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Strategy
-

๏ Focus on the Higgs sector (and stop sector)
๏ Only consider Higgs search results
    flavor? g-2? DM? ...

Study the consequence of 
(I) current Higgs search limit of 95% CL limit on σXBr
(II) Hi in the mass range of 124 - 128 GeV
(III) σXBr (gg→ Hi →γγ)NMSSM, 2HDM > 80% (σXBr)SM

         σXBr (gg→ Hi →WW/ZZ)NMSSM, 2HDM > 40% (σXBr)SM

Thursday, December 20, 2012
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MSSM Higgs Sector
-

๏ Type II Two Higgs Doublet Model

after EWSB
5 physical Higgses
CP-even Higgses: h0, H0

CP-odd Higgs: A0

Charged Higgses: H±

๏ tree level masses determined by mA, tanβ

the mixing angle of the CP-even Higgs bosons α, can be expressed in terms of two parameters

[6, 7], conventionally chosen as the mass of A0 (mA) and the ratio of the two vacuum expectation

values (tan β = vu/vd):
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We will call the CP-even Higgs boson that couples to W+W−/ZZ more strongly the “Standard

Model-like” Higgs as we discuss it’s properties further in the next section. For a low-mass mA !
mZ/2, or a high mass mA " 2mZ , the Higgs boson masses can be approximated by

mh0 ≈ min {mA,mZ}| cos 2β|, mH0 ≈ max {mA,mZ}, mH± ≈ max {mA,mW}. (8)

Because of the large Yukawa coupling of the top quark and the possible large mixing of the

left-right top squark, the CP-even Higgs boson masses receive significant radiative corrections.

For nearly degenerate soft SUSY breaking parameters in the stop sector: M2
3SQ ∼ M2

3SU ∼ M2
S ,

the correction to the mass of the SM-like Higgs can be approximately expressed as 2 [18, 19]
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where the mixing in the stop sector is given by

Ãt = At − µ cot β. (10)

For Ãt = 0, the corrections to the Higgs mass from the stop sector is minimized, this is the so-

called “mmin
h ” scenario [20], where the radiative contributions could give rise to a Higgs mass as

high as 117 GeV including a dominant two-loop corrections for a stop mass up to about 2 TeV. For

Ãt =
√
6MS , the second term in Eq. (9) is maximized, leading to the so-called “mmax

h ” scenario

[20], where a maximum Higgs mass of about 127 GeV can be reached in such a scenario. To

obtain a relatively large correction to the light CP-even Higgs mass, relatively heavy stop masses

(at least for one of the stops) as well as large LR mixing in the stop sector is needed. When two-

loop corrections of the oder of O(ααs) are included, there is an asymmetric contribution to the

Higgs mass from the At term, where postitive At gives a few GeV larger correction compared to

2 For the non-decoupling case when H0 is SM-like, this expression also applies to the correction of mH0 .
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Stop Masses

๏ mst1 vs mst2-mst1๏ M3SQ vs At
Heavy stops and/or large LR mixing.

purple: pass exp
black dots: 123 < mh0 or mH0 < 127 GeV
blue dots:  σXBr (gg→ h0, H0 →γγ)MSSM > 80% (σXBr)SM
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non-decoupling vs. decoupling region
-

black dots: 123 < mh0 or mH0 < 127 GeV
blue dots:  σXBr (gg→ h0, H0 →γγ)MSSM > 80% (σXBr)SM

Thursday, December 20, 2012



S. Su 6

non-decoupling vs. decoupling region
-

black dots: 123 < mh0 or mH0 < 127 GeV
blue dots:  σXBr (gg→ h0, H0 →γγ)MSSM > 80% (σXBr)SM

decoupling region๏ decoupling limit 

- h0 light, SM like, 
- H0, A0, H± heavy, nearly degenerate 
- H0WW, H0ZZ coupling suppressed

       ~  cos(β-α) 

the negative At case. Note that there are uncertainties of a few GeV coming from higher loop

orders, as well as from the uncertainties in mt, αs, etc.. For detailed calculations and results on

the Higgs mass corrections in the MSSM, see Refs. [19, 21, 22].

B. Couplings to SM particles

Another important aspect is the couplings of the Higgs bosons to the SM particles [6, 7]. The

couplings to gauge bosons behave like

W+W−h0, ZZh0, ZH0A0, WH±H0 ∝ g sin(β − α),

W+W−H0, ZZH0, Zh0A0, WH±h0 ∝ g cos(β − α),

γH+H−, ZH+H−, WH±A0 ∝ g. (11)

where g is the weak coupling. Either h0 or H0 can be SM-like when it has a stronger coupling

to W+W− and ZZ. In the “decoupling limit” mA # mZ , sin(β − α) ∼ 1, cos(β − α) ∼ 0.

Then h0 is light and SM-like, while all the other Higgs bosons are heavy, nearly degenerate, and

the H0 coupling to W+W−, ZZ is highly suppressed. In the non-decoupling region mA ∼ mZ ,

sin(β − α) ∼ 0, cos(β − α) ∼ 1. Then H0 is SM-like, while all the other neutral Higgs bosons

are lighter, nearly degenerate, and the h0 coupling to W+W− and ZZ are highly suppressed. Note

that the couplings of the pair of Higgs bosons H+H−, H±A0 to a gauge boson are of pure gauge

coupling strength and are independent of the model parameters.

The tree-level couplings of the Higgs bosons to the SM fermions scale as

h0dd̄ : md[sin(β − α)− tan β cos(β − α)], h0uū : mu[sin(β − α) + cot β cos(β − α)],

H0dd̄ : md[cos(β − α) + tan β sin(β − α)], H0uū : mu[cos(β − α)− cot β sin(β − α)],

A0dd̄ : md tan β γ5, A0uū : mu cot β γ5, H±dū : md tan β PR + mu cot β PL, (12)

where PL,R are the left- and right-projection operators. In the decoupling limit, these result in the

branching fractions for the leading channels,

Br(bb̄) : Br(τ τ̄) : Br(tt̄) ≈ 3m2
b tan

2 β : m2
τ tan

2 β : 3m2
t/ tan

2 β for H0, A0,

Br(tb̄) : Br(τ ν̄) ≈ 3(m2
b tan

2 β +m2
t/ tan

2 β) : m2
τ tan

2 β for H±. (13)

In the non-decoupling limit, the couplings of H0 to the SM fermions become SM-like, while the

above branching fraction relations still approximately hold for h0, A0 and H±, except that the top

quark channel would not be kinematically open.
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non-decoupling vs. decoupling region
-

black dots: 123 < mh0 or mH0 < 127 GeV
blue dots:  σXBr (gg→ h0, H0 →γγ)MSSM > 80% (σXBr)SM

๏ non-decoupling limit

- all Higgses light
- H0 SM like
- h0WW, h0ZZ coupling suppressed
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non-decoupling vs. decoupling region
-

black dots: 123 < mh0 or mH0 < 127 GeV
blue dots:  σXBr (gg→ h0, H0 →γγ)MSSM > 80% (σXBr)SM

decoupling region

๏ h0 SM-like: large mA ≥ 300 GeV
๏ small mA ~ mZ: H0 SM-like 

Not always true in NMSSM!
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NMSSM Higgs Sector
-

๏ Type II Two Higgs Doublet Model plus singlet S

after EWSB, 7 physical Higgses
CP-even Higgses: H1, H2, H3  

CP-odd Higgs: A1, A2

Charged Higgses: H±

๏ SSB

1 Introduction

Next to Minimal Supersymmetric Standard Model(NMSSM) is one of the simplest exten-
sion of Minimal Supersymmetric Standard Model(MSSM). Yet it yields a lot of appealing
features. Theoretically, it provides a simple way to solve the µ(Bµ) problem (only soft
SUSY breaking parameters are dimensionful in this model) and the Higgs sector could in-
corporate CP violation at tree level as well as strong phase transition of the first order[].
Phenomenologically, NMSSM incorporates a wider and larger parameter spaces with very
rich phenomena that satisfies observational constrains[1] while MSSM is merging into the
class of Natural SUSY[] and Split SUSY[].

2 NMSSM Higgs Sector

The NMSSM scalar Higgs potential is:

VH =
1

8
(g21 + g22)(H

†
uHu −H†

dHd)
2 +

1

2
g22|H†

uHd|2 + |λS|2(H†
uHu +H†

dHd)+

|λ(HT
u εHd) + κS2|2 + VH,Soft

VH,Soft = m2
Hu

H†
uHu +m2

Hd
H†

dHd +M2
S |S|2 + (λAλ(H

T
t εHd)S +

1

3
κAκS

3 + c.c.)(2.1)

In the potential, κ is the Peccei-Quinn(PQ) symmetry breaking parameter. Since the
PQ symmetry will be spontaneously broken when Higgs get the vacuum expectation value,
there would have been an massless PQ axion. Stringent limit has been imposed and to
avoid that, κ is introduced. B-term in MSSM is replaced by Aλ + κ/λµ at tree level. The
MSSM soft SUSY breaking parameter B now naturally has a value same order as other
breaking parameters. Now there is still a remaining discrete Z3 symmetry. It will give
rise to domain wall problem, this problem could be circumvented by non-renormalizable
Z3 symmetry breaking terms. We assume the solution for the domain wall problem has
negligible effects on Electroweak scale physics and thus keep the NMSSM Higgs potential
as shown in Eq. (2.1). The introduction of the new singlet field brings in two new fields.
When both λ and κ being real, no CP violation will occur in the Higgs sector. Thus we
can assign these two new scalar fields according to their CP eigenvalue. One of them will
be CP even Higgs and the other will be CP odd Higgs. In the paper, if not specified, we
always assume λ and κ to be real and positive. As a result, these two fields will mix with
other Higgs particles in the SUSY model and bring in a lot of new features. Aλ and Aκ are
dimensionful soft Supersymmetry breaking parameters.

Given the Higgs potential in Eq. (2.1), the mass matrices[2] of these Higgs scalers can
be obtained. The CP even sector mass matrix is denoted by M2

S in Eq. (2.2) and the CP
odd Higgs sector mass matrix is denoted by M2

P in Eq. (2.3). The vacuum expectation
value of the singlet field is expressed by vs. Other VEVs are called vu and vd where we use

– 2 –
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NMSSM: Masses for Higgses
-

๏ Charged Higgs

energy 〈V 〉 is greater for these points than for the physical vacuum can be fulfilled in the major

part of the appropriate parameter space. Vacua where only one of 〈H0
d 〉, 〈H

0
u〉, 〈S〉 is zero lead

to an over-constrained system, so that these vacua can only be realized for very specific choices

of the parameters, and may be safely ignored.

The NMSSM Higgs potential is automatically bounded from below for non-zero κ. The two

terms in VF contain contributions which are quartic in the usual neutral Higgs fields, Hu, Hd,

and in the new scalar, S, and will ensure that the potential is bounded from below.

2.2 The Mass Matrices

From the potential, the Higgs mass matrices and subsequently the mass eigenstates can be

derived. After shifting the Higgs fields to the minimum of the potential (given by Eqn.(10)),

they are rotated by an angle β in order to isolate the zero mass Goldstone states, G, which are

absorbed by the W and Z bosons to provide their masses.

For the charged fields these redefinitions can be written:

H−
d = H− sin β − G− cos β,

H+
u = H+ cos β + G+ sin β,

(14)

where G− = G+ ∗ and H− = H+ ∗. For the imaginary and real field components we have
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respectively. Choosing tanβ = vu/vd the zero-mass Goldstone modes decouple, and the resulting

potential has terms for the non-zero mass modes given by
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The charged fields H± are already physical mass eigenstates with tree-level masses given by

(I) : M2
H± = M2

A + M2
W −
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2
(λv)2, (18)

7
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1
3κS

3

test (1)

m2
11, m

2
22, λ1, λ2, λ3, λ4, λ5

v, tan β,α,mh,mH ,mA,mH±

σ(gg → h → γγ,WW/ZZ)

σ(gg → hSM → γγ,WW/ZZ)
=

σ(gg → h)

σ(gg → h)SM
× BR(h → γγ,WW/ZZ)

BR(hSM → γγ,WW/ZZ)
. (2)

σh
2HDM

σh
SM

=
cos2 α

sin2 β
+

sin2 α

cos2 β

|A(τb)|2

|A(τt)|2
. (3)



 AMSSM

G0



 =



 sin β cos β

− cos β sin β








√
2 ImH0

d√
2 ImH0

u



 , AS =
√
2 ImS (4)



 hSM

H



 =



 − sin β cos β

cos β sin β








√
2 (ReH0

d − vd)
√
2 (ReH0

u − vu)



 , S =
√
2 (ReS − vs) (5)

1

2
(AMSSM, AS)



m2
A

1
2(m

2
A sin 2β − 3λκv2s)

v
vs

∗ 1
4(m

2
A sin 2β + 3λκv2s)

v2

v2s
sin 2β − 3√

2
κvsAκ







 AMSSM

AS



 (6)

1

2
(hSM, H, S)M2

+





hSM

H

S




(7)

2

I. INTRODUCTION

m2
H± = m2

A +m2
W − 1

2(λv)
2

m2
A = λvs

sin 2β

(√
2Aλ + κvs

)
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energy 〈V 〉 is greater for these points than for the physical vacuum can be fulfilled in the major
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u〉, 〈S〉 is zero lead

to an over-constrained system, so that these vacua can only be realized for very specific choices

of the parameters, and may be safely ignored.

The NMSSM Higgs potential is automatically bounded from below for non-zero κ. The two

terms in VF contain contributions which are quartic in the usual neutral Higgs fields, Hu, Hd,

and in the new scalar, S, and will ensure that the potential is bounded from below.

2.2 The Mass Matrices

From the potential, the Higgs mass matrices and subsequently the mass eigenstates can be
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NMSSM: Masses for Higgses
-

๏ Effects of singlet
- lift (mhsm)tree, small tanβ, large λ

- mixing with singlet: change HiWW/ZZ, Hibb, Higg, Hiγγ

๏ Lots of work on (125 GeV) Higgs in NMSSM framework ...

Gunion et. al, 1201.0982
Ellwanger 1112.3548
King et. al., 1201.2671
Cao et. al., 1202.5821
EllWanger et. al., 1203.5048
Benbrik et. al., 1207.1096
Gunion et. al., 1207.1545
Gunion et. al., 1208.1817
Cheng et. al., 1207.6392
Belanger et. al., 1208.4952
Agashe et. al., 1209.2115
Belanger et. al., 1210.1976

๏ H3 heavy, mA large
๏ H1 126 or H2 126
๏ hSM/S mixing

Heng, 1210.3751
Choi et. al., 1211.0875
King et. al., 1211.5074
Dreiner et. al., 1211.6987
... many other Jack’s paper ...
(incomplete list)
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2

๏ mass splitting: off-diag 
comparing to average of diag
๏ state mixing: off-diag 
comparing to difference of diag
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NMSSM: mA decouple case
-

๏ push down: mhsm < mS

hsm
hsm

S

S

๏ H1 (SM-like) still heavy enough 
≥ 124 GeV
⇒ not too large mass mixing 

(to push down mH1 too low)

hsm

hsm

S
S

๏ H1 (singlet-like) not ruled out 
by LEP
⇒ not too large state mixing 

(to have too much H1ZZ coupling)

๏ push up: mhsm > mS

Agashe et. al., 1209.2115
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(without too much help from stops)
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Our work: Focus on the NMSSM “non-decoupling” region: small mA

NMSSM: Masses for Higgses
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3

NMSSM (small mA)
- H1 or H2 SM-like, 
depending on mA, λ, tanβ
- large mA, large λ, small 
tan β, H2 SM-like

MSSM 
- mA2 ≥ mZ2 (cos 4 β): H1 SM-like 
- mA2 ≤ mZ2 (cos 4 β): H2 SM-like

๏ ignore singlet for now...

All Higgses light 
- could have large mixing effects 
- can be probed experimentally

Thursday, December 20, 2012



S. Su 

NMSSM: Masses for Higgses
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NMSSM: Masses for Higgses
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NMSSM non-decoupling cases
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NMSSM non-decoupling cases
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NMSSM non-decoupling cases
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NMSSM parameters
-

parameters
๏ NMSSM

λ, κ, Aλ, Aκ, tan β, vs, (v)

M3SQ, M3SU, At

๏ NMSSM 

mA,  tan β, µ, (v)

M3SQ, M3SU, At

๏ NMSSM

λ, κ, mA, Aκ, tan β, µ, (v)

M3SQ, M3SU, At
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Parameter Scan
-

1< tanβ < 10

0 GeV < mA < 200 GeV

100 GeV < µ < 1000 GeV

0<λ<1

0<κ<1

-1500 GeV <Aκ<500 GeV

100 GeV < M3SU, M3SQ < 2000 GeV

-4000 GeV < At < 4000 GeV

decoupling other parameters (3 TeV) NMSSMTools
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Parameter Scan
-

1< tanβ < 10

0 GeV < mA < 200 GeV

100 GeV < µ < 1000 GeV

0<λ<1

0<κ<1

-1500 GeV <Aκ<500 GeV

100 GeV < M3SU, M3SQ < 2000 GeV

-4000 GeV < At < 4000 GeV

decoupling other parameters (3 TeV)

non-decoupling region

NMSSMTools
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H1 126 GeV, SM-like
-

H1 as 126 GeV SM-like Higgs
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H1 126 GeV: mass region
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H1 126 GeV: mass region

H1

H2

H3

A1

Hpm

A2

H1 → A1 A1

hsm

H

S
H1 126

-

hsm

H
S

H1 126

๏ MHi vs mA
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H1 126 GeV: parameter regions
-

tanβ 1 to 3.5 ~ 2 1 to 3.5
mA 0 to 200 GeV 150 to 200 GeV 100 to 200 GeV
λ ≥ 0.55 0.55 to 0.6 ≥ 0.55
κ ≥ 0.3 0.3 to 0.5 ≥ 0.5

๏ λ vs κ ๏ tan β vs mA

• pass exp
• yellow dots: 124 < mH1  < 128 GeV

• green,purple, black: satisfy σXBr(γγ, WW)

• purple: H1 →A1A1

• black: perturbativity till mpl
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H1 126 GeV: parameter regions
-

tanβ 1 to 3.5 ~ 2 1 to 3.5
mA 0 to 200 GeV 150 to 200 GeV 100 to 200 GeV
λ ≥ 0.55 0.55 to 0.6 ≥ 0.55
κ ≥ 0.3 0.3 to 0.5 ≥ 0.5

๏ λ vs κ ๏ tan β vs mA

• pass exp
• yellow dots: 124 < mH1  < 128 GeV

• green,purple, black: satisfy σXBr(γγ, WW)

• purple: H1 →A1A1

• black: perturbativity till mpl
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H1 126 GeV: stops
-

๏ mA vs At ๏ mst1 vs mst2-mst1
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H1 126 GeV: stops
-

๏ mA vs At ๏ mst1 vs mst2-mst1
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Parameter regions
-

H1 126 perturbativity mA1<mH1/2

tanβ 1 to 3.5 ~ 2 1 to 3.5

mA 0 to 200 GeV 150 to 200 GeV 100 to 200 GeV

µ µ ≤ 500 GeV 100 to 150 GeV 100 to 200 GeV

λ ≥ 0.55 0.55 to 0.6 ≥ 0.55

κ ≥ 0.3 0.3 to 0.5 ≥ 0.5

Aκ -1200  to 200 GeV -150 to 100 GeV -50 to 30 GeV

Aλ -650  to 300 GeV -30 to 230 GeV -150 to 150 GeV

|At| ≥ 1200 GeV
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H1 126 GeV: cross sections
-

๏ σγγ vs σWW ๏ BrWW vs Brbb

H1 → A1 A1

• pass exp
• yellow dots: 124 < mH1  < 128 GeV

• green,purple, black: satisfy σXBr(γγ, WW)

• purple: H1 →A1A1

• black: perturbativity till mpl
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H1 126 GeV: hSM-, H-, S- fraction
-

H1 H2

• pass exp
• yellow dots: 124 < mH1  < 128 GeV

• green,purple, black: satisfy σXBr(γγ, WW)

• purple: H1 →A1A1

• black: perturbativity till mpl
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H1 126 GeV: hSM-, H-, S- fraction
-

H1 H2

h-like

• pass exp
• yellow dots: 124 < mH1  < 128 GeV

• green,purple, black: satisfy σXBr(γγ, WW)

• purple: H1 →A1A1

• black: perturbativity till mpl
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H1 126 GeV: hSM-, H-, S- fraction
-

H1 H2

h-like

h-like (H-mixture)

• pass exp
• yellow dots: 124 < mH1  < 128 GeV

• green,purple, black: satisfy σXBr(γγ, WW)

• purple: H1 →A1A1

• black: perturbativity till mpl
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H1 126 GeV: hSM-, H-, S- fraction
-

H1 H2

h-like

S-like

h-like (H-mixture)

• pass exp
• yellow dots: 124 < mH1  < 128 GeV

• green,purple, black: satisfy σXBr(γγ, WW)

• purple: H1 →A1A1

• black: perturbativity till mpl
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H1 126 GeV: hSM-, H-, S- fraction
-

H1 H2

h-like

S-like

H-like (h-mixture)h-like (H-mixture)

• pass exp
• yellow dots: 124 < mH1  < 128 GeV

• green,purple, black: satisfy σXBr(γγ, WW)

• purple: H1 →A1A1

• black: perturbativity till mpl
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H1 126 GeV: hSM-, H-, S- fraction
-

H1 H2

h-like

S-like

H-like (h-mixture)h-like (H-mixture)

H3

• pass exp
• yellow dots: 124 < mH1  < 128 GeV

• green,purple, black: satisfy σXBr(γγ, WW)

• purple: H1 →A1A1

• black: perturbativity till mpl
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H1 126 GeV: hSM-, H-, S- fraction
-

H1 H2

h-like

S-like

H-like (h-mixture)h-like (H-mixture)

H3
S-like

• pass exp
• yellow dots: 124 < mH1  < 128 GeV

• green,purple, black: satisfy σXBr(γγ, WW)

• purple: H1 →A1A1

• black: perturbativity till mpl
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H1 126 GeV: hSM-, H-, S- fraction
-

H1 H2

h-like

S-like

H-like (h-mixture)h-like (H-mixture)

H3
S-like

H-like

• pass exp
• yellow dots: 124 < mH1  < 128 GeV

• green,purple, black: satisfy σXBr(γγ, WW)

• purple: H1 →A1A1

• black: perturbativity till mpl
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H2 126 GeV, SM-like
-

H2 as 126 GeV SM-like Higgs
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H2 126 GeV: mass region
-
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Hpm
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H2 126 GeV: mass region
-
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H2 126 GeV: mass region
-

H1

H2

H3

A1

Hpm

A2

๏ MHi vs mA

hsm
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S
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Parameter regions
-

H2 126 perturbativity mH1<mH2/2

tanβ 1 to 3.25 1.5 to 2.5 1.25 to 2.5

mA 100 to 200 GeV 170 to 200 GeV 125 to 200 GeV

µ 100 to 200 GeV 100 to 130 GeV 100 to 150 GeV

λ 0.4 to 0.75 0.5 to 0.7 0.5 to 0.75

κ ≥ 0.05 0.05 to 0.6 ≥ 0.3

Aκ -1200  to 50 GeV -300 to 50 GeV -500 to -250 GeV

Aλ -300  to 300 GeV 0 to 300 GeV 0 to 200 GeV
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H2 126 GeV: cross sections
-

๏ σγγ vs σWW ๏ BrWW vs Brbb

H2 → H1 H1

• pass exp
• yellow dots: 124 < mH2  < 128 GeV

• green,purple,red,black: satisfy σXBr(γγ, WW)

• purple: H2 →H1H1

• black: perturbativity till mpl
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H2 126 GeV: hSM-, H-, S- fraction
-

H3

H1 H2

• pass exp
• yellow dots: 124 < mH2  < 128 GeV

• green,purple,red,black: satisfy σXBr(γγ, WW)

• purple: H2 →H1H1

• black: perturbativity till mpl

Thursday, December 20, 2012



S. Su 29

H2 126 GeV: hSM-, H-, S- fraction
-

H3

H1 H2

H3

• pass exp
• yellow dots: 124 < mH2  < 128 GeV

• green,purple,red,black: satisfy σXBr(γγ, WW)

• purple: H2 →H1H1

• black: perturbativity till mpl
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H3 126 GeV, SM-like
-

H3 as 126 GeV SM-like Higgs
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H3 126 GeV, SM-like
-

H3 as 126 GeV SM-like Higgs

Fine tuned region, 
Still working on it...
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Conclusion (part I) 
-

๏ 126 ± 2 GeV (~SM strength) in NMSSM: non-decoupling region  
- small mA (≤ 200 GeV), all Higgses light, possible large mixing effects
- singlet helps to lift mass: large λ, small tan β
- mixing with singlet, change Γbb, ΓWW/ZZ, ... 

๏ MSSM
- mA ~mZ, non-decoupling, H1 SM-like
- mA ≥ 300 GeV, decoupling, H2 SM-like
- stops either heavy or large LR-mixing

๏ NMSSM
- mA : 0 - 200 GeV
- either H1 or H2 (or H3) SM-like 
- interesting features in each region
- stop sector less constrained
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Conclusion
-

๏ H1 126 GeV- λ≥ 0.55, κ ≥ 0.3, 1≤ tan β ≤ 3.5
- H1 SM h-like, H2, H3 S-H mixture
- H1 → A1 A1: H1, H2 h-H mixture, H3 S-like

๏ H2 126 GeV  
- 0.4 ≤ λ ≤ 0.75,   κ ≥ 0.05, 1≤ tan β ≤ 3.25
- 100 ≤ mA ≤ 200 GeV, small µ
- case with H2 → H1 H1

- H2 h-S mixture, H3 S-H mixture
- H1, H2,  h-H-S mixture; H3: S-H mixture

๏ H3 126 GeV: tuned region
hsm

H
S

hsm

H
S

hsm

H

S

hsm

H
S

hsm

H

S

hsm

H

S
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2HDM Higgs Sector
-

๏ Type II Two Higgs Doublet Model

after EWSB, 5 physical Higgses
CP-even Higgses: h, H  

CP-odd Higgs: A
Charged Higgses: H±

๏ EWSB
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๏ Z2 symmetry

2

I. INTRODUCTION

The discovery of a resonance at 125 GeV with properties consistent with the Standared Model (SM) Higgs boson in
both the ATLAS [1] and CMS experiments [2] is undoubtedly the most significant experimental triumph of the LHC
to date. The nature of this particle, as regards its CP properties and couplings, are still to be established. Though
further data would undoubtedly point us in the right direction, at this point it is useful to ask what this result means
for models that go beyond the SM. The reason for this is two-fold. There are quite a few models that admit a scalar
particle in their spectrum and many of them can have couplings and decays consistent with the SM Higgs boson.
Thus it behooves us to constrain these models as much as possible with the information at hand. Secondly, both
experiments have reported a slight excess in the γγ channel [3, 4] compared to the SM Higgs. Though it remains to
be seen if this excess stays as more data is accrued, it is still interesting to investigate if this departure from the SM
can be captured in other models that go beyond it.

One of the simplest extensions of the SM model involves enlarging the scalar sector. The Two Higgs-Doublet Models
(2HDM), as the name implies, involve two scalar doublets both charged under the SM SU(2)×U(1) gauge symmetries
[5–8]. The scalar spectrum is enlarged relative to the SM and includes a light and a heavy neutral CP-even Higgses
(h0 and H0), charged Higgses (H±), and a pseudoscalar A0. The neutral component of both the Higgs fields develop
vacuum expectation values (vev), breaking SU(2)×U(1) down to U(1)em. Thus, in addition to the Yukawas and the
masses, there are two additional parameters in the theory: the ratio of the vevs of the two Higgs fields (tanβ), and
the mixing of the two neutral Higgses (sinα).

There are many types of 2HDMs, each differing in the way the light and heavy neutral Higgses couple to the fermions
and gauge bosons (Type I, Type II, Lepton-specific, Flipped). In this work, we will be concentrating on the Type II
case. There is no deep reason for the choice, other than the fact that this case shares many of the features of MSSM,
and so enables us to translate existing LHC SUSY results to this case. Before proceeding, we point out that over the
last few months, there have been various studies on 2HDM concentrating on the regions of parameter space (usually
in the tanβ − sinα plane) that admit the values of σ× BR values reported by the LHC experiments in the various
channels [2, 9–11] (while also looking at correlations between the various decay channels), assuming the resonance
discovered corresponds to the heavy or light scalar in 2HDM. In addition, Ref. [12] investigated the possibility that this
could correspond to the pseudoscalar A0 - in this context, it is worth remarking that [13] considered the pseudoscalar
implication in general and found that while it is strongly disfavored, this possibility is not yet completely ruled out. 1

In the present paper, we extend the above analyses by combining all known experimental constraints (LEP, LHC,
and Tevatron bounds) with the theoretical ones (from perturbativity, unitarity, and vacuum stability) and present
regions of parameter space in various combinations of the parameters of the model instead of just concentrating on
two parameters. This enables us to draw conclusions about correlations between the different masses and the mixing
angles. We start by briefly laying out the essential details of the model and the set-up of our analysis in Section II.
We then give an overview of the various bounds and present our results in Section III. We conclude in Section IV.

II. TYPE II 2HDM

In this section, we will briefly describe the model we consider, list the relevant couplings and explain the constraints
imposed. For more details about the model, the reader is invited to consult Ref. [5].

A. Potential, Masses and Mixing Angles

Labelling the two scalar fields Φ1 and Φ2, the most general potential can be written down in the following form:

V (Φ1,Φ2) =m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 − (m2

12Φ
†
1Φ2 + h.c.)

+
1

2
λ1(Φ

†
1Φ1)

2 +
1

2
λ2(Φ

†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2)

+λ4(Φ
†
1Φ2)(Φ

†
2Φ1) +

{1

2
λ5(Φ

†
1Φ2)

2 + h.c.
}

+
{
λ6

[
(Φ†

1Φ1) + λ7(Φ
†
2Φ2)

]
(Φ†

1Φ2) + h.c.
}
. (1)

1 The latest results indicate that the pseudoscalar interpretation of the 125 GeV excess is ruled out at 2.5 σ.
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I. INTRODUCTION

The discovery of a resonance at 125 GeV with properties consistent with the Standared Model (SM) Higgs boson in
both the ATLAS [1] and CMS experiments [2] is undoubtedly the most significant experimental triumph of the LHC
to date. The nature of this particle, as regards its CP properties and couplings, are still to be established. Though
further data would undoubtedly point us in the right direction, at this point it is useful to ask what this result means
for models that go beyond the SM. The reason for this is two-fold. There are quite a few models that admit a scalar
particle in their spectrum and many of them can have couplings and decays consistent with the SM Higgs boson.
Thus it behooves us to constrain these models as much as possible with the information at hand. Secondly, both
experiments have reported a slight excess in the γγ channel [3, 4] compared to the SM Higgs. Though it remains to
be seen if this excess stays as more data is accrued, it is still interesting to investigate if this departure from the SM
can be captured in other models that go beyond it.

One of the simplest extensions of the SM model involves enlarging the scalar sector. The Two Higgs-Doublet Models
(2HDM), as the name implies, involve two scalar doublets both charged under the SM SU(2)×U(1) gauge symmetries
[5–8]. The scalar spectrum is enlarged relative to the SM and includes a light and a heavy neutral CP-even Higgses
(h0 and H0), charged Higgses (H±), and a pseudoscalar A0. The neutral component of both the Higgs fields develop
vacuum expectation values (vev), breaking SU(2)×U(1) down to U(1)em. Thus, in addition to the Yukawas and the
masses, there are two additional parameters in the theory: the ratio of the vevs of the two Higgs fields (tanβ), and
the mixing of the two neutral Higgses (sinα).

There are many types of 2HDMs, each differing in the way the light and heavy neutral Higgses couple to the fermions
and gauge bosons (Type I, Type II, Lepton-specific, Flipped). In this work, we will be concentrating on the Type II
case. There is no deep reason for the choice, other than the fact that this case shares many of the features of MSSM,
and so enables us to translate existing LHC SUSY results to this case. Before proceeding, we point out that over the
last few months, there have been various studies on 2HDM concentrating on the regions of parameter space (usually
in the tanβ − sinα plane) that admit the values of σ× BR values reported by the LHC experiments in the various
channels [2, 9–11] (while also looking at correlations between the various decay channels), assuming the resonance
discovered corresponds to the heavy or light scalar in 2HDM. In addition, Ref. [12] investigated the possibility that this
could correspond to the pseudoscalar A0 - in this context, it is worth remarking that [13] considered the pseudoscalar
implication in general and found that while it is strongly disfavored, this possibility is not yet completely ruled out. 1

In the present paper, we extend the above analyses by combining all known experimental constraints (LEP, LHC,
and Tevatron bounds) with the theoretical ones (from perturbativity, unitarity, and vacuum stability) and present
regions of parameter space in various combinations of the parameters of the model instead of just concentrating on
two parameters. This enables us to draw conclusions about correlations between the different masses and the mixing
angles. We start by briefly laying out the essential details of the model and the set-up of our analysis in Section II.
We then give an overview of the various bounds and present our results in Section III. We conclude in Section IV.

II. TYPE II 2HDM

In this section, we will briefly describe the model we consider, list the relevant couplings and explain the constraints
imposed. For more details about the model, the reader is invited to consult Ref. [5].

A. Potential, Masses and Mixing Angles

Labelling the two scalar fields Φ1 and Φ2, the most general potential can be written down in the following form:
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1 The latest results indicate that the pseudoscalar interpretation of the 125 GeV excess is ruled out at 2.5 σ.
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I. INTRODUCTION

The discovery of a resonance at 125 GeV with properties consistent with the Standared Model (SM) Higgs boson in
both the ATLAS [1] and CMS experiments [2] is undoubtedly the most significant experimental triumph of the LHC
to date. The nature of this particle, as regards its CP properties and couplings, are still to be established. Though
further data would undoubtedly point us in the right direction, at this point it is useful to ask what this result means
for models that go beyond the SM. The reason for this is two-fold. There are quite a few models that admit a scalar
particle in their spectrum and many of them can have couplings and decays consistent with the SM Higgs boson.
Thus it behooves us to constrain these models as much as possible with the information at hand. Secondly, both
experiments have reported a slight excess in the γγ channel [3, 4] compared to the SM Higgs. Though it remains to
be seen if this excess stays as more data is accrued, it is still interesting to investigate if this departure from the SM
can be captured in other models that go beyond it.

One of the simplest extensions of the SM model involves enlarging the scalar sector. The Two Higgs-Doublet Models
(2HDM), as the name implies, involve two scalar doublets both charged under the SM SU(2)×U(1) gauge symmetries
[5–8]. The scalar spectrum is enlarged relative to the SM and includes a light and a heavy neutral CP-even Higgses
(h0 and H0), charged Higgses (H±), and a pseudoscalar A0. The neutral component of both the Higgs fields develop
vacuum expectation values (vev), breaking SU(2)×U(1) down to U(1)em. Thus, in addition to the Yukawas and the
masses, there are two additional parameters in the theory: the ratio of the vevs of the two Higgs fields (tanβ), and
the mixing of the two neutral Higgses (sinα).

There are many types of 2HDMs, each differing in the way the light and heavy neutral Higgses couple to the fermions
and gauge bosons (Type I, Type II, Lepton-specific, Flipped). In this work, we will be concentrating on the Type II
case. There is no deep reason for the choice, other than the fact that this case shares many of the features of MSSM,
and so enables us to translate existing LHC SUSY results to this case. Before proceeding, we point out that over the
last few months, there have been various studies on 2HDM concentrating on the regions of parameter space (usually
in the tanβ − sinα plane) that admit the values of σ× BR values reported by the LHC experiments in the various
channels [2, 9–11] (while also looking at correlations between the various decay channels), assuming the resonance
discovered corresponds to the heavy or light scalar in 2HDM. In addition, Ref. [12] investigated the possibility that this
could correspond to the pseudoscalar A0 - in this context, it is worth remarking that [13] considered the pseudoscalar
implication in general and found that while it is strongly disfavored, this possibility is not yet completely ruled out. 1

In the present paper, we extend the above analyses by combining all known experimental constraints (LEP, LHC,
and Tevatron bounds) with the theoretical ones (from perturbativity, unitarity, and vacuum stability) and present
regions of parameter space in various combinations of the parameters of the model instead of just concentrating on
two parameters. This enables us to draw conclusions about correlations between the different masses and the mixing
angles. We start by briefly laying out the essential details of the model and the set-up of our analysis in Section II.
We then give an overview of the various bounds and present our results in Section III. We conclude in Section IV.

II. TYPE II 2HDM

In this section, we will briefly describe the model we consider, list the relevant couplings and explain the constraints
imposed. For more details about the model, the reader is invited to consult Ref. [5].

A. Potential, Masses and Mixing Angles

Labelling the two scalar fields Φ1 and Φ2, the most general potential can be written down in the following form:
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1 The latest results indicate that the pseudoscalar interpretation of the 125 GeV excess is ruled out at 2.5 σ.
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ξV V
h sin(β − α) ξV V

H cos(β − α) ξV V
A 0

ξuh cosα/ sinβ ξuH sinα/ sinβ ξuA cotβ

ξdh − sinα/ cosβ ξdH cosα/ cosβ ξdA tanβ

ξlh − sinα/ cosβ ξlH cosα/ cosβ ξlA tanβ

TABLE I. The couplings of the light and the heavy Higgses to the gauge bosons and fermions are modified from that of the
SM Higgs by a factor ξ. The superscripts u, d, l and V V refer to the up-type quarks, down-type quarks, leptons, and WW/ZZ
respectively.

We will impose a discrete Z2 symmetry on the Lagrangian, the effect of which is to render m12,λ6,λ7 = 0 2. Thus,
after electroweak symmetry breaking (EWSB), we are left with six free parameters: the four Higgs masses (mh, mH ,
mA, mH±), a mixing angle sinα, and the ratio of the two vacuum expectation values (vev), tanβ. Our results will
be displayed for various choices of these free parameters in 2D plots. The diagonaliazation of the scalar mass matrix
derived from Eq. 1 is a standard calculation, and we refer the reader to Ref. [14]. Here, we just quote the result for
the mass eigenstates of the scalars:

H =
√
2
[
(ReΦ0

1 − v1) cosα+ (ReΦ0
2 − v2) sinα

]

h =
√
2
[
−(ReΦ0

1 − v1) sinα+ (ReΦ0
2 − v2) cosα

]

A =
√
2
[
−ImΦ0

1 sinβ + ImΦ0
2 cosβ

]

H± = −Φ±
1 sinβ + Φ±

2 cosβ. (2)

We will display our results for sinα (or more precisely, sin(β − α)) ranging from -1 to 1, and for all values of tanβ.
But it turns out that the model is disallowed for large values of tanβ as we will demonstrate in Section III.

For our purposes, it is useful to invert the equations for the masses in terms of the couplings for reasons that we
will explain shortly. These are given by:

λ1 =
m2

H cos2 α+m2
h sin

2 α

v2 cos2 β

λ2 =
m2

H sin2 α+m2
h cos

2 α

v2 cos2 β

λ3 =
sin 2α(m2

H −m2
h) + 2 sin 2βm2

H±

v2 sin 2β

λ4 =
m2

A − 2m2
H±

v2

λ5 =−m2
A

v2
. (3)

The couplings of the light and heavy neutral CP-even Higgses to the SM gauge bosons and fermions are scaled by
a factor ξ relative to the SM Higgs value. ξ for the two cases for all three neutral scalars is presented in Table I.

B. Theoretical and Experimental Constraints

To implement the various experimental and theoretical constraints, we have employed two different programs - i)
the 2HDM Calculator(2HDMC) [15] to enable us to compute all the decay branching fractions of the Higgs imposing
the Z2 symmetry and implementing all the theoretical constraints and ii) HIGGSBOUNDS 2.0 [16] to consistently
put in all the experimental constraints on the model.

Experimental Constraints: Let us start with the LHC constraints. The first step in determining the experimental
bounds is to understand the production and decay of the two CP-even neutral Higgses. The parton-level production

2 Ref. [11], which also addresses similar issues as in this paper, allowed for a soft breaking of the Z2 symmetry with m2
12 != 0. In this

paper, we don’t consider such soft-breaking terms.
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๏ Theoretical constrains
- vacuum stability
- perturbativity
- unitarity
- Δρ

๏ Experimental constraints
- LEP Higgs searches (neutral Higgs, 
charged Higgs)
- Tevatron Higgs searches
- LHC Higgs searches (SM-like Higgs 
searches, MSSM Higgs searches)
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๏ previous work in 2HDM ...

Ferreira et. al., 1112.3772, 2HDM, H1 125, tan β vs. sin α
Basso et. al., 1205.6569, CP violating 2HDM, H1 125,
Cheon et. al., 1207.1083, Type II 2HDM, H1 or H2 125
Chang et. al., 1210.3439, 2HDM, H1 or H2 or degenerate H1/A, χ2 fit
Drozd et. al., 1211.3580, Type I and II 2HDM, H1 or H2 125 or degenerate, m122 ≠ 0, 
Craig and Thomas, 1207.4835, 2HDM, H1 125, various search channels
Ferreira et. al., 1211.3131, degenerate Higgses
...  

Our work: 
๏ Type II 2HDM with m122=0, 5 parameter scan
๏ impose theoretical and experimental constraints
๏ h0 or H0 125 GeV
๏ study parameter space and correlations

2HDM Higgs Sector
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h0 125 GeV
-

Light CP-even Higgs as 125 GeV SM-like Higgs
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h0 125 GeV: γγ vs. WW correlation
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h0 125 GeV: bb vs. WW correlation
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Parameter Scan: h0 125
-

0.25 ≤ tanβ ≤ 5

-1 ≤ sin(β-α) ≤ 1

125 GeV < mH  ≤ 1000 GeV

20 GeV ≤ mA , mC ≤ 1000 GeV

2HDM Calculator (2HDMC) + HIGGSBOUNDS + latest LHC bounds
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h0 125 GeV: sin(β-α)
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h0 125 GeV: mH vs. tanβ
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h0 125 GeV: mA vs. mH
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h0 125 GeV: mA vs. mHpm
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h0 125 GeV: sin(β-α) vs. mA (mHpm)
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h0 125 GeV: mA vs. tanβ
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h0 125 GeV: mHpm vs. tanβ
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h0 125 GeV: bb and ττ
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h0 125 GeV:  γγ and WW/ZZ
-
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H0 125 GeV
-

Heavy CP-even Higgs as 125 GeV SM-like Higgs
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Parameter Scan: H0 125 GeV
-

1 ≤ tanβ ≤ 30

-1 ≤ sin(β-α) ≤ 1

5 GeV < mH  < 125 GeV

20 GeV ≤ mA , mC ≤ 1000 GeV

2HDM Calculator (2HDMC) + HIGGSBOUNDS + latest LHC bounds
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H0 125 GeV: γγ and WW  
-
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H0 125 GeV: γγ vs. WW correlation
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-

H0 125 GeV: sin(β-α) vs. tan β
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-

H0 125 GeV: h0
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H0 125 GeV: mh0  vs. mA/Hpm
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H0 125 GeV:  tan β
-

 [GeV]+
H

m
0 500

)
!

ta
n

(

0

20

 [GeV]Am
0 500

)
!

ta
n
(

0

20

Thursday, December 20, 2012



S. Su 58

H0 125 GeV: sin(β-α)  
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H0 125 GeV: bb and ττ
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H0 125 GeV: γγ and WW  
-
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Conclusion (part II)
-

๏ 125 GeV (~SM strength) in Type II 2HDM
- parameters and σXBr study 

๏ h0 125 GeV
- small tan β ≤4
- sin(β-α) branches: >0 and <0
- correlations between mH and tan β
- correlation between mA and mHpm for sin(β-α)
- correlation between γγ, WW/ZZ and bb modes

๏ H0 125 GeV
- accommodate large tan β 
- sin(β-α) ≤ 0 branch
- correlation between mA and mHpm

- correlation between γγ, WW/ZZ and bb modes
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