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Introduction

Effective Hamiltonian and Pairing
Interaction

Pairing symmetry
Iron pnictides and copper oxides

Proposed \pi-junction loop to probe
anti-phase s-wave



Materials

Discovery: doped LaFeAsO with Tc =26K,
Feb. of 2008 (replacing any of 4 elements
leads to supercond)

Highest Tc in pnictides: 56K

Doped BaFe2As?2
FeSe x



Layered lattice structure
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Parent compound: LaFeAsO
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Temperature (K)
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possible magnetic origin of SC

Electron-phonon mechanism unlikely, Boer,
Cohen,..

Parent compound: SDW below ~130K
Mag. Moment:~ 0.3 Bohr for 1111,
~1 for 122

Layered structure



Electronic strucuture

X

FIG. 2 (color online). Band structure of LaFeAsO around E

showing the effect of As breathing along z by 675 = 0.04 FIG. 3 (color online). LDA Fermi surface of LaFeAsO shaded
(0.035 A). The unshifted band structure is indicated by the solid by velocity [darker (blue) is low velocity]. The symmetry points
black line, while the shift away (towards) the Fe is indicated by are I'=1(0,0,0), Z=(00,1/2), X=(1/2,00), R=
the blue dotted lines (green dashed lines). (1/2,0,1/2), M = (1/2,1/2,0), A= (1/2,1/2,1/2).

Mainly from Fe 3d orbital. Weak c-axis dispersion.

D. J. Singh and M.-H. Du PRL (2008)
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Superconducting state:
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ARPES on Bao.sKo.sFeAs — by Ding et al, 2008



S-wave universal to all iron-based
superconductivity?

penetration depth measurement of Moler
et al. on LaOFeP with Tc =6K from
scanning SQUID susceptometry indicates
nodal superconductivity



Electron correlations in Fe-based
compounds - likely moderate

« Parent compound LaFeAsO: AF semi-metal. not a
Mott insulator as cuprate, & not a simple metal

 Likely to be near but at the metallic side of Mott
insulator metal transition: DMFT of Kotliar et.al.

* Open issue for SDW: FS nesting, J1-J2 model.
 Observed FS similar to LDA, mass renormalized

Likely a system with moderately large correlations



Strong vs weak coupling approaches

metal Doped Mott insulator

Iron pnic{ide l Cuprate

Weak Correlation Strong——



Strong vs weak coupling approaches

Cuprate SC

strong coupling theory (t-J) for SC and
weak coupling functional RG theory give
same pairing symmetry

Fe-based SC

Weak coupling: fRG (DH Lee), Peter
Hirschfeld (next week)

. Strong coupling approach
--- in this talk, and also Q. Si ...




Starting Hamiltonian

 Band structure + on-site Coulomb

 Band structure

3d° electrons on Fe-ion. mainly 2 orbitals
d xz and d_yz near Fermi surface
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FI1G. 2 (color online). Band structure of LaFeAsQO, decorated dxz! dyz
with partial characters of the €, (top) and I2g (bottom) Fe-d :
bands. The orientation of the coordinate system is chosen so that domlnant
Fe-Fe bonds are directed along the x and v axes; the zero of the

energy coincides with the Fermi level. The arrows indicate the

splitting induced by the elongation/shrinking of the Fe-As tetra-

hedra (see text).



2-orbital model- tight binding fitting
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Tight binding of 2-orbitals, by
Raghu et al.
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Superconductivity in Fe-based compound
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2-orbital model for pnictide at large U

« Parent compound: Fe-ions: atomic configuration 3d°,
two electrons on two orbitals (d_xz, d_yz). Ignore all
other orbitals, each ion is “half filled”, an insulator
compared to semi-metal in expt.

« El-doping: some Fe-ions become 3d’, charge carriers.
3d¢ is of two holes and 3d’ is spin 'z of a single hole

R

left half: orbital 1, right half: orbital 2

Doped Fe-compound: spin-1/2 (carrier) with orbital
degree of freedom moves in background of two-hole
sites.



Large U limit for parent compound

i Spin 1 J,—J, model:

a3 -
Hy= Z Jii8ia 88+ JH Z Si. o * 84,85

t,a% 0

Q A-
Consistent with SDW results
with suitable choice of J’s

]+ '2

Collinear magnetic order




Large U limit: el. doped (large J)

3d’ carriers move in a 2-hole background:

4 ® - ®
' $=1,Sz=1>
s > ® |Sz=0>
> | l $=1,8z=-1>
J ﬂ spin up holeond,,
® ¢
v spin down hole on d,




Effective interaction between carriers on
neighboring sites 1 and j

HD D @

Site | j
Virtual state, cause energy ~ U

Via virtual hopping process: exchange
coupling with orbital degree of freedom

The two 3d’ irons can be a spin singlet
or a spin triplet



Strong Coupling Theory: Orbital dependent pairings

(n, m : orbital indices 1 or 2)  W-Q.Chen etal. PRL 2009
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between same orbital, U,, between different orbitals,
J Hund’s coupling




Comparison with exchange interaction in
single orbital Hubbard model

0

Hy = = Jb'(i)b(i5) = +J(S; - 8; — grun;)
J = J}i , =J : energy of a singlet pair



Form of effective H for two orbital system
Castellani et al.,1979 in study of V,0,
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Results on pairing states

Qualitative analyses
Pairing term in k-space

Hy = _Anmr;a,n, (q) b;r’z,m (k)b (K)

A(q) Fourier transform of A(ij).

Much of physics can be understood in
diagonal part of b,

A™=A_M" we have analytical results
for pairings.



Pair scatterings: orbital point of view

AU (3 cos gz + 15 cos gy L 1 i 2
|
U2 — Jz2 uv4+J U-J

Aslq) = All[’-fy- z)

Aj(q) = :]-lt% COS (z COS (y

o : 2 47 ) .

Apalgq) = T t5 COS gy COS gy — mtlfg (cos gy + cosgy)
Different from weak Intra-orbital scattering (A,;and A,,)
coupling stronger than inter-orbital one (A,,).

d, q~(0,0): A, andA,, dominant, both
attractive, favor same sign in one
pocket

g~ (0,m): A, and A,, dominant, both
repulsive, favor different sign
between electron and hole

p pockets

*» q~ (m,m): Ay, positive for small J/U and
negative for large J/U




Pair scattering amplitudes (J=0)
negative: attraction
M
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This pairing analysis leads to s- wave with antiphase



Quantitative study

Gap equations can be solved self-consistently

Only A, (s-wave) and B, (d-wave) states are
found to have lower energy

Kinetic term is renormalized by a factor of g;
Pairing term is renormalized by a factor of g..

Below we set g.=g.=1, effectively renormalize t and
U to study the pairing symmetry



Mean field approach
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« Mean field Hamiltonian:
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According to symmetry analysis:

V(k) =V°k)oy+ Vik)oy + V3(k)os.

For A1g symmetry:
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Mean Field and results
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Pairing amplitude distribution in
momentum space — s-wave case
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D

Pairing amplitude distribution in
momentum space — d-wave case
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Structure of pairing amplitude in
momentum space

s SN
> o d pPoc

AN N N\ 7

* Ajq symmetry

« same sign in each pocket

- different sign between hole
pockets and electron pockets

* nodes does not overlap with
Fermi surface

« Extended s-wave

B,, symmetry

s-wave in electron pockets
d-wave in hole pockets
same sign along the x axis
or y axis

- d-wave like



Three orbital case

o Effective interaction

2.J A | " e’ 1 3 P
HY) = ZZ Z [fﬂbfb_g 7z }2%( 8)bary (8) — 2 bf.b_éb ]hb,a(—o)ba, p (8) — 120 e IF L (=0)barn(d)
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 Orbital analysis (small J only)

Intra-pocket: V" <0

MtoX: V)2or >0 VI >0 yovey

Yz,y= yz.yz -

XY V5 <0 Vawsy ~ 0 Similar with 2-orbital model!



Conclusion

We proposed a strong coupling Hamiltonian for the
Fe-based superconductors derived from two-orbital
Hubbard model.

An extended s-wave pairing is found most stable in
a large parameter space, consistent with ARPES
experiment. But d-wave is also possible

Orbital-dependent pairing arises from the doped
charge carriers.

Our approach may be of relevance to the
intermediate coupling region, more appropriate for
iron pnictides.



Iron pnictide and copper oxides

Multi-orbital Iron pnictides
Layered organic
conductor C

strong

u-oxides

Single orbital

Correlations



Probe anti-phase s-wave

Symmetry is s-wave
Phase change in magnitude of k, more
difficult to probe

Many expt. and proposed theories to
probe anti-phase s-wave, seemingly one
of important issue to the symmetry

Phase sensitive expt. would provide a
direct evidence



Phase sensitive expt. in LaFeAsOF, Tsuel
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d =7
Polycrystalline NdFeAsQO, g5F; 1, P TR
m-flux in the loop has been observed ——— I ~15mA
Effect of grain boundaries is still " Time —

Figure 4. C.-T. Chen et al

C.-T. Chen et al. arXiv: 0905.3571
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Proposed \pi-junction loop expt.



Point contact junction

* The junction between FeAs (index 1) and a
conventional SC (index 2)

1
I. < »  AYA;N{mNap / de,de;

EQES[EY 4+ Fs)

alpha: Band index

- Because |42 < |AT| according to Ambegaokar
and Baratoff:
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Hole density of state — electron density of states at Fermi surface



Point contact junction
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0-junction in most doping regime

Chen, FCZ et al. arXiv: 0906.0169



Planarjunction between Al and

Al is a nearly free electron
metal

Lattice potential is weak

Z
!
7 Planar translation invariant.
Tyq = Tgé;fmy Qo

/L é 7/ Chen, FCZ et al. arXiv: 0906.0169
ey,

(b)




Planar junction between Al and
FeAs
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In the vicinity of FS:

Four electron pockets.

VEA E-pockets are further enhanced by

1/\/@%. — Q.
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Chen et al. arXiv: 0906.0169



Proposed setup

The condition to realize a TT-junction loop
1 < Np/N, < ¢~ 258
satisfied in very large doping regions.

The calculation based on DFT results gives similar result!

1. O-junction.

Three junctions:

2. O-junction for

202

Ny/N, > 1

TT-junction for N, /N, < 1

Y
‘ i"” 3. O-junction for
2z

TT-junction for N, /N, < ¢

Nh_/NE > C

(b)

0 02 0.4
X

Chen et al. arXiv: 0906.0169



Summary of \pi-junction loop

* The sign of a point-contact junction is positive if N,
> N, and is negative otherwise.

 In the planar junction between a single crystal Fe-
pnictide and Al, planar translational enhances the
contribution of electron pockets to the critical
current.

 We have proposed a type of Josephson tri-
junction to probe the s, pairing state in Fe-
pnictide, which appears to be accessible In
experiments.



Thanks
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