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Fig. 1. (A) Spectra taken at one atomically resolved
location on an underdoped Bi2Sr2CaCu2O8+d sample
(Tc = 61 K, UD61) at various temperatures. The
spectra show two features at low temperature, the
smaller of which (red arrow) disappears at higher
temperatures. The higher-energy feature∆0 (black ar-
row) compares well with the anti-nodal gap measure-
ments from ARPES. (B) ∆0 sorted, averaged spectra at
13 K from 8192 spectral measurements on another
underdoped Bi2Sr2CaCu2O8+d sample (Tc = 58 K,
UD58), for different temperatures and values of ∆0.
The spectra are normalized by the mean over the
whole bias range shown (each offset by 0.5). (C) A
spatial map at 13 K showing the variation of∆0. The
colored regions represent areas where ∆0 is nearest
to the correspondingly colored spectrum in (B).
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Fig. 2. (A) Average dI/dV spectra (orange circles)
from D0 sorted spectra on sample UD58 and the
fit (solid blue line) as described in the text. The
procedure is applied separately to the positive and
negative sides. The curves are offset by 35 pS. (B)
The weights of the corresponding positive side fits
in (A), expressed as a fraction of the total weight
for each gap size (each offset by 0.15). (C)
Cumulative weights (x axis) obtained by summing
the corresponding histogram for each gap size (y
axis). The x axis would be proportional to the
angle around the Fermi surface for a cylindrical
band structure. (D) Gap as a function of angle as
extracted from the fits, using the ARPES band
structure (27).

Bias (mV)

D
iff

er
en

tia
l C

on
du

ct
an

ce
 (p

S
)

 

 

150 100 50 0 50 100 150
0

100

200

300

400

500

600
Measured
Fit

Cumulative Weight

G
ap

 (m
eV

)

 

 

00.20.40.60.81
0

20

40

60

80

100
0
 = 61 meV

0
 = 67 meV

0
 = 75 meV

0
 = 79 meV

0
 = 81 meV

0
 = 83 meV

0
 = 97 meV

Angle (deg)

G
ap

 (m
eV

)

 

 

0 10 20 30 40
0

20

40

60

80

100
0
 = 61 meV

0
 = 67 meV

0
 = 75 meV

0
 = 79 meV

0
 = 81 meV

0
 = 83 meV

0
 = 97 meV

d wave fit

 (mV)

W
ei

gh
t F

ra
ct

io
n

0 50 100 150
0

0.2

0.4

0.6

0.8

1

A B

C D

26 JUNE 2009 VOL 324 SCIENCE www.sciencemag.org1690

REPORTS

Pushp et al, Science 2009. 
BSC

C
O

 U
61 

that the energy D0(p) where BQP interference disappears and the spa-
tially averaged energy !DD0(p) at which electronic homogeneity is lost in
Bi2Sr2CaCu2O81d (ref. 26) are indistinguishable within their uncer-
tainties. The function D(hk) 5DQPI[Bcos(2hk) 1 (12B)cos(6hk)],
where DQPI is the theoretical superconducting energy gap maximum
at hk5 0, p/2, is required to fit the measured D(hk), as shown by the
fine solid lines in Fig. 3b. We find that as p decreases, DQPI increases
rapidly and B decreases slowly. Finally, the maximum energy of the
fitted superconducting gap DQPI is always in good quantitative agree-
ment with the spatially averaged pseudogap maxima ÆD1æ as derived
from the particle–hole-symmetric peaks in the spectra (Fig. 1b); this
relationship is shown in the inset to Fig. 3b.

r-space structure of pseudogap excitations

Next we examine the structure of excitations above the extinction
energy D0, where no dispersive QPI is detected. We find that these
Z(q, E) have only two non-dispersive q vectors, namely q1* and q5*,
which evolve with p as shown implicitly in Fig. 3a (and in detail in
Supplementary Fig. 6). As might be expected from their lack of energy
dispersion, it is in r-space that these excitations appear most well
defined. Analysis of Z(r, E) for D0 ,E, 150 meV shows spatial pat-
terns that are highly similar at all energies but have spatial variations in
intensity. Representative examples are shown in Fig. 4a, b. The pat-
terns are short-correlation-length Cu–O–Cu bond-centred modula-
tions in Z(r, E) with nanoscale unidirectional domains ,4a0 wide
embedded in a glassy matrix. The spatial structure in these r-space
patterns (Fig. 4a, b) appears closely related to that detected by maps of:

R(r,E~eV ):
I(r,zV )

I(r,{V )

These quantify variations in the energy-integrated tunnelling asym-
metry, as described in ref. 20 for V5 150 meV; their spatial arrange-
ment forms a Cu–O–Cu bond-centred electronic pattern with
dispersed ,4a0-wide unidirectional nano-domains. H owever,
because these maps integrate over energy, they do not reveal the char-
acteristic energy of the constituent r-space phenomena.

To address this issue, we focus on the maximum intensity of
Z(r, E) for each E. This fluctuates strongly in space as shown, for
example, in Fig. 4a, b. H owever, simultaneous images of the pseu-
dogap energy scale D1(r) (as defined in the inset to Fig. 4d) also show
strong spatial fluctuations (Fig. 4c). Comparing these with Fig. 4a, b,
it seems that Z(r, E) exhibits its maximum intensity in the spatial
regions where E5D1(r). To quantify this, we scale the energy E at
each r by the pseudogap magnitude D1(r) at the same location, thus
defining the new energy scale e(r) 5 E/D1(r) to be a fraction of the
local pseudogap energy scale. We find that the translational- and C4-
symmetry-breaking bond-centred modulations exhibit an apparent
maximum intensity at e5 1, or E(r) 5D1(r) (Supplementary
Information, section VII, and Supplementary Fig. 7). O ur conclusion
is then that the intricate r-space patterning of electronic structure
seen in the maps of R (ref. 20 and Fig. 4f) is actually an atomic-scale
visualization of the spatial structure of low-p pseudogap excitations
(Figs 4e and 5a and Supplementary Fig. 7).

Summary and discussion

As p is reduced towards the Mott insulator state, scattering interfer-
ence modulations of BQPs always disappear at an energy D0 that is
indistinguishable from the energy at which electronic homogeneity is
lost26. BQP interference disappears near the perimeter of a region in
k-space restricted by the lines joining k5 (0, 6p/a0) and k5 (6p/
a0, 0). For energies E.D0, the electronic structure appears to be
static in r-space and independent of E. In fact, it consists of the
atomic-scale spatial patterns previously reported20 but here identified
as the pseudogap excitations at E56D1. O ur observations therefore
provide a new and different context within which to understand the
two excitation energy scales as pR 0. The lower energy, D0, is assoc-
iated with the disappearance of the B QP interference arising from the

presence of delocalized Cooper pairs, whereas the upper energy, D1, is
associated with the characteristic r-space electronic structure of the
pseudogap excitations. Overall, a progressive conversion from the
former to the latter electronic structure occurs as p decreases to zero
even though their characteristic energies DQPI and D1 remain equal.
Perhaps most notably, the low-p pseudogap excitations locally break
the translational symmetry, and reduce the C4 symmetry of the elec-
tronic structure in each four-Cu-atom plaquette to C2 symmetry in
Cu–O–Cu bond-centred patterns without long-range order20.
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Figure 4 | Imaging copper oxide pseudogap excitations as pR0.
a, b, Atomically resolved Z(r, E) for the Tc5 45K sample (simultaneous
topographic image shown in d) for two distinct energies (60, 120mV). The
intensity of electronic structure patterns in r-space vary as a function of
energy. c, The corresponding spatial map of the D1 gap magnitude over the
sample surface in d. There is a wide distribution of heterogeneous pseudogap
values26. d, A topograph showing the locations of Bi atoms (small, bright
circles) on the field of view where all data in this figure were acquired. The
inset shows the local definition of D1(r) with the tunnelling conductances at
E56D1 represented by g1 and g2, respectively. e, Image of
Z(r, e5 E/D15 1) in which energy has been rescaled by the local value of
D1(r) from c; this represents an image of what pseudogap states would look
like in terms of Z(r, E5D1) if the nanoscale disorder in D1 were not to exist.
f, The R(r, E5 150mV) patterns are virtually identical to those in e. Thus,
the spatial patterning reported in ref. 20 is actually concentrated on the
states at E56D1, meaning that these r-space excited states are the copper
oxide pseudogap excitations as pR 0.
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The upwardly-dispersing dashed curve corresponds to the result of Barnes and Riera
[45] for a 2-leg spin ladder, with an effective superexchange of ∼ 2

3
J ; the downward

curve is a guide to the eye.

For optimally doped YBa2Cu3O6+x, the measured dispersive excitations
are restricted to a narrower energy window, as shown in Fig. 8.11. Neverthe-
less, excitations are observed to disperse both downward and upward from
Er, and the qualitative similarity with dispersions at lower doping is obvious.

Anisotropy of the magnetic scattering as a function of Q2D can be mea-
sured in specially detwinned samples of YBa2Cu3O6+x, as the crystal struc-
ture has an anisotropy associated with the orientation of the CuO chains.
(Note that it is a major experimental challenge to detwin samples of suf-
ficient volume to allow a successful inelastic neutron scattering study.) An
initial study of a partially detwinned sample of YBa2Cu3O6.6 by Mook et
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temperature dependence of the gap across Tc becomes less pro-
nounced, implying a smooth transition from one group to the
other. With these two rather different temperature variations, a non-
trivial temperature-dependent evolution of the gap function jDk(T)j
along the Fermi surface can be sketched. As shown by the 82K data in
Fig. 3b, a gap consistent with a simple dx

2
2 y

2 form, jcoskx2 coskyj/2,
begins to develop near the node at a temperature just below Tc,
whereas the gap near the antinode deviates from this nodal region
d-wave gap.When the system is cooledwell belowTc, themomentum
dependence of the gap along the entire Fermi surface seems to be
consistent with the simple dx

2
2 y

2 form, at least for this doping. This
non-trivial temperature evolution is another surprise associated with
the discovery of the superconducting gap near the nodal region. We
note that the value of 2Dk5antinode(T5 10K)/kBTc (where kB is the
Boltzmann constant) of this d-wave gap is about 9, which is stillmuch
larger than the value,4.12 predicted by weak-coupling d-wave BCS
theory.

In Fig. 3c, d, data for an underdoped sample withTc5 75K and for
an overdoped sample with Tc5 86K are shown. The temperature
dependence of the gap function is consistent with that of the
UD92K sample except that the gapless region above Tc extends with
increasing doping. This change in the gap function in the supercon-
ducting state is qualitatively different from the simple mean field
behaviour with a temperature-independent pairing interaction, in
which the momentum dependence of the gap should not change at
temperatures below Tc. Thus, the observed temperature-dependent
evolution of the gap function implies an intriguing relation between

the superconducting gap and pseudogap. We note that in heavily
underdoped samples, in which the pseudogap is much more pro-
nounced than the superconducting gap, the gap function can only
evolve into a U shape instead of a simple d-wave form at our lowest
achievable temperature (see Fig. 3c and ref. 17). In Fig. 4 we sum-
marize schematically the temperature-dependent evolution of the
gap function in the three samples with different doping levels that
we have studied.

It seems impossible to explain our data by a single gap. We are not
aware of any mechanism that would create an energy gap that opens
at different temperatures on the same sheet of the Fermi surface. In
addition, the temperature-dependent evolution of the gap function
along the Fermi surface in the superconducting state also seems very
difficult to reconcile within a single-gap model. It seems more
reasonable to assume the existence of two energy gaps. The energy
gap opening at Tc near the nodal region is associated with the order
parameter of the superconducting state, whereas the pseuodogap
near the antinodal region represents an energy scale associated with
a different mechanism that may or may not be related to supercon-
ductivity. This is consistent with the two-gap picture derived from
our recent doping dependence measurements on heavily under-
doped Bi2212 (ref. 17). In addition, several other spectroscopy
experiments, such as Andreev reflection11, intrinsic tunnelling
spectroscopy13 and femtosecond spectroscopy14, were also inter-
preted as a gap opening at Tc, which was difficult to understand
in the context of previous ARPES19–21 and scanning tunnelling
microscope22 results dominated by the antinodal region (see
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Figure 1 | Temperature and momentum dependence of the low energy
excitations in slightly underdoped Bi2212 (Tc592K). a, Image plots of the
Fermi–Dirac-function divided ARPES spectrum (see Supplementary
Information) along the Fermi surface taken at three different temperatures:
above Tc (102K; top panels), right below Tc (82K; middle panels), and well
below Tc (10K; bottom panels). The high-intensity region represents the
band dispersion along the cutting directions as indicated by solid white lines
in d. In the Fermi–Dirac-function divided spectrum, this high-intensity
region either breaks at EF if there is an energy gap or passes EF if there is no
detectable gap. Scale bar, 0.1p (in units of lattice constant). b, Raw EDCs
near the Fermi crossing point (kF) for C1 to C4 at 82K. The short vertical
lines indicate the thermally populated Bogoliubov band above EF. The

Bogoliubov band dispersion is a signature of the superconducting state.
c, Temperature dependence of raw EDCs near the kF of C8. Short vertical
lines indicate the gap energy. The momentum position of EDCs is indicated
by the dashed lines in the C8 panels in a. A sharp peak in the spectrum can be
observed just below Tc, although the gap size remains about the same across
Tc. d, A partial Fermi-surface mapping measured at 102K in a quadrant of
the first Brillouin zone. The map is obtained by integrating raw spectra over
the energy window EF6 10meV and symmetrizing with respect to the
diagonal of the Brillouin zone. The intensity near the nodal direction (white
dashed line) is suppressed because of the matrix element effect under this
experimental setup.
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an overdoped sample with Tc5 86K are shown. The temperature
dependence of the gap function is consistent with that of the
UD92K sample except that the gapless region above Tc extends with
increasing doping. This change in the gap function in the supercon-
ducting state is qualitatively different from the simple mean field
behaviour with a temperature-independent pairing interaction, in
which the momentum dependence of the gap should not change at
temperatures below Tc. Thus, the observed temperature-dependent
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the superconducting gap and pseudogap. We note that in heavily
underdoped samples, in which the pseudogap is much more pro-
nounced than the superconducting gap, the gap function can only
evolve into a U shape instead of a simple d-wave form at our lowest
achievable temperature (see Fig. 3c and ref. 17). In Fig. 4 we sum-
marize schematically the temperature-dependent evolution of the
gap function in the three samples with different doping levels that
we have studied.

It seems impossible to explain our data by a single gap. We are not
aware of any mechanism that would create an energy gap that opens
at different temperatures on the same sheet of the Fermi surface. In
addition, the temperature-dependent evolution of the gap function
along the Fermi surface in the superconducting state also seems very
difficult to reconcile within a single-gap model. It seems more
reasonable to assume the existence of two energy gaps. The energy
gap opening at Tc near the nodal region is associated with the order
parameter of the superconducting state, whereas the pseuodogap
near the antinodal region represents an energy scale associated with
a different mechanism that may or may not be related to supercon-
ductivity. This is consistent with the two-gap picture derived from
our recent doping dependence measurements on heavily under-
doped Bi2212 (ref. 17). In addition, several other spectroscopy
experiments, such as Andreev reflection11, intrinsic tunnelling
spectroscopy13 and femtosecond spectroscopy14, were also inter-
preted as a gap opening at Tc, which was difficult to understand
in the context of previous ARPES19–21 and scanning tunnelling
microscope22 results dominated by the antinodal region (see
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excitations in slightly underdoped Bi2212 (Tc592K). a, Image plots of the
Fermi–Dirac-function divided ARPES spectrum (see Supplementary
Information) along the Fermi surface taken at three different temperatures:
above Tc (102K; top panels), right below Tc (82K; middle panels), and well
below Tc (10K; bottom panels). The high-intensity region represents the
band dispersion along the cutting directions as indicated by solid white lines
in d. In the Fermi–Dirac-function divided spectrum, this high-intensity
region either breaks at EF if there is an energy gap or passes EF if there is no
detectable gap. Scale bar, 0.1p (in units of lattice constant). b, Raw EDCs
near the Fermi crossing point (kF) for C1 to C4 at 82K. The short vertical
lines indicate the thermally populated Bogoliubov band above EF. The

Bogoliubov band dispersion is a signature of the superconducting state.
c, Temperature dependence of raw EDCs near the kF of C8. Short vertical
lines indicate the gap energy. The momentum position of EDCs is indicated
by the dashed lines in the C8 panels in a. A sharp peak in the spectrum can be
observed just below Tc, although the gap size remains about the same across
Tc. d, A partial Fermi-surface mapping measured at 102K in a quadrant of
the first Brillouin zone. The map is obtained by integrating raw spectra over
the energy window EF6 10meV and symmetrizing with respect to the
diagonal of the Brillouin zone. The intensity near the nodal direction (white
dashed line) is suppressed because of the matrix element effect under this
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Superconducting state

∆0(cos kx − cos ky)

In a state with glassy stripe order only the 
q=0 pairing component is expected to orderFig. 1. (A) Spectra taken at one atomically resolved

location on an underdoped Bi2Sr2CaCu2O8+d sample
(Tc = 61 K, UD61) at various temperatures. The
spectra show two features at low temperature, the
smaller of which (red arrow) disappears at higher
temperatures. The higher-energy feature∆0 (black ar-
row) compares well with the anti-nodal gap measure-
ments from ARPES. (B) ∆0 sorted, averaged spectra at
13 K from 8192 spectral measurements on another
underdoped Bi2Sr2CaCu2O8+d sample (Tc = 58 K,
UD58), for different temperatures and values of ∆0.
The spectra are normalized by the mean over the
whole bias range shown (each offset by 0.5). (C) A
spatial map at 13 K showing the variation of∆0. The
colored regions represent areas where ∆0 is nearest
to the correspondingly colored spectrum in (B).
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the closing of the gap, as might be anticipated. However, in the
normal-state spectra recorded from the underdoped material, the
striking observation is the loss of particle–hole symmetry and the
appearance of a gap above the chemical potential. In particular, it
appears that on moving away from the node a gap appears in the
spectrum and moves down to straddle EF farther from the node. If
the spectrum were symmetrized in energy at k5 jkFj in Fig. 3f, it
would incorrectly indicate the presence of a particle–hole symmetric
pseudogap.

The observation of a gap above EF, together with the absence of
particle–hole symmetry in the underdoped sample, suggests the
absence of pairing in the nodal region in the normal state. There
are several different theoretical explanations for the gap at positive
energies. Some suggest a competing order associated with the under-
lying antiferromagnetism, with the gap reflecting the magnetic zone
boundary16,17. Others suggest that the normal state represents a dis-
ordered spin liquid18–20. This in turn represents a particle with spin
moving through a sea of spins (the Mott insulating state) rather than
representing a Fermi liquid, where an electron or holemoves through
a sea of electrons. In all of themodels, the observed Fermi arc actually
represents the inner half of a hole pocket, the outer half being sup-
pressed by coherence factors, similar to the suppression of the
Bogoliubov quasi-particles observed in Fig. 1. The two sides of the
pocket are defined by bands dispersing up through the Fermi level,
turning back at the gap edge and dispersing down through the Fermi
level again. A representative pocket is indicated by the dashed blue
line in Fig. 3h. The present experimental observations of a folding in
the dispersion (representative energy distribution curves (EDCs) are
shown in the Supplementary Information) followed by a loss of
intensity is fully consistent with such a picture. However, we are able
to make one other important observation based on Fig. 3f, g. As we

discussed earlier, because of the coherence factors we see only one
side of the Fermi pocket. The point at which the dispersing band
ends, seemingly abruptly, not only defines the lower edge of the
gap but also provides an approximate indication of where the other
side of the pocket is located, the two sides of the pocket being
approximately symmetric around the turnover point18,20. The fact
that the turnover points are not centred on themagnetic zone bound-
ary effectively rules out models involving broken symmetries reflect-
ing scattering vectors of the type Q(p, p); these result in pockets
symmetric around that boundary.

The question then arises as to whether the pairing of electrons
above the superconducting transition temperature, Tc, that has been
observed in recent experiments21–23 is also evident in ARPES.
Evidence for such phenomena is found in the anti-nodal region
(Fig. 4). There the normalized spectra, for temperatures above and
below Tc, are shown for two different points on the Fermi surface.
The points both show the symmetric gap associated with paired
electrons in the superconducting state but differ markedly in the
normal state, with the spectrum from point 1 showing asymmetric
behaviour and the spectrum from point 2, which is closer to the anti-
nodal region, indicating a symmetric gap. The latter apparent sym-
metry around the Fermi level, similar to that observed in Fig. 1, is a
strong indication of the pairing of electrons along the copper–oxygen
bond directions in the normal state. Such an observation is consistent
with theories that predict the pairing to be essentially one-dimen-
sional in nature24,25.
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Figure 4 | Analysis of spectra recorded along the anti-nodal direction.
Comparison of the spectral plots after analysis, and associated EDCs for two
different regions of the Brillouin zone, both in the normal and
superconducting states for the underdoped 65K sample. These are shown in
a, b and e for the region showing particle–hole asymmetry and in c, d and
g for the region near the anti-node, as indicated in f (points 1 and 2,
respectively). a, Spectral intensity recorded from point 1 at a temperature of

50K; b, same as a, but in the normal state at a temperature of 140K.
c, Spectral plot from point 2 recorded at 40K; d, same as c, but in the normal
state at 110K. e, EDCs cut through the plots associated with point 1 show
particle–hole symmetry in the superconducting state and asymmetry in the
normal state. g, EDCs cut through the plots associated with point 2 show
particle–hole symmetry in both the superconducting and normal states.
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< c†kx,ky,↑c
†
−kx−q,−ky,↓ > q = 0,±π/2, π

Reduced superfluid density in the q=0  component, 
reduced Josephson coupling between different stripe directions (LTT phase of LBCO?)

(Other) Striped superconductor

Locking the phase uniformly.

Only point nodes (no Fermi surface)
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Summary
•Stripe order + pairing on stripes => antinodal pseudogap / nodal Fermi surface

•does not rely on d-wave like paring (it is not a broadened node)

•subgap peak in DOS in SC state due to gapping of the nodal FS

• Glassy stripes (including variations in pairing amplitude), should be OK

•Fluctuating stripes? can we still get the pseudogap?  

 (T* as onset of stripe correlations and striped pair correlations)

Outlook



servations of high frequency quantum oscillations of the Hall
resistivity in strong magnetic fields in YBa2Cu3Oy that seem
to imply small Fermi pockets.15–17 We show that this exact
distinction is found between a system with long-range spin-
stripe order and a system with only short-range spin-stripe
correlations. In simulations of commensurate stripe ordered
systems !Fig. 1", we find a nodal region hole pocket together
with a quasi-one dimensional Fermi surface section that are
replaced by a large Fermi surface in a disordered stripe sys-
tem !Fig. 5". It is known that a c-axis magnetic field can
enhance stripe order,1,18 thus providing a possible connection
to the observations of quantum oscillations. If the high-field
measurements indeed probe a stripe ordered state, which the
ARPES measurements generally do not, our results may thus
provide an explanation for the apparent discrepancy between
the two probes wherein the Fermi arc could be regarded as
the remnant in the disordered state of a nodal hole pocket.

In light of this, we also consider the implications of the
enlarged stripe unit cell and find that the hole density of a
hole pocket will be decreased by factors of 2 for even charge
period and 4 for odd charge period compared to an estimate
that assumes no long-range order. Based only on the stripe

periodicity, we can also set an estimated upper limit to the
size of a nodal hole pocket of 1.6% of the full Brillouin zone
for a period four stripe and 4% for a period five stripe with
larger pockets merging into open sections. From the canoni-
cal relation between doping and stripe periodicity,1 we may
expect period five for “1/10” doping and period four for
“1/8” doping. Quantum oscillations have been observed for
doping close to 1/10, whereas for 1/8 doping, the high-field
limit remains to be explored.16,19 For the period four stripes,
we expect either no oscillations, which correspond to only
open orbits, or possibly a smaller frequency of up to 450 T,
which corresponds to the maximum pocket size. If a sharp
distinction is found between 1/8 and 1/10, it would be a
dramatic confirmation of stripe order.

Although hole pockets may explain the frequency of
quantum oscillations, they cannot explain why the Hall co-
efficient !RH" may be negative at low temperature.15,16,20

This has led to suggestions of the formation of electron
pockets due to broken translational symmetry.21,22 However,
the locations of such electron pockets are in regions of the
Brillouin zone #along !0,0" to !! ,0"$ where there is no evi-
dence from photoemission of any substantial spectral weight
and they must be considered highly speculative. For a stripe
ordered system, in particular, we argue that electron pockets
arise only as an artifact of a mean-field-type description that
effectively ignores the interactions on a stripe.

Here, instead, we show that the stripe band with open
orbits may be electronlike, thus providing an alternative ex-
planation for a negative Hall coefficient. The sign of RH for
the stripe band sensitively depends on the changes in the
Fermi velocity over the Fermi surface, which depends, in
turn, on the band structure parameters as well as the charac-
ter !strength and periodicity" of the stripe order. The apparent
nonuniversality of the Hall coefficient15,16,20,23,24 in different
materials is not unexpected if stripe order plays a role.

II. MODEL

The model we consider is a tight-binding model on a
square lattice in a static potential that couples to the local
spin density and that may or may not have long-range stripe
order. We can think of the potential as a strong inhomoge-
neous magnetic field that is self-consistently generated from
an interacting model, such as the large-U Hubbard model in
the Hartree–Fock approximation.25 The Hamiltonian reads

H = − t %
&rr!'"

!cr,"
† cr!" + H.c." − t! %

&rr!'!"

!cr,"
† cr!" + H.c."

+ %
x,y,"

"!− 1"yV!x"cx,y,"
† cx,y,", !1"

where cr," is the electron destruction operator at site
r= !x ,y" and with spin "=#. We will also refer to the stripe
perpendicular !x" and stripe parallel !y" directions as x!!k!"
and x(!k(", respectively. The hopping is given in a standard
fashion, where &rr!' indicates the nearest neighbors and
&rr!'! indicates the next-nearest neighbors. We will use en-
ergy units such that t=1 and we take t!=−0.3. For the
Hubbard model with on-site interaction U%rnr↑nr↓, we would
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FIG. 1. !Color online" Low-energy spectral weights of #!a" and
!b"$ period four and !c" and !d" period five bond-centered stripe
ordered systems for stripe potential )V!x")=0.5 and doping given
below. The left column shows the spectral weight as an intensity
plot where the dashed lines are the Bragg planes of the stripe order
at !3! /4,!" and !4! /5,!". The right column shows the full Fermi
surface together with the centermost Bragg planes !dashed lines"
and the first Brillouin zone !highlighted". The size of a pocket in !b"
is 0.7% of one quadrant !0$k( $!, 0$k!$!" and the actual hole
density of the nodal pockets is also 0.7%, with a total hole doping
including the antinodal stripe states of 17.5% !EF=−1.15". The size
of a pocket in !d" is 1.2% of one quadrant, while the hole density of
the nodal pockets is only 0.6%, with a total doping of 12.5%
!EF=−1.0". The boxes show the estimated upper limit to the size of
a pocket as discussed in the text.
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energy, leaving only the nodal Fermi arc. In addition, it
would imply that the charge-stripe order may be visible only
above the pseudogap energy scale. The latter property does
indeed seem to be realized for the stripe glass observed by
tunneling spectroscopy for which the differential tunneling
conductance is nearly uniform at low energies and show only
the unidirectional modulations at energies around the
pseudogap energy.8,37 These observations together with the
results presented here give a very strong indication that the
pseudogap is, in fact, related to stripes. Also corroborating
this picture are the ARPES data, which find that the
pseudogap abruptly disappears with the momentum along the
Fermi surface in going from !! ,0" to !! /2,! /2" !Refs. 12,
13, and 38" in a fashion analogous to the charge-stripe order
presented here.

The pseudogap is then a strong correlation gap !spin gap"
on a single stripe characterized as an interacting quasi-one
dimensional electron gas.5,39 In the work presented here, any
strong correlation effects apart from the stripe order itself are
completely ignored, but we do find that the antinodal spectral
weight comes from the quasi-one dimensional stripe states,
thus providing a logical consistency with an antinodal
pseudogap from stripes. One way to argue why it may be
reasonable to separately treat the stripe correlations is if there
is a separation of energy scales in the renormalization group
sense in which the antiferromagnetic correlations, which for
a doped system correspond to stripe correlations, dominate
and residual correlations, which give rise to the pseudogap,
become prominent at a lower-energy scale.5,40,41

As is well known for the underdoped cuprates, the super-
conducting order occurs at an even lower-energy scale.

From, for example, the ARPES results on the gap
evolution12,38 and STS results on the Bogoliubov quasiparti-
cle interference,7 it is by now quite clear that long-range
superconducting order is intimately linked to the nodal liq-
uid, which, as we have found, can be isotropic, even in the
presence of charge-stripe order. In this context, we note that
the spin-stripe ordered La1.875Ba0.125CuO4 has a significantly
suppressed superconducting transition temperature while
there is still a large antinodal pseudogap.11,42 The suppres-
sion of superconductivity in this system may thus be related
to anisotropy of the nodal liquid due to spin-stripe order.43

As a continuation of this work, the modeling of disor-
dered stripes should be extended to include also some char-
acterization of the pseudogap and a d-wavelike pair field,
which could allow for a more detailed comparison to STS
and ARPES results. For the ordered stripe phases, work is in
progress to calculate the total conductivity resulting from the
contributions of hole pocket and open stripe band and to
more generally characterize the sign and oscillations of the
Hall resistivity in such a system.

To summarize, we find that for a charge ordered but spin-
disordered stripe state, there is a natural separation into nodal
and antinodal states for which the latter shows a much stron-
ger signature of the charge order. The local density of states
at the Fermi energy is almost homogeneous when integrated
only over states that contribute to the nodal region spectral
weight. We also consider commensurate spin- and charge-
stripe ordered systems wherein the Fermi surface consists of
a nodal hole pocket and an open !quasi-one dimensional"
antinodal section. The relation between the size of the pocket
and the hole density depends on whether the charge period-
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FIG. 5. !Color online" !a" Spectral intensity of

spin-disordered system !same as in Fig. 4" to-
gether with the LDOS at the Fermi energy of !b"
antinodal and !c" nodal states. The LDOS is
shown for an arbitrary section of the system and
is plotted on the same relative scale as for the
spin-stripe ordered system !Fig. 3". The relative
variations are around 18% for the antinodal
LDOS and around 3% for the nodal LDOS. The
components at momenta ! /2 and 3! /2 corre-
spond to roughly 15% density variations of the
!d" antinodal LDOS and 1.5% #barely visible in
!e"$ for the nodal LDOS variations with the rest
of the variations being due to random disorder.
The total density modulation that is integrated
over all filled states is around 3%. The simulation
is averaged over 10 000 runs with a system size
of 120"120.
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