KITP Conference on The Physics of Higher Temperature Superconductivity

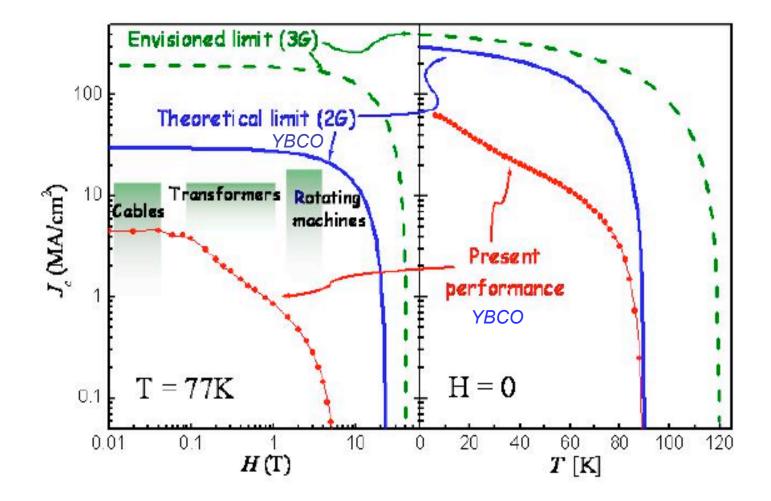
Will Higher T_c Superconductors Be Useful? Yes, But!

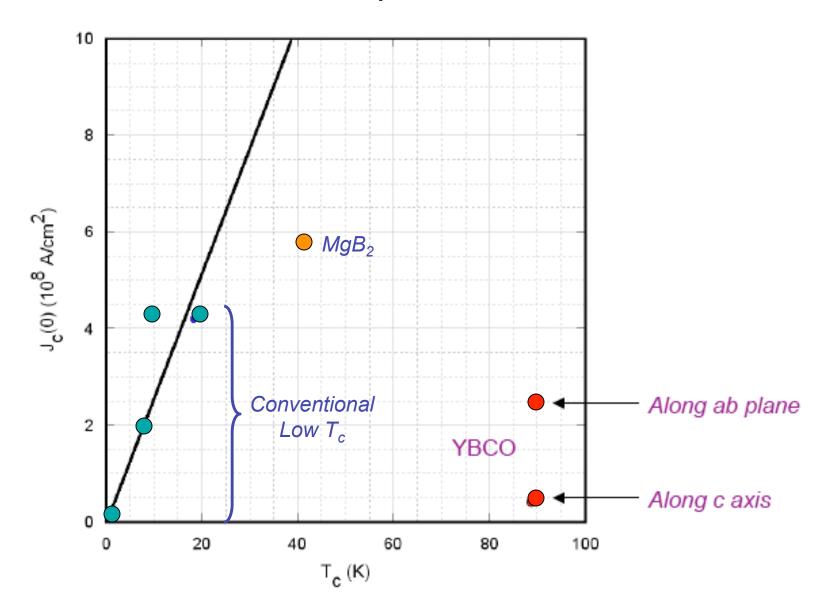
M.R. Beasley

Fundamental issues from the real world

View From The Real World

BASIC RESEARCH NEEDS FOR SUPERCONDUCTIVITY


Report of the Basic Energy Sciences Workshop on Superconductivity, May 8-11, 2006


Need for Better High T_c Superconductors*

YBCO is Not Good Enough for Use Above 77K

* DoE Report: Basic Research Needs in Superconductivity

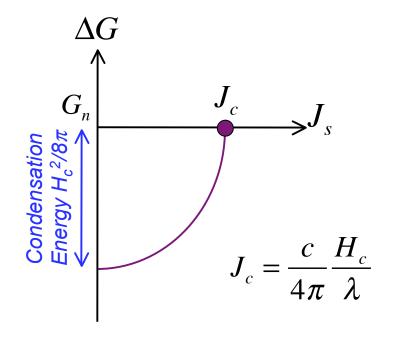
Theoretical Upper Limit of the Critical Current Density for Various Superconductors

The Relevant Physics

Theoretical Limit to the Critical Current Density

The Thermodynamic Critical Current Density (Neglecting depairing)

• The supercurrent density:

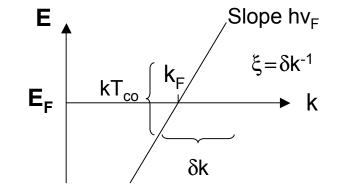

 $J_s = n_s^* e^* v_s$

 Λ_{K}

• The kinetic energy density

$$G_{K} = \frac{1}{2}n_{s}^{*}mv_{s}^{2} = \frac{1}{2}\frac{m^{*}}{n_{s}^{*}e^{*2}}J_{s}^{2} = \frac{1}{2}\Lambda_{K}J_{s}^{2}$$
$$\Lambda_{K} = \frac{m^{*}}{n_{s}^{*}e^{*2}} = \frac{4\pi\lambda^{2}}{c^{2}} = Kinetic inductivity$$
$$\frac{1}{m_{s}^{*}e^{*2}} = Superfluid (i.e., phase) stiffness$$

• Thermodynamic critical current density:

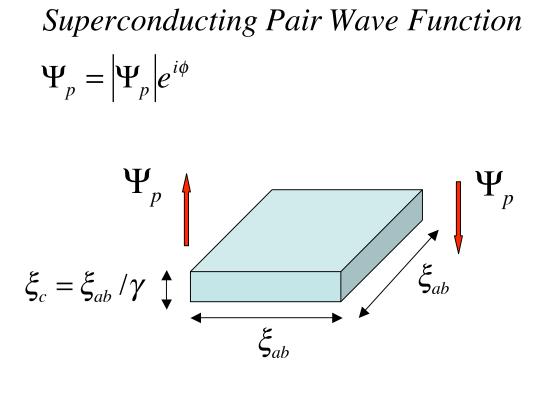

Dependence of J_c on Materials Parameters

$$J_c = n_s^* e^* v_c = n_s^* e^* \frac{\hbar}{m^* \xi} \quad \longleftrightarrow$$

Critical velocity corresponds to a phase difference of π across a distance ξ

where
$$\xi$$
 = size of Cooper pair

$$\xi = h v_F / k T_{c0} \propto \frac{v_F}{T_{c0}}$$



 $n_s \le n = total \ carrier \ density$

$$\implies J_c \propto \frac{nT_{c0}}{v_F}$$

More Consequences of Low Superfluid Density Thermal Phase Fluctuations

Destruction of Superconductivity with Increasing Temperature*

$$\frac{1}{2} \frac{1}{\Lambda_{K}} (\nabla \phi)^{2} V = k_{B}T$$

$$T_{\phi} \approx \frac{1}{2} \frac{1}{\Lambda_{K}} \frac{\xi_{ab}}{\gamma} = \frac{1}{2} \frac{\hbar^{2} n_{s}^{*}}{m^{*}} \frac{\xi_{ab}}{\gamma}$$

Temperature at which thermal fluctuations destroy superconducting quantum phase coherence

$$T_c = \min\{T_\phi, T_p\}$$

*See, for example, Carlson, Emery, Kivelson and Orgard

Searching for Higher T_c Superconductors

Historical paradigm:

• Strong interactions \rightarrow Large pairing energy T_p and everything else follows

New paradigm:

- Strong interactions \rightarrow Large pairing energy T_p and

• Low anisotropy • High carrier density \rightarrow Large J_c and $T_{\phi}/T_p > 1$

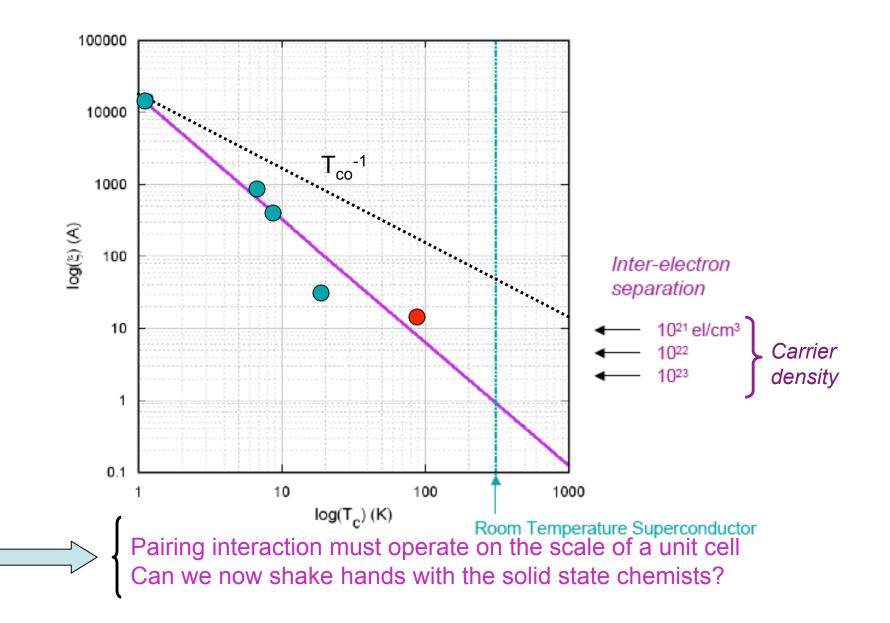
Is a room temperature superconductor possible from this point of view?

<u>Notional Better and Higher Temperature</u> <u>Superconductors Relative to YBCO (v_F constant)</u>

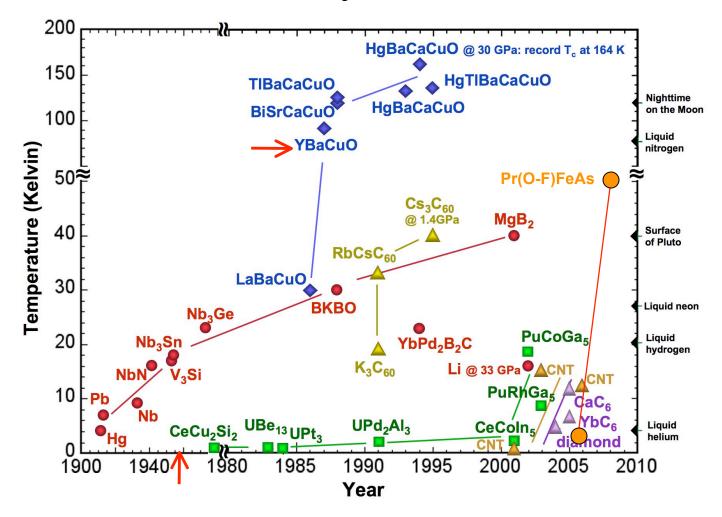
Cumulative Improvement in γ and n

T _P	Performance	Affect of T_P	$\gamma = 1$	n x 2	n x 10
	Parameters	Alone			
90K	Jc/Jc ^{YBCO}	1	1	2	10
	T_{ϕ}/T_{P}	1.6	8	16	80
180K	Jc/Jc ^{YBCO}	2	2	4	20
	T_{ϕ}/T_{P}	0.4	2	4	20
270K	Jc/Jc ^{YBCO}	3	3	6	30
	T_{ϕ}/T_{P}	0.2	1	2	10
360K	Jc/Jc ^{YBCO}	4	4	8	40
	T_{ϕ}/T_{P}	0.1	0.5	1	5

 $J_c \propto \frac{nT_P}{v_F} \qquad \qquad \frac{T_{\varphi}}{T_P} \propto \frac{nv_F}{\gamma T_P^2}$ $\gamma = \sqrt{\frac{M}{m}}$


Increasing Pairing Strength

Some Questions – Fundamental and Practical


- Does high Tc require reduced dimensionality, low carrier density?
- What mechanisms are effective for making such small pairs?
- What are the physical properties of a superconductor in the very small Cooper pair limit? Opposite of BCS.
- How good can a "bad" superconductor be? (i.e., quantitative understanding of resistivity in the presence of strong thermal and quantum fluctuations)
- How good is good enough? (i.e., how much lower than that of copper does the resistivity of a superconductor have to be?)

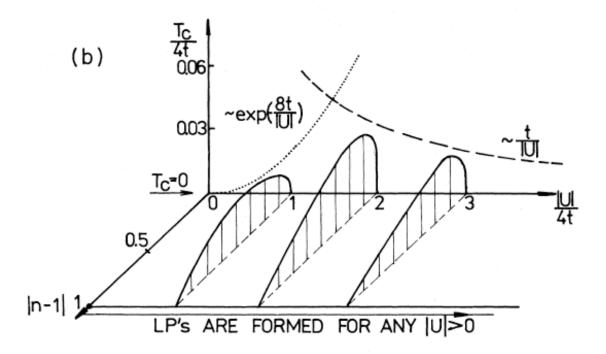
Guidance For Very High Temperature Superconductors

Size of Cooper Pair -- vs T_{co}

The Archetypical High T_c Superconductors *Can They Guide Us?*

* Adapted from DoE Report: Basic Research Needs in Superconductivity

Guidance from History


(My input to the Materials Panel)

Material	T _c	Interaction	Guidance?
Archetype			
Doped BaBiO ₃	30K	Lattice	Negative U/
		Charge?	Valence Skipping
Cs ₃ C ₆₀	40K	Lattice	El-Ph/
		Correlation?	Covalent Bonds
MgB ₂	40K	Lattice	El-Ph/
			Covalent Bonds
Cuprates	130K	Spin	Doped Mott Ins/
			Antiferromagnetism
Pnictides	50K	Spin	Antiferromagnetism
		(Charge?)	(Bi-excitons?)
Trace High T _c	> Room	?	Confirm/
Anomalies	Temperature		Diagnose (scan)

Electronic interactions (charge and spin) are effective!

Illustrative Phase Diagram (2D Negative-U Hubbard Model)

Seeking the Maximum T_c

• *T_c* maximal at crossover from localized (e.g., AF, CDW) to itinerant carriers; U and bandwidth of same order; optimal carrier density

How Can Theory Help?

Prediction is not necessary; Guidance is enough

Could we have:

- Real space formulation of model microscopic theories including relevant dynamics?
- Associated electronic structure studies to provide guidance on parameters of low energy Hamiltonians in terms of high energy (chemical, structural) inputs?
- *Reduced dimensionality in a 3D structure?*
- Find mutually understandable language between physicists and solid-state chemists?

And finally, wish the searchers good luck

Questions for the Session "The Landscape of Superconductivity"

What have we learned on what makes high T_c high from the cuprates and other materials?

What makes a material be "high T_c"? Chemistry? Dimensionality? Luck?

More is different?

What can theory reasonably (and honestly) say about T_c and how to raise it (or lower it?) ?

J Do we need a new conceptual framework to deal with this problem?