{pl}}\)

S. Su

\section*{\(\mathrm{H}_{2} 126 \mathrm{GeV}\), SM-like}

\section*{\(\mathrm{H}_{2}\) as 126 GeV SM-like Higgs}

\section*{\(\mathrm{H}_{2} 126 \mathrm{GeV}:\) mass H 2126}
- \(\mathbf{M}_{\text {hi }}\) vs \(\mathrm{m}_{\mathrm{A}}\)



\section*{\(\mathrm{H}_{2} 126 \mathrm{GeV}:\) mass H 2126}
- \(\mathbf{M}_{\text {hi }}\) vs \(\mathrm{m}_{\mathrm{A}}\)



\section*{\(\mathrm{H}_{2} 126 \mathrm{GeV}:\) mass H 2126}
- \(\mathbf{M}_{\text {hi }}\) vs \(\mathrm{m}_{\mathrm{A}}\)



\section*{Parameter regions}
\begin{tabular}{|c|c|c|c|}
\hline & \(H_{2} 126\) & perturbativity & \(m_{H_{1}<m_{H 2} / 2}\) \\
\hline \(\tan \beta\) & 1 to 3.25 & 1.5 to 2.5 & 1.25 to 2.5 \\
\hline\(m_{\mathrm{A}}\) & 100 to 200 GeV & 170 to 200 GeV & 125 to 200 GeV \\
\hline\(\mu\) & 100 to 200 GeV & 100 to 130 GeV & 100 to 150 GeV \\
\hline\(\lambda\) & 0.4 to 0.75 & 0.5 to 0.7 & 0.5 to 0.75 \\
\hline K & \(\geq 0.05\) & 0.05 to 0.6 & \(\geq 0.3\) \\
\hline \(\mathrm{AK}^{\mu}\) & -1200 to 50 GeV & -300 to 50 GeV & -500 to -250 GeV \\
\hline \(\mathrm{A}_{\lambda}\) & -300 to 300 GeV & 0 to 300 GeV & 0 to 200 GeV \\
\hline
\end{tabular}
S. Su

\section*{\(\mathrm{H}_{2} 126 \mathrm{GeV}\) : cross sections}
© \(\sigma_{Y Y}\) VS \(\sigma_{W W}\)

- Brww vs \(\mathrm{Br}_{\mathrm{bb}}\)

- pass exp
- green, purple,red,black: satisfy \(\sigma X B r(y Y, W W)\)
    S. Su
- purple: \(\mathrm{H}_{2} \rightarrow \mathrm{H}_{1} \mathrm{H}_{1}\)
- black: perturbativity till mpl
\(\mathrm{H}_{2} 126 \mathrm{GeV}: \mathrm{hsm}_{-, ~ H-, ~ S-~ f r a c t i o n ~}\)
yollow dots: 124 < mn < 128 GeV
- green, purple,red, black: satisfy \(\sigma X B r(y y, W W\)
- purple: \(\mathrm{H}_{2} \rightarrow \mathrm{H}_{1} \mathrm{H}_{1}\)
- black: perturbativity till \(\mathrm{mpl}_{\mathrm{pl}}\)


S. Su
\(\mathrm{H}_{2} 126 \mathrm{GeV}: \mathrm{hsm}_{\mathrm{sm}}, \mathrm{H}-\), S- fraction
green, purple, red, black: satisfy \(\sigma X B r(y y, W W\)
- purple: \(\mathrm{H}_{2} \rightarrow \mathrm{H}_{1} \mathrm{H}_{1}\)
- black: perturbativity till \(\mathrm{mpl}_{\mathrm{pl}}\)


\section*{\(\mathrm{H}_{3} 126 \mathrm{GeV}\), SM-like}

\section*{\(\mathrm{H}_{3}\) as 126 GeV SM-like Higgs}

\section*{\(\mathrm{H}_{3} 126 \mathrm{GeV}\), SM-like}

\section*{\(H_{3}\) as 126 GeV SM-like Higgs}

Fine tuned region, Still working on it...

\section*{Conclusion (part I)}
- \(126 \pm 2 \mathrm{GeV}\) (~SM strength) in NMSSM: non-decoupling region
- small \(m_{A}(\leq 200 \mathrm{GeV})\), all Higgses light, possible large mixing effects
- singlet helps to lift mass: large \(\lambda\), small tan \(\beta\)
- mixing with singlet, change Гbb, Гwwizz, ...
- MSSM
- \(m_{A} \sim m_{z}\), non-decoupling, \(H_{1}\) SM-like
- \(m_{A} \geq 300 \mathrm{GeV}\), decoupling, \(\mathrm{H}_{2}\) SM-like
- stops either heavy or large LR-mixing
- NMSSM
- mA: 0-200 GeV
- either \(\mathrm{H}_{1}\) or \(\mathrm{H}_{2}\) (or \(\mathrm{H}_{3}\) ) SM-like
- interesting features in each region
- stop sector less constrained
S. Su

\section*{Conclusion}
- \(\mathrm{H}_{1} 126 \mathrm{GeV}\)
\(-\lambda \geq 0.55, \mathrm{k} \geq 0.3,1 \leq \tan \beta \leq 3.5\)
- \(\mathrm{H}_{1}\) SM h-like, H2, H3 S-H mixture
\(-H_{1} \rightarrow A_{1} A_{1}: H_{1}, H_{2}\) h-H mixture, H3 S-like
- \(\mathrm{H}_{2} 126 \mathrm{GeV}\)
\(-0.4 \leq \lambda \leq 0.75, \quad \mathrm{~K} \geq 0.05,1 \leq \tan \beta \leq 3.25\)
- \(100 \leq m_{A} \leq 200 \mathrm{GeV}\), small \(\mu\)
- case with \(\mathrm{H}_{2} \rightarrow \mathrm{H}_{1} \mathrm{H}_{1}\)
- \(\mathrm{H}_{2}\) h-S mixture, \(\mathrm{H}_{3} \mathrm{~S}-\mathrm{H}\) mixture
\(-\mathrm{H}_{1}, \mathrm{H}_{2}\), h-H-S mixture; \(\mathrm{H}_{3}\) : S-H mixture
- \(\mathrm{H}_{3} 126 \mathrm{GeV}\) : tuned region
S. Su


\section*{2HDM Higgs Sector}
- Type II Two Higgs Doublet Model
\[
\begin{aligned}
V\left(\Phi_{1}, \Phi_{2}\right)= & m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1}+m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2}-\left(m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2}+\text { h.c. }\right)+\frac{1}{2} \lambda_{1}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{1}{2} \lambda_{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right) \\
& +\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right)+\left\{\frac{1}{2} \lambda_{5}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+\text { h.c. }\right\}+\left\{\lambda_{6}\left[\left(\Phi_{1}^{\dagger} \Phi_{1}\right)+\lambda_{7}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)\right]\left(\Phi_{1}^{\dagger} \Phi_{2}\right)+\text { h.c. }\right\}
\end{aligned}
\]
- Z2 symmetry
- EWSB
\[
H_{u}=\binom{H_{u}^{+}}{H_{u}^{0}} v_{u} / \sqrt{2} \quad H_{d}=\binom{H_{d}^{0}}{H_{d}^{-}} v_{d} / \sqrt{2}
\]
\[
\begin{gathered}
v_{u}^{2}+v_{d}^{2}=v^{2}=(246 \mathrm{GeV})^{2} \\
\tan \beta=v_{u} / v_{d}
\end{gathered}
\]
after EWSB, 5 physical Higgses CP-even Higgses: h, H CP-odd Higgs: A Charged Higgses: \(\mathrm{H}^{ \pm}\)

\section*{2HDM Higgs Sector}
- Type II Two Higgs Doublet Model
\[
\begin{aligned}
V\left(\Phi_{1}, \Phi_{2}\right)= & m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1}+m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} \\
& +\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right)+\left\{\frac{1}{2} \lambda_{5}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+\text { h.c. }\right\}+\left\{\lambda_{6}\left[\left(\Phi_{1}^{\dagger} \Phi_{1}\right)+\lambda_{7}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)\right]\left(\Phi_{1}^{\dagger} \Phi_{2}\right)+\text { h.c. }\right\}
\end{aligned}
\]
- Z2 symmetry
- EWSB
\[
H_{u}=\binom{H_{u}^{+}}{H_{u}^{0}} \longrightarrow v_{u} / \sqrt{2} \quad H_{d}=\binom{H_{d}^{0}}{H_{d}^{-}} \longrightarrow v_{d} / \sqrt{2}
\]
\[
v_{u}^{2}+v_{d}^{2}=v^{2}=(246 \mathrm{GeV})^{2}
\]
after EWSB, 5 physical Higgses
\[
\tan \beta=v_{u} / v_{d}
\] CP-even Higgses: h, H CP-odd Higgs: A Charged Higgses: \(\mathrm{H}^{ \pm}\)
S. Su

\section*{2HDM Higgs Sector}
- Type II Two Higgs Doublet Model
\[
\begin{aligned}
V\left(\Phi_{1}, \Phi_{2}\right)= & m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1}+m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2}-\left(2^{2} x^{\prime} x\right. \\
& \left.+\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right)+\left\{\frac{1}{2} \lambda_{5}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+\text { h.c. }\right\} \Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{1}{2} \lambda_{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)
\end{aligned}
\]
- Z2 symmetry
- EWSB
\[
H_{u}=\binom{H_{u}^{+}}{H_{u}^{0}} \longrightarrow v_{u} / \sqrt{2} \quad H_{d}=\binom{H_{d}^{0}}{H_{d}^{-}} \longrightarrow v_{d} / \sqrt{2}
\]
\[
v_{u}^{2}+v_{d}^{2}=v^{2}=(246 \mathrm{GeV})^{2}
\]
after EWSB, 5 physical Higgses
\[
\tan \beta=v_{u} / v_{d}
\] CP-even Higgses: h, H CP-odd Higgs: A Charged Higgses: \(\mathrm{H}^{ \pm}\)
S. Su

\section*{2HDM Higgs Sector}
- couplings
\begin{tabular}{|l|l||l|l||l|l|}
\hline\(\xi_{h}^{V V}\) & \(\sin (\beta-\alpha)\) & \(\xi_{H}^{V V}\) & \(\cos (\beta-\alpha)\) & \(\xi_{A}^{V V}\) & 0 \\
\hline\(\xi_{h}^{u}\) & \(\cos \alpha / \sin \beta\) & \(\xi_{H}^{u}\) & \(\sin \alpha / \sin \beta\) & \(\xi_{A}^{u}\) & \(\cot \beta\) \\
\hline\(\xi_{h}^{d}\) & \(-\sin \alpha / \cos \beta\) & \(\xi_{H}^{d}\) & \(\cos \alpha / \cos \beta\) & \(\xi_{A}^{d}\) & \(\tan \beta\) \\
\hline\(\xi_{h}^{l}\) & \(-\sin \alpha / \cos \beta\) & \(\xi_{H}^{l}\) & \(\cos \alpha / \cos \beta\) & \(\xi_{A}^{l}\) & \(\tan \beta\) \\
\hline
\end{tabular}
- parameters
\[
m_{11}^{2}, m_{22}^{2}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5} \longrightarrow v, \tan \beta, \alpha, m_{h}, m_{H}, m_{A}, m_{H^{ \pm}}
\]
- Theoretical constrains
- vacuum stability
- perturbativity
- unitarity
- \(\Delta \rho\)
S. Su
- Experimental constraints
- LEP Higgs searches (neutral Higgs, charged Higgs)
- Tevatron Higgs searches
- LHC Higgs searches (SM-like Higgs searches, MSSM Higgs searches)

\section*{2HDM Higgs Sector}
o previous work in 2HDM...

Ferreira et. al., 1112.3772, 2HDM, H1 125, \(\tan \beta\) vs. sin \(a\) Basso et. al., 1205.6569, CP violating 2HDM, H1 125, Cheon et. al., 1207.1083, Type II 2HDM, H1 or H2 125
Chang et. al., 1210.3439, 2HDM, H1 or H2 or degenerate H1/A, X2 fit
Drozd et. al., 1211.3580, Type I and II 2 HDM, H1 or H2 125 or degenerate, \(\mathrm{m}_{12}{ }^{2} \neq 0\), Craig and Thomas, 1207.4835, 2HDM, H1 125, various search channels
Ferreira et. al., 1211.3131, degenerate Higgses

\section*{Our work:}
- Type II 2HDM with \(\mathrm{m}_{12}{ }^{2}=0,5\) parameter scan
- impose theoretical and experimental constraints
- \(h^{0}\) or \(\mathrm{H}^{0} 125 \mathrm{GeV}\)
- study parameter space and correlations
S. Su

\section*{\(h^{0} 125 \mathrm{GeV}\)}

\section*{Light CP-even Higgs as 125 GeV SM-like Higgs}

\section*{Type II 2HDM: \(h^{0} 125 \mathrm{GeV}\)}
\[
\frac{\sigma(g g \rightarrow h \rightarrow \gamma \gamma, W W / Z Z)}{\sigma\left(g g \rightarrow h_{\mathrm{SM}} \rightarrow \gamma \gamma, W W / Z Z\right)}=\frac{\sigma(g g \rightarrow h)}{\sigma(g g \rightarrow h)_{\mathrm{SM}}} \times \frac{\mathrm{BR}(h \rightarrow \gamma \gamma, W W / Z Z)}{\mathrm{BR}\left(h_{S M} \rightarrow \gamma \gamma, W W / Z Z\right)}
\]

\section*{Type II 2HDM: \(h^{0} 125 \mathrm{GeV}\)}


\section*{Type II 2HDM: \(h^{0} 125 \mathrm{GeV}\)}
\[
\frac{\sigma(g g \rightarrow h \rightarrow \gamma \gamma, W W / Z Z)}{\sigma\left(g g \rightarrow h_{\mathrm{SM}} \rightarrow \gamma \gamma, W W / Z Z\right)}=\frac{\sigma(g g \rightarrow h)}{\sigma(g g \rightarrow h)_{\mathrm{SM}}} \times \frac{\mathrm{BR}(h \rightarrow \gamma \gamma, W W / Z Z)}{\operatorname{BR}\left(h_{S M} \rightarrow \gamma \gamma, W W / Z Z\right)}
\]


\section*{Type II 2HDM: \(h^{0} 125 \mathrm{GeV}\)}
\[
\frac{\sigma(g g \rightarrow h \rightarrow \gamma \gamma, W W / Z Z)}{\sigma\left(g g \rightarrow h_{\mathrm{SM}} \rightarrow \gamma \gamma, W W / Z Z\right)}=\frac{\sigma(g g \rightarrow h)}{\sigma(g g \rightarrow h)_{\mathrm{SM}}} \times \frac{\mathrm{BR}(h \rightarrow \gamma \gamma, W W / Z Z)}{\operatorname{BR}\left(h_{S M} \rightarrow \gamma \gamma, W W / Z Z\right)}
\]



\section*{\(h^{0} 125 \mathrm{GeV}:\) yy vs. WW correlation}

S. Su


\section*{\(h^{0} 125 \mathrm{GeV}\) : bb vs. WW correlation}

S. Su


\section*{Parameter Scan: h \({ }^{0} 125\)}
\[
\begin{aligned}
& 0.25 \leq \tan \beta \leq 5 \\
& -1 \leq \sin (\beta-\alpha) \leq 1
\end{aligned}
\]
\(125 \mathrm{GeV}<\mathrm{m}_{\mathrm{H}} \leq 1000 \mathrm{GeV}\) \(20 \mathrm{GeV} \leq \mathrm{m}_{\mathrm{A}}, \mathrm{m}_{\mathrm{c}} \leq 1000 \mathrm{GeV}\)

2HDM Calculator (2HDMC) + HIGGSBOUNDS + latest LHC bounds

\section*{\(h^{0} 125 \mathrm{GeV}: \sin (\beta-\alpha)\)}

S. Su


41

\section*{\(h^{0} 125 \mathrm{GeV}: \mathrm{m}_{\mathrm{H}}\) vs. \(\tan \beta\)}

S. Su


42

\section*{\(h^{0} 125 \mathrm{GeV}: m_{A}\) vs. \(\mathrm{m}_{\mathrm{H}}\)}

S. Su


43

\section*{\(h^{0} 125 \mathrm{GeV}: m_{\mathrm{A}}\) vs. \(\mathrm{m}_{\text {Hpm }}\)}

S. Su


44

\section*{\(h^{0} 125 \mathrm{GeV}: \sin (\beta-\alpha)\) vs. \(\mathrm{m}_{\mathrm{A}}\left(\mathrm{m}_{\mathrm{H} p m}\right)\)}

S. Su


45

\section*{\(h^{0} 125 \mathrm{GeV}: m_{\mathrm{A}}\) vs. \(\tan \beta\)}

S. Su


46

\section*{\(h^{0} 125 \mathrm{GeV}: \mathrm{m}_{\text {Hpm }}\) Vs. \(\tan \beta\)}

S. Su


47

\section*{\(h^{0} 125 \mathrm{GeV}\) : bb and тт}

S. Su


48

\section*{\(h^{0} 125 \mathrm{GeV}:\) yy and WW/ZZ}

S. Su


49

\section*{\(\mathrm{H}^{0} 125 \mathrm{GeV}\)}

Heavy CP-even Higgs as 125 GeV SM-like Higgs

\section*{Parameter Scan: H \({ }^{0} 125 \mathrm{GeV}\)}
\(1 \leq \tan \beta \leq 30\)
\(-1 \leq \sin (\beta-\alpha) \leq 1\)
\(5 \mathrm{GeV}<m_{H}<125 \mathrm{GeV}\)
\(20 \mathrm{GeV} \leq \mathrm{m}_{\mathrm{A}}, \mathrm{m}_{\mathrm{c}} \leq 1000 \mathrm{GeV}\)

2HDM Calculator (2HDMC) + HIGGSBOUNDS + latest LHC bounds
S. Su

\section*{\(H^{0} 125 \mathrm{GeV}: ~ y y ~ a n d ~ W W ~\)}

\section*{(20}
S. Su


52

\section*{\(H^{0} 125 \mathrm{GeV}\) : yy vs. WW correlation}

S. Su


\section*{\(H^{0} 125 \mathrm{GeV}: \sin (\beta-\alpha)\) vs. \(\tan \beta\)}

S. Su

\section*{\(H^{0} 125 \mathrm{GeV}: \mathrm{h}^{0}\)}

S. Su


55

\section*{\(H^{0} 125 \mathrm{GeV}: \mathrm{mh}^{0}\) vs. \(\mathrm{m}_{\text {A/Hpm }}\)}

S. Su


\section*{\(H^{0} 125 \mathrm{GeV}: \tan \beta\)}


\section*{\(H^{0} 125 \mathrm{GeV}: \sin (\beta-\alpha)\)}

S. Su


\section*{\(H^{0} 125 \mathrm{GeV}\) : bb and тt}

S. Su


\section*{\(H^{0} 125 \mathrm{GeV}: ~ y y ~ a n d ~ W W ~\)}

S. Su


60

\section*{Conclusion (part II)}
- 125 GeV (~SM strength) in Type II 2HDM
- parameters and \(\sigma X B r\) study
- \(h^{0} 125 \mathrm{GeV}\)
- small tan \(\beta \leq 4\)
- \(\sin (\beta-\alpha)\) branches: >0 and <0
- correlations between \(m_{H}\) and \(\tan \beta\)
- correlation between \(m_{A}\) and \(m_{H p m}\) for \(\sin (\beta-\alpha)\)
- correlation between YY, WWIZZ and bb modes
- \(\mathrm{H}^{0} 125 \mathrm{GeV}\)
- accommodate large tan \(\beta\)
- \(\sin (\beta-\alpha) \leq 0\) branch
- correlation between \(\mathrm{m}_{\mathrm{A}}\) and \(\mathrm{m}_{\mathrm{Hpm}}\)
- correlation between YY, WWIZZ and bb modes```

