

Using Interfaces and the Mesoscopic Structure of Superconductors to Boost T_c beyond the Present Limits

Jochen Mannhart

Center for Electronic Correlations and Magnetism University of Augsburg

Santa Barbara, June 22, 2009

Using Interfaces to Enhance T_c

- 1) spatially separate
 - >> exchange bosons (electronic coupling?)
 - from flow of carriers
 - ➤ exchange bosons from doping (such as HTS)
 - > pair interaction from phase stabilization
- 2) create novel electronic phases
 - > correlation parameters at interfaces different from those of bulk
- 3) optimize band-structure, optimize doping
- 4) reduce Coulomb-repulsion
- 5) break inversion symmetry, create *E*-fields
- 6) stabilize superconducting phase, suppress adverse phase transitions

Spatial Separation of Carriers and Pairing Interaction

layer with mobile carriers

pairing layer

Spatial Separation of Carriers and Pairing Interaction

Model System:

mobile charge carriers at the interface,

pairing by virtual polarizations of the adjacent layer

mobile electrons (TiO₂)

polarizable dipoles (SrTiO₃)

V. Koerting et al., PRB 71, 104510 (2005)

Challenges for Theory

Modelling of electronic systems at interfaces, including

- ➢ electronic correlations
- ➤ full relaxation
- ➤ large supercells

with predictive power