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Outline
•  Finding the glue in the old superconductors, tunneling -> 

neutrons -> phonons
• New superconductors, new spectroscopy

– Angle resolved photo emission (ARPES)
– Optical conductivity

• The glue function in various systems
– Ortho II YBCO
– Ba0.35K0.45Fe2As2

– Bi-2212

– LSCO
– Mercury 

• The isotope effect
• Conclusion: Are we there yet?
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History of glue:
The old superconductors



  

Self energy from boson exchange

Fermion

Fermion

Boson

Frequency 

α2F(ΩΩ)

Goal: to determine the bosonic spectral 
function α2F(ΩΩ) by spectroscopy.

T=0, boson creation



Hubbard model DCA calculations
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Conribution from spin fluctuations to the gap function I(Ω) 

χ’’(Ω)

I(Ω)

(Ω/t)frequency ➞
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FIG. 2: (Color online) Real part of the anomalous self-energy
ReΣan at the antinodal point. Four different dopings are
presented. Negative contributions appear at a frequency of
order J nearly independent of doping.

the gap in the single particle density of states is corre-
lated with the shift, even though one expects deviations
because of the d-wave nature of the gap. Also, the right
panel of Supplementary Fig. 5 shows that the corre-
lation is much weaker for stronger interaction strength
and realistic band structure with next nearest neighbor
hopping t′ = −0.3t and third nearest neighbor hopping
t′′ = 0.2t. Note that in all cases, the position of the low-
est frequency peak is below the gap in the single-particle
density of states. The next peak in Imχ is at a frequency
above the gap, in the particle-hole continuum. On the
bottom panel of Fig. 1, Imχ is shown for the three in-
dependent components that appear on a 2× 2 plaquette.
They each represent averages over a quarter of the Bril-
louin zone. Clearly the (π, π) component dominates for
these dopings.

Fig. 2 shows ReΣan near the antinodal point as a func-
tion of frequency ω for different dopings at fixed U = 8t.
In conventional Migdal-Eliashberg theory, this quantity
times the quasiparticle renormalization factor is essen-
tially the gap function. That function increases as one
approaches half-filling, consistent with the increase in the
single particle gap found earlier [22] and illustrated in
Supplementary Fig. 5. ReΣan has weak frequency de-
pendence near zero frequency only over a range of order
J = 4t2/U for U ! 8t, as can be seen in Supplementary
Fig. 7. If there were a static piece to the gap, ReΣan

would have a frequency independent component at fre-
quencies larger than J , at least until frequencies of order
U. We find that this is not the case.

The frequency range relevant for binding can be esti-
mated as follows. Define

IG (ω) ≡ −

∫ ω

0

dω′

π
Im FR (ri, rj ; ω

′) (2)
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FIG. 3: (Color online) The top panel shows, for U = 8t, t′ = 0
and underdoping δ = 0.03, the frequency range of spin fluctu-
ations that causes binding as estimated from IG (ω) defined in
the text. IG (∞) is equal to the value of the order parameter.
That asymptotic value is represented by the dashed line. Pos-
itive contributions to the order parameter increase the value
of IG (ω) up to frequencies of order 1.5J. Higher frequencies
decrease the value of IG (ω) until it reaches its asymptotic
value when the spin fluctuations, shown on the bottom panel,
have faded away. The inset shows the BCS mean-field pre-
diction for IG (ω) . It increases monotonically until a cutoff
frequency ωc.

where ri and rj are nearest-neighbor sites and FR is the
retarded Gork’ov function defined as usual (see Meth-
ods). The infinite frequency limit of IG (ω) is equal to
〈ci↑cj↓〉 which in turn is proportionnal to the T = 0 d-
wave order parameter (it changes sign under π/2 rota-
tion). It was shown in Ref. [23] that it scales like Tc.
We thus use IG (ω) to estimate the frequencies relevant
for binding. Its meaning is best illustrated by calculating
it analytically for BCS theory where, for an s−wave gap
with ri = rj , it takes the form

IBCS
G (ω) = 〈ci↑ci↓〉

[
sinh−1 (ω/∆) − sinh−1 (1)

sinh−1 (ωc/∆) − sinh−1 (1)

× θ (ω − ∆) θ (ωc − ω) + θ (ω − ωc)

]
(3)

illustrated in the inset of Fig. 3. In the above expres-
sion, ωc is the BCS cutoff frequency for binding. We see
that this cutoff frequency enters very clearly. Since one
expects that the attractive (instead of repulsive) Hub-
bard model should behave more like the BCS model, we
checked that IG (ω) calculated with C-DMFT for that
model does have the structure of the BCS result for s−

Kyung et al. arXiv: 0812.1228
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binding? The possibilities are either “dynamic
screening” or a mechanism suggested by
Pitaevskii (13) and by Brueckner et al. (14) of
putting the electron pairs in an anisotropic
wave function (such as a d-wave), which van-
ishes at the repulsive core of the Coulomb
interaction. In either case, the paired electrons
are seldom or never in the same place at the
same time. Dynamic screening is found
in conventional superconductors, and the
anisotropic wave functions are found in the
high-T

c
cuprates and many other unconven-

tional superconductors. 
In the case of dynamic screening, the

Coulomb interaction e2/r (where e is the elec-
tron charge and r is the distance between
charges) is suppressed by the dielectric con-
stant of other electrons and ions. The plasma
of other electrons damps away the long-range
1/r behavior and leaves a screened
core, e2 exp(–κr)/r (where κ is
the screening constant), that acts
instantaneously, for practical pur-
poses, and is still very repulsive.
By taking the Fourier transform of
the interaction in both space and
time, we obtain a potential energy
V, which is a function of frequency
ω and wavenumber q; the screened
Coulombic core, for instance,
transforms to V

s
= e2/(q2 + κ2) and

is independent of frequency. This
interaction must then be screened
by the dielectric constant ε

ph
be-

cause of polarization of the
phonons, leading to a final expres-
sion V = e2/[(q2 +κ2)ε

ph
(q, ω)]. This

dielectric constant is different from
1 only near the lower frequencies of the
phonons. It screens out much of the Coulomb
repulsion, but “overscreening” doesn’t hap-
pen: When we get to the very low frequency
of the energy gap, V is still repulsive.

Instead of accounting for the interaction
as a whole, the Eliashberg picture treats only
the phonon contribution formally, replacing
the high-frequency part of the potential with a
single parameter. But the dielectric descrip-
tion more completely clarifies the physics,
and in particular it brings out the limitations
on the magnitude of the interaction. That is, it
makes clear that the attractive phonon inter-
action, characterized by a dimensionless
parameter λ, may never be much bigger,
and is normally smaller, than the screened
Coulomb repulsion, characterized by a
parameter µ (11). The net interaction is thus
repulsive even in the phonon case. 

How then do we ever get bound pairs, if the
interaction is never attractive? This occurs
because of the difference in frequency scales

of the two pieces of the interaction. The two
electrons about to form a pair can avoid each
other (and thus weaken the repulsion) by mod-
ifying the high-energy parts of their relative
wave function; thus, at the low energies of
phonons, the effective repulsive potential
becomes weaker. In language that became
familiar in the days of quantum electrodynam-
ics, we can say that the repulsive parameter µ
can be renormalized to an effective potential
or “pseudopotential” µ*. The effective inter-
action is then –(λ – µ*), which is less than
zero, hence attractive and pair-forming. One
could say that superconductivity results from
the bosonic interaction via phonons; but it is
equally valid to say instead that it results
from the renormalization that gives us the
pseudopotential µ* rather than µ. This does
not appear in an Eliashberg analysis; it is just

the type of correction ignored in this analysis. 
The above is an instructive example to

show that the Eliashberg theory is by no
means a formalism that universally demon-
strates the nature of the pairing interaction; it
is merely a convenient effective theory of any
portion of the interaction that comes from
low-frequency bosons. There is no reason to
believe that this framework is appropriate to
describe a system where the pairing depends
on entirely different physics. 

Such a system occurs in the cuprate super-
conductors. The key difference from the clas-
sic superconductors, which are polyelectronic
metals, is that the relevant electrons are in a
single antibonding band that may be built up
from linear sums of local functions of x2-y2

symmetry, with a band energy that is bounded
at both high and low energies. In such a band
the ladder-sum renormalization of the local
Coulomb repulsion, leading to the pseudopo-
tential µ*, simply does not work, because the
interaction is bigger than the energy width of

the band. This is why the Hubbard repulsion U
between two electrons on the same atom
(which is the number we use in this case to
characterize the repulsion) is all-important in
this band. This fact is confirmed by the Mott
insulator character of the undoped cuprate,
which is an antiferromagnetic insulator with a
gap of 2 eV, giving us a lower limit for U. 

But effects of U are not at all confined to
the cuprates with small doping. In low-energy
wave functions of the doped system, the elec-
trons simply avoid being on the same site. As
a consequence, the electrons scatter each
other very strongly (15) and most of the broad
structure in the electrons’ energy distribution
functions (as measured by angle-resolved
photoelectron spectroscopy) is caused by U.
This structure may naïvely be described by
coupling to a broad spectrum of bosonic
modes (4), but they don’t help with pair bind-
ing. U is a simple particle-particle interaction
with no low-frequency dynamics. 

A second consequence of U is the appear-
ance of a large antiferromagnetic exchange
coupling J, which attracts electrons of oppo-
site spins to be on neighboring sites. This is
the result of states of very high energy, and
the corresponding interaction has only high-
frequency dynamics, so it is unrelated to a
“glue.” There is a common misapprehension
that it has some relation to low-frequency
spin fluctuations (16, 17), but that is incor-
rect, as low-frequency spin interactions
between band electrons are rigorously ferro-
magnetic in sign. One can hardly deny the
presence of J given that it has so many exper-
imental consequences. 

In order to avoid the repulsive potential
these systems are described by the alternative
Pitaevskii-Brueckner-Anderson scheme with
pairing orthogonal to the local potential. Two
such pairings exist, d-wave and “extended s-
wave,” but only one appears as a supercon-
ducting gap; the extended s-wave is unsuitable
for a gap and acts as a conventional self-
energy (18). The specific feature of the low-
dimensional square copper lattice that is
uniquely favorable to high T

c
is the existence

of the two independent channels for pairing
(18). Because of the large magnitude of J, the
pairing can be very strong, but only a fraction
of this pairing energy shows up as a supercon-
ducting T

c
, for various rather complicated but

well-understood reasons. 
The crucial point is that there are two

very strong interactions, U (>2 eV) and J
(~0.12 eV), that we know are present in the
cuprates, both a priori and because of incon-
trovertible experimental evidence. Neither is
properly described by a bosonic glue, and
between the two it is easy to account for the

“We have a mammoth and an elephant in our refrigerator—
do we care much if there is also a mouse?”

Published by AAAS
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P.W. Anderson, Science 317,  1705 (2007)

Anderson’s view:
The bosonic mouse vs RVB elephant & 

mammoth



  

Measuring self energy by spectroscopy

• Tunneling

• Angle resolved photo emission (ARPES)
• Optical reflectance



  

Tunneling in lead

Experiments:
Rowell and McMillan
tunneling 
Eliashberg inversion

Theory:
Tomlinson Carbotte
Pseudopotential 
electron-ion potential
Phonons from neutron
scattering

Theory

Experiment



Optical absorption in Pb

Farnworth et al. 



Comparing tunneling and optics in Pb

4Δ



  

Can we do this in the new superconductors?



  

Measuring self energy by spectroscopy

• Tunneling

• Angle resolved photo emission (ARPES)
• Optical reflectance



Observing the ARPES “kink”
P.D. Johnson et al.



Observing the ARPES “kink”
P.D. Johnson et al.

Σ



Self energy Σ observed by ARPES
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P.D. Johnson et al.



Self energy Σ observed by ARPES
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Measuring self energy by spectroscopy

• Tunneling

• Angle resolved photo emission (ARPES)
• Optical reflectance



  

Measuring self energy by spectroscopy

• Tunneling

• Angle resolved photo emission (ARPES)
• Optical reflectance

Standard optical formulas:
r = Reiθ = (ε − 1)/(ε + 1)
ω (ε - εH) = 4πσi



Drude conductivity, extended

4πσ(ω) =
ω2

p

1/τ(ω)− iω(1+λ(ω))

Frequency 



Extended Drude Model
4πσ(ω) = iωp

2  / (ω - 2Σop(ω, T)) 

Σop = Σ1op +iΣ2op   Optical self energy
1/τ(ω,T )      Frequency dependent scattering rate
λ                        Mass enhancement  m*=m(1+ λ)
ωp= 4πne2/m        Plasma frequency
Σ1(ω,T )=−λω/2   Real part of self energy 
Σ2(ω,T )=−1/(2τ) Imaginary part of self energy
The parameters 1/τ(ω,T )  and λ(ω, T) can be 
obtained from the experimental σ(ω)=σ1 + iσ2

1/τ(ω,T ) = ne2/m Re(1/σ(ω))
ω(1+λ(ω)) = ne2/m Im(1/σ(ω))  



Caveats

• Σop is not exactly the self energy Σ as measured 

by ARPES.
– The optical conductivity is an average over the Fermi 

surface
– There is an addtional factor of (1-cosθ) where θ is the 

scattering angle

• The plasma frequency ωp must be known

• For the extended Drude formalism there must only 
be channel of conductivity.

• α2trF(ΩΩ) is not the same as  α2F(ΩΩ)
19



Comparison of ARPES and infrared Σ(ω)

P.D. Johnson et al. J. Hwang et al.
ARPES Infrared



Bosonic modes in YBCO, 
evidence for magnetic 

scattering



Ortho II YBCO scattering rate
1/τ(ω,T ) = ne2/m Re(1/σ(ω))



Fits to Shulga’s formula

23
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FIG. 12: The bosonic spectral function α2F (Ω) obtained from
the least square fits to the experimental data. In the inset we
show χ′′(ω) from Fig. 14 in Ref. [67].

where PK(Ω) is a Gaussian peak and BG(Ω) is the back-
ground which we have modelled on the spin fluctuation
spectrum of Millis, Monien, and Pines (MMP) [39]. A
is the area under the gaussian peak, d is the full width
at half maximum (FWHM), and ΩPK is its center fre-
quency. We fixed the parameters of the gaussian peak to
values shown in Table II based on the inelastic neutron
scattering results of Stock et al [67]. Is is the intensity
of the MMP background and Ω0 is the frequency of the
background at maximum. The complete bosonic spec-
tral function α2F (Ω) used is shown in Fig. 12. It has
two adjustable parameters, the amplitude of the gaus-
sian peak A and depth of the pseudogap 1 − N(0). All
the other parameters have been determined from other
experiments.

We use least squares fits of Eq. 4 to our scattering
rate data. The amplitude of the MMP background and
its center frequency were determined by fitting the data
at 295 K with only MMP background for α2F (Ω) and a
very shallow gap (see Table II). We fixed the background
parameters for all other lower temperatures at their 295
K values. For the further fitting only two free parameters
were used: the depth of the gap in the density of states
(1-N(0)) and the area under the resonance peak (A).
The calculated 1/τ(ω) spectra are compared with the
measured data in Fig 15. The dimensionless coupling
constant or mass enhancement factor λ is defined as:

λ = 2

∫

∞

0
dΩ

α2F (Ω)

Ω
. (10)

The contributions to λPK and λBG, from the peak and
the background as well as other parameters of the model
are shown in the Table II.

One result of our fit is the temperature dependence
of the depth of the pseudogap shown in the lower panel
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FIG. 13: The upper panel shows the quasiparticle density of
state with a gap, N(z). The lower panel shows depth for the
least square fits. The other parameters of the fit are shown
in Table II.

of Fig. 13. The depth, we find, corresponds to a 70 %
depression of the density of states at low temperature
decreased gradually to zero at room temperature. The
depth of the pseudogap in c-axis optical conductivity is
more pronounced [66] but it is known that c-axis trans-
port is weighted more heavily in the antinodal direction
where the pseudogap is deeper whereas ab-plane trans-
port is more evenly distributed in momentum.

Next, we compare our spectral function α2F (Ω) in
Fig. 12 with the magnetic susceptibility χ′′(ω) deter-
mined by neutron scattering at 6 K (< Tc) by Stock et
al. (see inset in Fig. 12). The two sets of curves are very
similar although it should be pointed out that our data
are in the normal states and neutron data are in the su-
perconducting state and that the width of our resonance
has been set equal to the neutron resonance width.

Comparing the relative amplitudes of the peak and the
background we find good agreement with the neutron
data. For the ratio of background to peak amplitude our
α2F (Ω) at 67 K gives ∼ 0.25 while the neutron χ′′(ω)
gives ∼ 0.27 in the normal state. This good agreement is
surprising since the coupling of the charge carriers to spin
fluctuations involves integrations over the Fermi surface
and we are reporting only on weighted averages. We can
also compare the areas under the peak and background
spectral functions. There is a sum rule for the area under
χ′′(ω) which is related to our optical function α2F (Ω) by
a coupling constant g2. Neutron scattering finds that the
area under the spin resonance is about 3 % of the total
area. In our case at 67 K it is about 19 %, considerably
larger. It can be argued that the coupling to the reso-
nance g2 could be larger than its background value by a
factor of ∼

√
6. This is reasonable since the resonance is

around (π,π) where the susceptibility is also expected to

10

0

2000

4000

6000

0 1000 2000 3000 4000 5000
0

2000

4000

0 500 1000 1500
0

400

800

67 K

295 K

Mode

 

 

295 K

Frequency (cm
-1
)

67 K

 295 K

 244 k

 200 K

 171 K

 147 K

 126 K

 100 k

  67 K

MMP

 

 

1
/ !! !!

( "" ""
) 

(c
m

-1
)

 

 

FIG. 14: The mode contribution (upper panel) and the MMP
back ground contribution (lower panel) on the scattering rate
based on Eq. 4 with the parameter shown in Table II and
pseudogap information of Fig 13 for the normal states. We
note the opposite temperature dependencies of the mode and
the background contributions.

peak.

temp. peak MMP depth
(K) A ΩPK d λPK Is Ω0 λBG 1 − N(0)

67 179 248 80 1.47 382 356 3.17 0.50
100 163 248 80 1.34 382 356 3.17 0.50
147 114 248 80 0.94 382 356 3.17 0.40
200 58 248 80 0.68 382 356 3.17 0.30
244 28 248 80 0.33 382 356 3.17 0.25
295 0 248 80 0.00 382 356 3.17 0.00

TABLE II: The parameters of the bosonic mode analysis at
six representative temperatures, T = 67 K, 100 K, 147 K,
200 K, 244 K, and 295 K. The peak is a Gaussian function
(see Eq. 7) and MMP is the background (see Eq. 8). The
quantities λPK and λBG are the coupling constants for the
peak and the MMP background, respectively. The depth (1-
N(0)) is the depth of the gap in the density of state. All the
frequencies are measured in cm−1.

In Fig. 16 we compare three quantities: the total area
under the magnetic susceptibility in the 25 to 43 meV
energy range from Stock et al. [28], the area under the
peak at 350 cm−1 in the W (Ω) = α2F (Ω) obtained from
the second derivative of 1/τ(ω), and the area under the
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FIG. 15: The optical scattering rates (solid lines) and our
fits (symbols) based on Eq. 4 with the bosonic spectral func-
tion shown in Fig 12 and pseudogap information of Fig 13
for the normal states. We note that the negative tempera-
ture dependence of the mode contribution combined with the
almost equal and opposite contribution of the background re-
sults in a nearly temperature independent scattering rate at
high frequencies, in complete agreement with the experimen-
tal results.
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peak at 248 cm−1 in the α2F (Ω) from our fit. We note
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FIG. 12: The bosonic spectral function α2F (Ω) obtained from
the least square fits to the experimental data. In the inset we
show χ′′(ω) from Fig. 14 in Ref. [67].

where PK(Ω) is a Gaussian peak and BG(Ω) is the back-
ground which we have modelled on the spin fluctuation
spectrum of Millis, Monien, and Pines (MMP) [39]. A
is the area under the gaussian peak, d is the full width
at half maximum (FWHM), and ΩPK is its center fre-
quency. We fixed the parameters of the gaussian peak to
values shown in Table II based on the inelastic neutron
scattering results of Stock et al [67]. Is is the intensity
of the MMP background and Ω0 is the frequency of the
background at maximum. The complete bosonic spec-
tral function α2F (Ω) used is shown in Fig. 12. It has
two adjustable parameters, the amplitude of the gaus-
sian peak A and depth of the pseudogap 1 − N(0). All
the other parameters have been determined from other
experiments.

We use least squares fits of Eq. 4 to our scattering
rate data. The amplitude of the MMP background and
its center frequency were determined by fitting the data
at 295 K with only MMP background for α2F (Ω) and a
very shallow gap (see Table II). We fixed the background
parameters for all other lower temperatures at their 295
K values. For the further fitting only two free parameters
were used: the depth of the gap in the density of states
(1-N(0)) and the area under the resonance peak (A).
The calculated 1/τ(ω) spectra are compared with the
measured data in Fig 15. The dimensionless coupling
constant or mass enhancement factor λ is defined as:

λ = 2

∫

∞

0
dΩ

α2F (Ω)

Ω
. (10)

The contributions to λPK and λBG, from the peak and
the background as well as other parameters of the model
are shown in the Table II.

One result of our fit is the temperature dependence
of the depth of the pseudogap shown in the lower panel

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

-600 -400 -200 0 200 400 600
0.0

0.5

1.0

 

 

D
e
p

th
, 
1
-N

(0
)

Temperature (K)

Gap Function

 

 

N
(z

)

Frequency (cm
-1
)

FIG. 13: The upper panel shows the quasiparticle density of
state with a gap, N(z). The lower panel shows depth for the
least square fits. The other parameters of the fit are shown
in Table II.

of Fig. 13. The depth, we find, corresponds to a 70 %
depression of the density of states at low temperature
decreased gradually to zero at room temperature. The
depth of the pseudogap in c-axis optical conductivity is
more pronounced [66] but it is known that c-axis trans-
port is weighted more heavily in the antinodal direction
where the pseudogap is deeper whereas ab-plane trans-
port is more evenly distributed in momentum.

Next, we compare our spectral function α2F (Ω) in
Fig. 12 with the magnetic susceptibility χ′′(ω) deter-
mined by neutron scattering at 6 K (< Tc) by Stock et
al. (see inset in Fig. 12). The two sets of curves are very
similar although it should be pointed out that our data
are in the normal states and neutron data are in the su-
perconducting state and that the width of our resonance
has been set equal to the neutron resonance width.

Comparing the relative amplitudes of the peak and the
background we find good agreement with the neutron
data. For the ratio of background to peak amplitude our
α2F (Ω) at 67 K gives ∼ 0.25 while the neutron χ′′(ω)
gives ∼ 0.27 in the normal state. This good agreement is
surprising since the coupling of the charge carriers to spin
fluctuations involves integrations over the Fermi surface
and we are reporting only on weighted averages. We can
also compare the areas under the peak and background
spectral functions. There is a sum rule for the area under
χ′′(ω) which is related to our optical function α2F (Ω) by
a coupling constant g2. Neutron scattering finds that the
area under the spin resonance is about 3 % of the total
area. In our case at 67 K it is about 19 %, considerably
larger. It can be argued that the coupling to the reso-
nance g2 could be larger than its background value by a
factor of ∼

√
6. This is reasonable since the resonance is

around (π,π) where the susceptibility is also expected to

tor experiment. The difference between the reactor and spal-

lation absolute unit calibration illustrates that the experimen-

tal error in the measurements quoted here is about 20% or

!0.015 !B
2 .

To connect our data with other experiments and theory,

we must correct the absolute measurement for the quantum

renormalization factor Z". Z" has been measured from the

momentum-integrated spectral weight in both insulating

YBCO and LSCO and agrees with the calculated value of

!0.5.4,6,52 Therefore, the actual fraction of the total moment
measured is about 15% of the total moment. In the insulator

YBCO6.15, performing the same integral up to 120 meV on

gets !0.2 !B
2 /eV.4 It is not surprising that we obtain a small

fraction of the total moment at these energies as "! increases
dramatically as the dispersion reaches its maximum near the

antiferromagnetic zone boundary.

A simple prediction of linear spin-wave theory for a

square plaquette of Cu2+ spins is that the low-temperature

momentum-integrated susceptibility, "!"##$%d3q"!"q ,##,
is independent of # in the linear spin-wave region as has

been confirmed in insulating YBCO6.15.
4,44 As pointed out by

Shamoto et al., the momentum-integrated weight is inversely

proportional to the exchange constant.44 Therefore, a reduc-

tion in the exchange constant "or spin-wave velocity# will
translate into an increase in the momentum integrated spec-

tral weight. For the insulator, in the low-temperature ordered

phase, "!"## saturates at a value of !4 !B
2 /eV. The momen-

tum integral %d2q"!"q ,## as a function of energy transfer for
YBCO6.5 is plotted in Fig. 14. The MAPS data are shown for

the range from 35–120 meV and our earlier Chalk River

reactor data are plotted from 0–45 meV. The reactor rather

than MAPS data are shown below 45 meV because the

poorer energy resolution of MAPS for Ei=150 meV causes
the resonance to appear much broader in energy and lower in
peak intensity than that measured in our reactor data. We
emphasize, however, that the total integrals for the reactor
and time-of-flight measurements are the same within error
for energy transfers 0–45 meV. The two data sets do agree
in the energy range of 35–45 meV where the magnetic scat-
tering is smoother in energy. As illustrated in Fig. 14, the
prediction for the spectral weight from linear spin-wave
theory is violated at low energies in YBCO6.5 where the spin
fluctuations are dominated by the intense resonance peak.
Because the spectral weight at low energies has been fully

discussed in Ref. 3, we will focus on the spectral weight
above the resonance energy. Figure 14 shows that the mo-
mentum integral above 40 meV is nearly constant as ex-
pected for spin excitations with a linear dispersion. Its mag-
nitude is consistent with measurements made by Fong et al.39

"see Fig. 5#. However, our data provide a strong indication
that "!"## is effectively constant well above the resonance
energy, unlike previous interpretations of a broad second
peak located at a high energy of 60 meV. The high-energy
acoustic momentum integral is only slightly larger than that

"4 !B
2 /eV# measured in the insulator YBCO6.15 by Hayden et

al. at 100 meV.4 This is surprising given that the effective

exchange constant, and hence velocity, in YBCO6.5 has de-

creased by a large factor of 60%. This would imply "given
the same spectral weight distribution# that the data should
approach a constant value of 4 /0.6!7–8 !B

2 /eV. Our data

in the range 50–100 meV lie in the range 5–7 !B
2 /eV, some-

what smaller than expected but within error. A small reduc-

tion in the renormalization factor Z" may possibly occur in

the doped system.

For the total moment, measurements on YBCO6.15 have

given about !0.2 !B
2 when integrating up to 120 meV,

whereas we find a slightly larger value of 0.3 !B
2 . Because

our measured exchange constant is reduced to 60% of that of

the insulator we expect our measured total spectral weight to

be !0.3–0.4 !B
2 . Our result for the total spectral weight is in

good agreement with expectations given that the accuracy of

the intensity calibration is about 20% "as well as the accu-
racy of the estimated effective exchange constant#. We em-
phasize that the total integral would be inconsistent, and too

small, were it not for the fact that the optic mode softens

considerably from the insulator concentration of x=0.15 to

x=0.5. Therefore, the apparent loss in spectral weight dis-

played in the acoustic momentum integral is compensated by

the presence of optic spectral weight at low energies. For

La1.875Ba0.125CuO4, no correction for any change in ex-

change constant is required since the spin-wave velocity is

similar to that of the insulator.8 The high-energy momentum

integrated spectral weight in La1.875Ba0.125CuO4 is similar to

that measured in the insulating monolayer compounds. In

conclusion, we find that the spectral weight at high energies

in YBCO6.5 agrees very well with that of the insulator when

the change in exchange constant and the softening of the

optic mode is taken into account.

Despite the fact that the resonance carries a large fraction

of the spectral weight at low energies, it is not significant

compared with the total integral extending up to higher en-

ergies. This lends support to the idea that the resonance itself

FIG. 14. Momentum integrated susceptibility as a function of

energy transfer for the acoustic mode only. The integration for the

MAPS data "Ei=150 meV# is plotted above 35 meV with filled

circles. The open circles are data taken previously at Chalk River

using a triple-axis spectrometer "Ef=14.5 meV#. The low-energy
spectrum is dominated by the resonance peak at !33 meV. The
high-energy integrated susceptibility is nearly constant and is simi-

lar to that previously measured in the YBCO6.15 insulator.
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FIG. 14: The mode contribution (upper panel) and the MMP
back ground contribution (lower panel) on the scattering rate
based on Eq. 4 with the parameter shown in Table II and
pseudogap information of Fig 13 for the normal states. We
note the opposite temperature dependencies of the mode and
the background contributions.

peak.

temp. peak MMP depth
(K) A ΩPK d λPK Is Ω0 λBG 1 − N(0)

67 179 248 80 1.47 382 356 3.17 0.50
100 163 248 80 1.34 382 356 3.17 0.50
147 114 248 80 0.94 382 356 3.17 0.40
200 58 248 80 0.68 382 356 3.17 0.30
244 28 248 80 0.33 382 356 3.17 0.25
295 0 248 80 0.00 382 356 3.17 0.00

TABLE II: The parameters of the bosonic mode analysis at
six representative temperatures, T = 67 K, 100 K, 147 K,
200 K, 244 K, and 295 K. The peak is a Gaussian function
(see Eq. 7) and MMP is the background (see Eq. 8). The
quantities λPK and λBG are the coupling constants for the
peak and the MMP background, respectively. The depth (1-
N(0)) is the depth of the gap in the density of state. All the
frequencies are measured in cm−1.

In Fig. 16 we compare three quantities: the total area
under the magnetic susceptibility in the 25 to 43 meV
energy range from Stock et al. [28], the area under the
peak at 350 cm−1 in the W (Ω) = α2F (Ω) obtained from
the second derivative of 1/τ(ω), and the area under the
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FIG. 15: The optical scattering rates (solid lines) and our
fits (symbols) based on Eq. 4 with the bosonic spectral func-
tion shown in Fig 12 and pseudogap information of Fig 13
for the normal states. We note that the negative tempera-
ture dependence of the mode contribution combined with the
almost equal and opposite contribution of the background re-
sults in a nearly temperature independent scattering rate at
high frequencies, in complete agreement with the experimen-
tal results.
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Inversion of the 1/τ spectra

• Allen approximation for 1/τsolved by maximum 

entropy inversion to  give
• Use Kubo’s formula with             to fit 1/τ

• d-wave full Eliashberg inversion gives Tc
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Bi-2212

• Doping dependence of the self energy
• Comparision with ARPES
• New results on the bosonic spectral function
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the neutron resonance mode. The lower noise level and the
higher resolution of our optical data demonstrate a clear doping-
dependent trend—the amplitude of the resonance peak weakens
with doping in the overdoped region and disappears completely at a
doping level where the superconductivity is still large enough to
show Tc < 55K, as shown in Fig. 2g. Thus, at this doping level we
have superconductivity without the resonance peak, and whereas
the peak may contribute to the condensation energy16,23 and the
superconducting gap at lower doping levels, it cannot be the main
cause of high-Tc superconductivity.

In Fig. 3 we investigate further the disappearance of the optical
resonance mode as a function of doping. In Fig. 3a we plot the
amplitude of the resonance mode in the real part of the optical self-
energy, which decreases uniformly with doping and appears to
extrapolate to zero at doping level p ¼ 0.23 (Tc < 55K). The centre
frequency of the mode (Fig. 3b) is proportional to the transition
temperature ðQop

res < 8:0kBTcÞ and reaches a maximum at the
optimally doped phase for both FTIR and ARPES, which is
consistent with other studies4. In Fig. 3c we show the contribution
of the resonance mode to the imaginary part of the self-energy as a
function of doping, both directly and normalized as a percentage of
the total scattering rate at 3,000 cm21 (seeMethods). This is done to
divide out the overall decrease of the coupling of the charge carriers
to the bosonic fluctuations that occurs with increased doping6,24.

We do not have detailed data on the amplitude of the mode as a

function of temperature. In the region of p ¼ 0.19 themode appears
at the superconducting transition temperature of 80 K along with
the neutronmode3,4. The error in the critical doping value cannot be
found from optical data alone because we were not able to obtain a
sample with sufficient overdoping. The ARPES data of ref. 6 for
their Tc ¼ 55K sample shows no resonance, so we can use this as an
upper limit and our own 60-K sample as a lower limit, giving
p ¼ 0.225 ^ 0.010 for the value of the critical doping point.
Although it is clear from our results that the amplitude of the

coupling of the optical resonance mode to charge carriers extra-
polates to zero at a critical doping of p ¼ 0.23, we are not able to
determine the behaviour of the centre frequency of the resonance
mode at the critical doping point. The centre frequency appears to
dropbelow the parabolic trend, shown as the dashed curve in Fig. 3b.
According to theory, the frequency of the ARPES resonance ðQ qp

resÞ is
roughly the sum of the gap (D) and the frequency of the neutron
mode13 (Q) (we note that in optics Qop

res ¼ 2DþQÞ:
We remark here on the relationship between our work and the

proposal of Lanzara et al.18 that the sharp kink seen in angle-
resolved photoemission is due to phonons. With our higher
resolution and lower noise level we are able to separate the sharp
peak from the overall broad background. The broad background

 
 
 

 

 
 
 

 

 

 
 
 

 

 

 
 
 

 

  
 
  

 

  
 
  

 

 

  
 
  

 

Figure 2 Comparison of the self-energy measured with infrared and angle-resolved
photoemission for Bi-2212. a–d, The real part of the optical self-energies,22Sop

1 ðqÞ of
the normal and superconducting phases for a series of crystals with different doping levels

determined by FTIR spectroscopy, as well as the difference between normal and

superconducting state curves. a, Tc ¼ 67 K (underdoped); b, Tc ¼ 96 K (optimal);

c, Tc ¼ 82 K (overdoped); d, T c ¼ 60 K (overdoped). e–g, The real part of the self-
energies, 22Sqp

1 ðqÞ from the ARPES measurements of ref. 6. e, T c ¼ 69 K

(underdoped); f, Tc ¼ 91 K (optimal); g, Tc ¼ 55 K (overdoped). Although the absolute

magnitudes and frequencies differ for the two data sets, the overall qualitative features are

closely correlated when one allows for the higher noise level and lower resolution of the

photoemission data.

  
  
 

 
 

  
  
 

 
 

 

  
 

 

  
  
  
 
 
 

Figure 1 The optical single-particle self-energy of Bi2Sr2CaCu2O8þd. a–d, The doping
and temperature dependent optical scattering rate, 1/t(q) for four representative doping

levels. a, T c ¼ 67 K (underdoped); b, 96 K (optimal); c, 82 K (overdoped); d, 60 K
(overdoped). e–h, The real part of the optical self-energy, 22Sop

1 ðqÞ: The slope of
2Sop

1 ðqÞ near q ¼ 0 is closely related to the coupling constant or the mass

enhancement factor, and also decreases as the doping increases. This is consistent with

other studies6,24. We note the weakening of the feature at 700 cm21 in both sets of curves

as the doping level increases.
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Real and imaginary parts 
of the scattering rate in 
Bi-2212 

Doping

-γ2(ω)

Hwang et al. 2003

1/τ=−2(Σop2 (ω)+ iΣop1 (ω))
Optical self energy:
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Hwang with Schachinger and Carbotte

0.0

0.4

0.8

1.2

1.6

2.0

0.0

0.4

0.8

1.2

1.6

0 100 200 300 400
0.0

0.4

0.8

1.2

1.6

0 100 200 300
0.0

0.2

0.4

0 100 200 300

40

60

80

0 100 200 300
0.0

0.5

1.0

1.5

*

*

*
*

a

 

 

OPT96A

 

 

  27 K

  72 K

 102 K

 200 K

 300 K

*

b

 

OD82B

 

 

I2
!
("
)

!
("
)

!
("
)

!
("
)

  26 K

  70 K

 100 K

 200 K

 300 K

c

 

OD60G

 
 

"""" (meV)

  29 K

  46 K

  70 K

 100 K

 200 K

 300 K

 

 

I2
!
("
)

!
("
)

!
("
)

!
("
)

"""" (meV)

 OPT96A

 OD82B

 OD60G

 

 

M
a
x
. 
F

re
q

. 
(m

e
V

)

Temperature (K)

SC
 OPT96A

 OD82B

 OD60G

 

 

I2
!
("
)

!
("
)

!
("
)

!
("
)

"""" (meV)

FIG. 1: Hwang, J. et al.

9

0.0

0.4

0.8

1.2

1.6

2.0

0.0

0.4

0.8

1.2

1.6

0 100 200 300 400
0.0

0.4

0.8

1.2

1.6

0 100 200 300
0.0

0.2

0.4

0 100 200 300

40

60

80

0 100 200 300
0.0

0.5

1.0

1.5

*

*

*
*

a

 

 

OPT96A

 

 

  27 K

  72 K

 102 K

 200 K

 300 K

*

b

 

OD82B

 

 

I2
!
("
)

!
("
)

!
("
)

!
("
)

  26 K

  70 K

 100 K

 200 K

 300 K

c

 

OD60G
 

 

"""" (meV)

  29 K

  46 K

  70 K

 100 K

 200 K

 300 K
 

 

I2
!
("
)

!
("
)

!
("
)

!
("
)

"""" (meV)

 OPT96A

 OD82B

 OD60G

 

 

M
a
x
. 
F

re
q

. 
(m

e
V

)

Temperature (K)

SC
 OPT96A

 OD82B

 OD60G

 

 

I2
!
("
)

!
("
)

!
("
)

!
("
)

"""" (meV)

FIG. 1: Hwang, J. et al.

9

0.0

0.4

0.8

1.2

1.6

2.0

0.0

0.4

0.8

1.2

1.6

0 100 200 300 400
0.0

0.4

0.8

1.2

1.6

0 100 200 300
0.0

0.2

0.4

0 100 200 300

40

60

80

0 100 200 300
0.0

0.5

1.0

1.5

*

*

*
*

a

 

 

OPT96A

 

 

  27 K

  72 K

 102 K

 200 K

 300 K

*

b

 

OD82B

 

 

I2
!
("
)

!
("
)

!
("
)

!
("
)

  26 K

  70 K

 100 K

 200 K

 300 K

c

 

OD60G

 

 

"""" (meV)

  29 K

  46 K

  70 K

 100 K

 200 K

 300 K

 

 

I2
!
("
)

!
("
)

!
("
)

!
("
)

"""" (meV)

 OPT96A

 OD82B

 OD60G

 

 

M
a
x
. 
F

re
q

. 
(m

e
V

)

Temperature (K)

SC
 OPT96A

 OD82B

 OD60G

 

 

I2
!
("
)

!
("
)

!
("
)

!
("
)

"""" (meV)

FIG. 1: Hwang, J. et al.

9



Eliashberg inversion, 
doping dependence

34

0.0

0.4

0.8

1.2

1.6

2.0

0.0

0.4

0.8

1.2

1.6

0 100 200 300 400
0.0

0.4

0.8

1.2

1.6

0 100 200 300
0.0

0.2

0.4

0 100 200 300

40

60

80

0 100 200 300
0.0

0.5

1.0

1.5

*

*

*
*

a
 

 

OPT96A

 

 

  27 K

  72 K

 102 K

 200 K

 300 K

*

b

 

OD82B

 

 

I2
!
("
)

!
("
)

!
("
)

!
("
)

  26 K

  70 K

 100 K

 200 K

 300 K

c

 

OD60G

 

 

"""" (meV)

  29 K

  46 K

  70 K

 100 K

 200 K

 300 K

 

 

I2
!
("
)

!
("
)

!
("
)

!
("
)

"""" (meV)

 OPT96A

 OD82B

 OD60G
 

 

M
a
x
. 
F

re
q

. 
(m

e
V

)

Temperature (K)

SC
 OPT96A

 OD82B

 OD60G

 

 

I2
!
("
)

!
("
)

!
("
)

!
("
)

"""" (meV)

FIG. 1: Hwang, J. et al.

9



34

0.0

0.4

0.8

1.2

1.6

2.0

0.0

0.4

0.8

1.2

1.6

0 100 200 300 400
0.0

0.4

0.8

1.2

1.6

0 100 200 300
0.0

0.2

0.4

0 100 200 300

40

60

80

0 100 200 300
0.0

0.5

1.0

1.5

*

*

*
*

a
 

 

OPT96A

 

 

  27 K

  72 K

 102 K

 200 K

 300 K

*

b

 

OD82B

 

 

I2
!
("
)

!
("
)

!
("
)

!
("
)

  26 K

  70 K

 100 K

 200 K

 300 K

c

 

OD60G

 

 

"""" (meV)

  29 K

  46 K

  70 K

 100 K

 200 K

 300 K

 

 

I2
!
("
)

!
("
)

!
("
)

!
("
)

"""" (meV)

 OPT96A

 OD82B

 OD60G
 

 

M
a
x
. 
F

re
q

. 
(m

e
V

)

Temperature (K)

SC
 OPT96A

 OD82B

 OD60G

 

 

I2
!
("
)

!
("
)

!
("
)

!
("
)

"""" (meV)

FIG. 1: Hwang, J. et al.

9

4

0

10

20

30

40

50

60

0

100

200

300

400

0 50 100 150 200 250 300 350

-
2

R
e
!

 (
m

e
V

) -
2

*
R

e
!

 (
c
m

-
1
)

E(meV)

#1

#2

-2Re!(")

(b)

0

1

2

3

4

0 20 40 60 80 100 120 140 160

#
2
F

(
"

)

" (meV)

#1

#2

Boson spectral function

(a)

FIG. 3: (a) Electron-boson functions,α2
F (ω)) , which result

from the strong-coupling fits to the near optimal SIN data
of Fig. 1 (inset) and the overdoped SIS data of Fig. 2, la-
beled as #1 and #2 respectively. (b) corresponding real part
of the diagonal self-energies, -2Re(Σ(ω)), obtained from the
α

2
F (ω)) shown in (a).

scattering rate and will reflect all electron interactions
which enter the full diagonal self-energy Σ(ω). The large
size of the broad, high energy background relative to
the resonance mode observed in optical self-energy is not
compatible with the α2F (ω) or Σ(ω) found in Fig. 3.
This implies that a large fraction of the high energy bo-
son continuum indeed couples to electrons but is not rel-
evant to superconductivity. This is reminiscent of con-
ventional superconductors where the high frequency part
of the coulomb interaction plays no role in the supercon-
ductivity and this repulsive interaction enters φ(ω) as
µ∗

! 0.1, reduced from the total electron-electron cou-
pling constant,µ ! 1.0 . [19, 20] Thus the tunneling data
indicate that the mode has not disappeared in the optical
conductivity. Rather, Fig. 3(b) shows that (-2 ReΣ(ω))
# 2 from tunneling is considerably reduced in size com-
pared with # 1 and the mode becomes unresolved in a
broad spectrum of excitations which do not participate
in superconductivity.

In summary, SIS break junction tunneling data on near
optimal and heavily overdoped Bi2212 have been ana-
lyzed quantitatively to provide the electron-boson spec-
tral function α2F (ω) and the diagonal self-energy Σ(ω).
The robust dip feature is directly linked to strong elec-
tronic coupling to a narrow boson spectrum, a peak in
α2F (ω), which drives the superconductivity and shows
no evidence of disappearing with overdoping. This fun-
damental disagreement with optical conductivity can be
resolved by considering the way each experiment probes
the electron self-energy. Tunneling directly measures the
pairing part,φ(ω), and the resulting α2F (ω) and Σ(ω)
reflect only those electronic interactions which partici-
pate in pairing. The more detailed analysis presented
here confirms previous reports[1] that the mode energy
Ω decreases substantially with overdoping which seems to
rule out the B1g phonon and favors the resonance spin
excitation as its origin.
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4

wave. In other words, it vanishes below the gap, and in-
creases monotonically until a sharp cutoff frequency that
depends somewhat on U but is of the order of the band-
width, as expected from the mean-field solution. There is
some structure in the frequency dependence that is prob-
ably caused in part by the finiteness of the bath used in
the calculation, but does not change the overall trend.

Getting back to the repulsive Hubbard model, IG (ω)
is plotted as a function of ω for U = 8t in the top panel of
Fig. 3. The corresponding Imχ appears on the bottom
panel. The asymptotic large frequency value of IG (ω) is
the order parameter that, as a function of doping, has
the dome shape dependence. [22] The function IG (ω)
reaches its asymptotic value for the first time after the
first peak in Imχ, around ω = 0.6t. That frequency
is essentially equal to J, as can be checked by plotting
the same quantity for U = 8, 12, 16. We find that as U
increases, the weight in Imχ shifts to lower frequencies
along with the characteristic frequency J at which the
function IG (ω) reaches its asymptotic value for the first
time. The maximum value of IG (ω) is reached at slightly
higher frequencies than J . The frequencies above that
maximum give contributions that are pair breaking since
IG (ω) decreases after that. The final asymptotic value
of IG (ω) is reached at a frequency that is independent
of U and instead scales like the bandwidth. The latter
result can be checked by plotting IG (ω) for a different
value of U, as illustrated in Supplementary Fig. 6 and
for very large second neighbor hopping where the band-
width is different from 8t (not shown). The characteristic
frequencies depend very little on doping at fixed U, con-
sistent with our findings from ReΣan. The scale U does
not appear directly in IG (ω) because the d−wave pair
has zero probability to occupy the same site.

The above results can be contrasted with the attrac-
tive Hubbard model mentionned above where straight-
forward mean-field theory predicts s−wave pairing with
a cutoff frequency equal to the bandwidth. Here the cut-
off scales like the bandwidth but is not equal to it. If
we wish to design an approximate mean-field theory [40]
for this problem that would play a role analogous to that
played by BSC theory as an approximation of the Migdal-
Elisahberg theory, we would take a mean-field theory
with a cutoff in frequency of order J. The decrease of
IG (ω) at higher frequency up to a cutoff of the order of
the bare bandwidth has no analog in mean-field theory.

Let us consider how the properties of the spin fluctua-
tions correlate with those of the d-wave superconducting
state for realistic material parameters. The spectral func-
tion Imχ for U = 8 and band parameters appropriate to
La2−xSrxCuO4 is plotted in Fig. 4 for various dopings.
In the underdoped regime the low frequency peak is the
most prominent feature. Optimal doping near δ = 0.16
is reached when the intensity of the low frequency peak
becomes comparable to the next one at higher frequency.
Superconductivity disappears when the low frequency
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FIG. 4: (Color online) Spin fluctuation spectrum Imχ for
parameters appropriate to La2−xSrxCuO4, namely U = 8t,
t′ = −0.17t and t′′ = 0.08t. The inset [22] shows the corre-
sponding superconducting, d, and antiferromagnetic, m, order
parameters. Imχ is calculated with m = 0.The lowest fre-
quency peak, corresponding to (π,π) , disappears when the
systems becomes normal.

peak has become small, as found in neutron scattering
experiments. [27, 28]

The large tails and monotonic decrease with doping
of the weight of the low frequency peak as we dope are
consistent with the “glue function” extracted from re-
cent optical conductivity experiments. [11] The position
of the low frequency peak near 0.2t at optimal doping is
not inconsistent with the experimental value [11] if we
take t = 250 meV. One should recall that Fig. 4 for the
local spin spectral weight gives information integrated in
wave vector so the properties of the neutron resonance lo-
cated at (π, π) have to be found by a different approach.
In a recent calculation with a related cluster method, [41]
it has been found that the peak located at (π, π) in the
infinite lattice does decrease with frequency in the un-
derdoped regime. Given the small weight of this neutron
resonance, this does not contradict the fact that Imχ,
whether local or averaged over one-quarter of the Bril-
louin zone near (π, π), has the opposite behavior as a
function of doping. This is not inconsistent with experi-
ments. [27, 28, 42, 43, 44] The magnetic resonance itself
has small weight and does not seem crucial for pair for-
mation. [45]

The importance of the background in providing bind-
ing in the overdoped regime has been emphasized in Ref.
[23] and in earlier Eliashberg analysis of experiment.
[8, 46] This background still has sizable contributions
from wave vectors within one quarter of the Brillouin
zone near (π, π) , as shown in supplementary Fig. 8.

We stress that depite the similarities, the results ob-

Comparison with 
DMF theory

Kyung et al. arXiv:
812.1228
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tering experiments. As shown in Fig. 39, a pronounced peak
in the !! ,!" spin response at frequency 0.16t in the opti-
mally doped regime can be observed when entering the su-
perconducting state. The position of the peak is temperature
independent, but depends weakly on doping, tracking the
critical temperature. Our results are in qualitative agreement
with experiment; for example, the resonance energy scales
with doping like 5TC and its position does not depend on
temperature.125 In addition, we see a broader peak around
!0.35–0.45"t extending to very high frequencies of order of
t#300 meV, which also gains some weight when entering
the superconducting state.

Cluster methods coarse grain the momentum dependence.
In the plaquette case, the coarse graining is done over 1 /4 of
the Brillouin zone, centered at !! ,!"; therefore, it is reason-
able to compare our results with the q integrated susceptibil-
ity from Ref. 129, where the two features, present in the
mean-field theory, 35 meV resonant peak as well as broader
peak around 75 meV extending up to 220 meV, were ob-
served.

The exchange energy of the t-J model can be expressed as
an integral of the spin susceptibility,130

Exc =
3J

!
$ d2qd"b!""Im%#!q,""&!cos qx + cos qy" .

!55"

Using this equation, one can elucidate the origin of the su-
perconducting condensation energy and the relative contribu-
tion of the different features of the spectral function.

Clearly, an important contribution to superconducting
condensation energy arises from the incoherent features of
the spin spectral function %around the frequency !0.4–0.5"t&
rather than from the spin resonance.

The exchange energy as a function of temperature is
shown in Fig. 40. At high temperature, spins are disordered
and the exchange energy is negligible. At temperature below
J, the singlets are formed and the exchange energy notice-
ably decreases, especially in the underdoped regime. At TC,
the exchange energy decreases further and gives, by far, the
largest contribution to the condensation energy of the t-J
model, as shown in Ref. 49. The exchange energy mecha-
nism, observed in cluster DMFT study, is thus in agreement
with the strong coupling magnetic mechanism for the super-
conductivity.

The spin resonance has been viewed from two different
perspectives !see Ref. 125 and references therein": !i" start-
ing from electronic quasiparticles and their residual interac-
tions in a d-wave superconductor, residual interactions form
a particle-hole bound state with spin 1, which is identified as
the spin resonance. !ii" Alternatively, starting from a disor-
dered quantum spin system, one can identify the spin reso-
nance as a massive spin 1 excitation, which becomes mass-
less as one approaches the magnetically ordered phase.

The cluster EDMFT Eq. !7" reconciles both points of
view in a unified approach, since the equations for the spin
susceptibility contain both the exchange interaction charac-
teristic of the insulator J!q" and the quasiparticle contribu-
tion described by the spin cumulant M %Eq. !7"&.

The appearance of the spin resonance requires the dra-
matic decrease of the anomalously large scattering rate in the
normal state, which is strongly reduced when the electrons
condense to form d-wave pairs, avoiding criticality at low
temperatures. The resonance, however, appears only in the
superconducting state and is not present in the normal state.

VII. PSEUDOPARTICLE INTERPRETATION:
CONNECTION WITH OTHER MEAN-FIELD THEORIES

In this section, we give an interpretation of physical ob-
servables in terms of pseudoparticle !eigenstates of the clus-
ter" spectral functions. This is an alternative insight into a
rich physics contained in the solution of cluster DMFT equa-
tions on a plaquette.

Pseudoparticle creation and annihilation operators were
introduced as mathematical entities representing the atomic
eigenstates of the plaquette immersed in the cluster DMFT
medium. We have found that out of the large number !34" of
pseudoparticles that we introduced, very few of them are
important for reproducing the low energy part of physical
observables. For example, more than 95% of the one-particle
spectral function at the Fermi level comes from a few con-
volutions of pseudoparticles in Eq. !33", within NCA ap-
proach. This constraint is, however, not present for the high
energy part of the spectra such as Hubbard bands, where the
contribution of most of the pseudoparticles can be identified.
The ground state and the low lying excitations are much
more restricted and are a superposition of only a few atomic
states. In the plaquette, these important states are
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FIG. 39. !Color online" The dynamical spin susceptibility at q
= !! ,!" for a few different doping levels and three different tem-
peratures: superconducting state and normal state at the transition
temperature and at room temperature. The pronounced peak is
formed in the SC state at 0.16t#48 meV, and a broad peak in the
normal state is around 100–140 meV. Susceptibility at normal tem-
perature is much smaller, and the peak moves to higher frequencies.
The resonance is strongest at the optimally doped system. It disap-
pears quickly in the overdoped side and somewhat more slowly in
the underdoped side. Results are obtained with EDCA and NCA.
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small and can hardly be measured. In particular, the

resonance peak in S!Q, v" should be smeared out already
by a small experimental resolution. The weak coupling

results are shown in Fig. 1.

We now turn to strong coupling limit ḡ ¿ D ¿
!vsfḡ"1#2. Solving Eq. (2) as explained below, we found

that the peak frequency in A!kF , v" (i.e., the measured gap)
is nowvres ! D $ D2#ḡ. The nonzero ImPV and ImSv

appear, respectively, at 2D and v0 ! D!1 1 a" where
a ~ !vsf#D"1#2 ~ j21. The amounts of jumps in ImPV

and ImSv both scale as a1#2 and disappear at j ! `
when vsf ! 0. Above the threshold, ImSv first increases

as ImSv ~ !v 2 v0"n where n !
p

3 2 1, and then
recovers the normal state,

p
v behavior. Substituting this

S into G!v", we found that it possesses a peak at vres,

a dip at v0 and a hump at vhump ! vres!1 1 b" where
b ~ j21#!2n" logj. At j ! `, peak, dip, and/or hump
positions coincide with each other, and the peak, dip, and/

or hump structures transform into the edge singularity:

A!v" ~ !v 2 vres"2n .

Further, the fact that ImPV ! 0 up to 2vres implies,

via Kramers-Kronig relation, that at small frequencies

RePV ~ V2#!vsfD". Substituting this result into

S!q, v", we find that it possesses a resonance peak at

FIG. 1. The T ! 0 weak coupling behavior of the dynamical
structure factor and the spectral function. Solid lines are
schematic solutions of Eqs. (2) broadened by experimental
resolution. Without resolution, the peaks are d functions as
indicated by arrows. The insets show the spin polarization
operator PV and the fermionic self-energy Sv (solid lines—
imaginary parts; dashed lines— real parts). The vertical dashed
lines denote logarithmical singularities.

Vres $ !vsfD"1#2 $ j21 ø 2D. At q fi Q, the peak
disperses with q as V2 ! v2

res%1 1 &!q 2 Q"j'2(, just as
a conventional spin wave, until V reaches 2vres, and at

larger frequencies disappears due to damping.

The strong-coupling behavior of S!Q, V" and A!k, v"
is presented in Fig. 2. We see that (i) S!q, v" possesses
a sharp resonance peak at Vres $ j21 which shifts with

underdoping to lower frequencies, and (ii) A!kF , v" pos-
sesses a quasiparticle peak at v ! vres, a dip at v0 !
vres 1 Vres, where ImSv first appears, and a broad maxi-

mum at a somewhat higher frequency vhump . As the mo-

mentum moves away from the Fermi surface, the spectral

function for frequencies larger than v0 disperses with k
and recovers the normal state, non-Fermi liquid form with

a broad maximum at v $ e2
k#ḡ. The quasiparticle peak,

however, cannot move further than v0 because of a strong

fermionic damping above threshold. We found that it gets

pinned at v0 and just gradually loses its strength with in-

creasing k 2 kF .

We emphasize that although the resonance frequency

in S!Q, v" continuously evolves from weak to strong

coupling, the physics changes qualitatively between the

two limits. At weak coupling, the peak is solely due to

a jump in ImPV . At strong coupling, the jump is almost

gone, and the existence of peak is due to V2 behavior of

RePV which is related to vanishing ImPV below 2vres.

We now briefly discuss how we obtained these results.

We first integrated partly over momentum in (2) and for

R ! ḡ#!yFj21" ¿ 1 obtained

FIG. 2. Same as in Fig. 1 but at strong coupling. The
resonance and onset frequencies are presented in the text. The
spin resonance frequency Vres ~ j21, is equal to the distance

between the measured gap D and the dip frequency v0. The

hump frequency differs from D roughly by j0.7.

1654

Eschrig & Norman
Abanov & Chubukov

Exciton model Prelovsek & Sega 
Memory function
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FIG. 3: Magnetic excitation spectrum and evolution
of the form of the magnetic response with energy.
The susceptibility wavevector-averaged susceptibility χ′′(ω)
(a) shows a “peak-dip-hump” structure suggesting that the
magnetic response has two components. The emergence of
the higher frequency component above about 40 meV corre-
sponds to a broadening of response in wavevector as demon-
strated by the rapid increase in the κ (b). There is a strong
dispersion of the peak positions in constant excitation-energy
cuts as shown by the energy dependence of the incommen-
surability δ(ω) (c). The high-energy dispersion indicates the
persistence of residual antiferromagnetic interactions. Sym-
bols in the main panels indicate different incident energies:
Ei = 30(♦), 55("), 90(#), 160(•), 240 meV (◦). The inset to
(a) shows that the low-energy peak is strongly suppressed at
T=300 K confirming that it mostly magnetic in origin. Error
bars are statistically determined from least squares fitting.
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FIG. 3: Magnetic excitation spectrum and evolution
of the form of the magnetic response with energy.
The susceptibility wavevector-averaged susceptibility χ′′(ω)
(a) shows a “peak-dip-hump” structure suggesting that the
magnetic response has two components. The emergence of
the higher frequency component above about 40 meV corre-
sponds to a broadening of response in wavevector as demon-
strated by the rapid increase in the κ (b). There is a strong
dispersion of the peak positions in constant excitation-energy
cuts as shown by the energy dependence of the incommen-
surability δ(ω) (c). The high-energy dispersion indicates the
persistence of residual antiferromagnetic interactions. Sym-
bols in the main panels indicate different incident energies:
Ei = 30(♦), 55("), 90(#), 160(•), 240 meV (◦). The inset to
(a) shows that the low-energy peak is strongly suppressed at
T=300 K confirming that it mostly magnetic in origin. Error
bars are statistically determined from least squares fitting.

6

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200

0

1

2

3

0 10 20 30

00.10.20.3
0

50

100

150

200

!
ω

 (
m

e
V

)

|δ| (r.l.u.)

0

0.1

0.2

0.3

0.4

0.5

χ'
'(

ω
) 

(µ
B
 e

V
-1

 f
.u

.-1
)

κ 
 (

r.
l.
u

.)

!ω (meV)

0.1 0.2 0.3

a

b

c

2

χ'
'(

ω
) 

!ω (meV)

12 K
300K

FIG. 3: Magnetic excitation spectrum and evolution
of the form of the magnetic response with energy.
The susceptibility wavevector-averaged susceptibility χ′′(ω)
(a) shows a “peak-dip-hump” structure suggesting that the
magnetic response has two components. The emergence of
the higher frequency component above about 40 meV corre-
sponds to a broadening of response in wavevector as demon-
strated by the rapid increase in the κ (b). There is a strong
dispersion of the peak positions in constant excitation-energy
cuts as shown by the energy dependence of the incommen-
surability δ(ω) (c). The high-energy dispersion indicates the
persistence of residual antiferromagnetic interactions. Sym-
bols in the main panels indicate different incident energies:
Ei = 30(♦), 55("), 90(#), 160(•), 240 meV (◦). The inset to
(a) shows that the low-energy peak is strongly suppressed at
T=300 K confirming that it mostly magnetic in origin. Error
bars are statistically determined from least squares fitting.

0

100

200

300

400

0 100 200 300 400
0.0

0.4

0.8

1.2

La
1.83

Sr
0.17

CuO
4
: Bi2212

  T =  30 K (La
1.83

Sr
0.17

CuO
4
)

  T = 250 K (La
1.83

Sr
0.17

CuO
4
)

 

 

1
/!

o
p
("

) 
(m

e
V

)

 

 

I2
#
("

)

" (meV)

  T =  72 K (Bi2212)

  T = 300 K (Bi2212)

 

 

 

 

Vignolle et al.



Why is LSCO Tc so low?

40

4

the simple modification of the McMillan equation[31, 32]

kBTc
∼= h̄ ωln exp

[
− 1 + λs

λd

]
(2)

where kB is the Boltzman constant. Here ωln is the av-
erage boson energy defined by Allen and Dynes[33] as

ωln ≡ exp
[ 2
λ

∫ ∞

0
lnω

I2χ(ω)
ω

dω
]

(3)

where λ is the mass renormalization parameter. The
mass renormalization parameters λs and λd entering Eq.
(2) are λ(s,d) = 2

∫ ωc

0 I2
(s,d)χ(ω)/ωdω for s- and d-channel,

respectively, where ωc is the cutoff frequency for the
bosonic spectral density. Eq. (3) gives the same ωnl

for s- or d-channel cases.
We find that both λd are nearly the same for Bi-2212

(1.85) and LSCO (1.90). However the value of ωln differ
by a factor of two, ∼50 meV for Bi-2212 and ∼25 meV
for LSCO. Therefore the softening of the spin fluctuation
spectrum in LSCO as compared to Bi-2212 accounts for
a factor of 2 difference in Tc. The remaining difference is
traced to the value of λs which is larger in LSCO (3.40)
as compared to Bi-2212 (2.50). It is well known that the
renormalization factor 1 + λs in the modified McMillan
equation (Eq. (2)) is pair breaking and this accounts for
the rest of the difference in Tc values between Bi-2212
and LSCO. Finally, we note that Eq. (2), remarkably,
gives Tc = 89 K for Bi-2212 and 29 K for LSCO. While
we do not predict Tc we can explain very robustly from
our analysis why Tc’s differ by factor of 3 between LSCO
and Bi-2212 samples.

In summary we have measured the fluctuation spec-
trum in LSCO, I2χ(ω) at various temperatures. At low
temperature it shows two characteristic energy scales in
remarkable agreement with the local (q averaged) spin
susceptibility recently found in polarized inelastic neu-
tron scattering experiments. As the temperature is in-
creased, the low energy peak disappears in accord with
the neutron results. While the maximum entropy tech-
nique and least squares fit to the measured optical scat-
tering rates within an Eliashberg framework is employed
here, the two-peak structure in I2χ(ω) can be seen di-
rectly in the raw data for the real part of the optical self-
energy, a quantity that is in no way tied to a particular
microscopic model of the interacting electronic system.
In contrast optimally doped Bi-2212 reveals a very dif-
ferent behavior showing a single sharp peak centered at
60 meV with a valley above it and a broad low inten-
sity background extending to energies up to 400 meV.
Finally, the bosonic spectra derived from our analysis
within the Eliashberg framework, fully account for the
low superconducting transition temperature of LSCO as
compared to Bi-2212.
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λd   1.90     1.85
λs    3.40    2.50
ωln  25       50 meV
Tc    29       89 K  
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around 100 meV seen at T ¼ 29 K, which progressively
disappears as the temperature is increased. To better see
how the bosonic spectrum generates the self-energy we
show in the inset of the figure a model calculation based on
numerical solutions of the d-wave Eliashberg equations.
The input electron-boson spectral density I2!ð!Þ, shown
as the dash-dotted curve, consists of a large narrow peak
(right-hand scale) centered at 56 meV followed by a dip
and a long background extending beyond 400 meV. The
dashed curve, with the same bosonic spectrum, is the
normal state result for $2"op

1 ðT;!Þ which is to be com-
pared with the solid curve in the superconducting state.
The superconducting gap obtained was 22.4 meV giving a
gap to Tc ratio, 2#=kBTc ¼ 5:8. Note that, as theory pre-
dicts [19], the dashed curve in the normal state shows no
visible structure at ! ¼ !r ¼ 56 meV. Instead there
should be zero slope at ! ¼

ffiffiffi
2

p
!r for an Einstein spec-

trum. It is clear that boson structure is hard to see in normal
state. However, in the superconducting states the quasipar-
ticle electronic density of states acquires energy depen-
dence and this helps reveal the underlying boson structure
as seen in the solid blue curve. The peak at %100 meV is

neither at !r nor
ffiffiffi
2

p
!r but is shifted upwards by the

opening of the gap # [19] but as we see, the position of
the peak in I2!ð!Þ cannot be read off the curve without the
knowledge of the value of the superconducting gap.

In Fig. 2(b) we show results for the spectral density
I2!ð!Þ of maximum entropy inversions augmented with
a least squares improvement based on the full d-wave
Eliashberg equations [6]. Further applications are found
in Refs. [8–10]. The input to the inversion is the optical

scattering rate 1="ð!Þ ¼ !2
p

4# Re½1=$ð!Þ'. These are shown
in Fig. 2(a) where the results of our inversions (heavy lines)
are compared with the original data (light lines). In all
cases, the fit is very good. Recently, van Heumen et al.
[20,21] have also presented optical data for Hg1201 above
Tc which they analyze in terms of a spectral density
represented by a set of histograms. While they obtain fits
which are of equal quality to ours and have a background
extending to >400 meV as we have, they find that the
height of the peak at 56 meV does not change contrary to
our findings for T ¼ 246 and 295 K. This has been taken as
evidence for coupling of the charge carriers to phonons
[22]. We can also get fits where the peak height does not

FIG. 1 (color online). Experimental results for the real part of
the optical self-energy $2"op

1 ðT;!Þ as a function of photon
energy ! for eight temperatures. Inset, theoretical results based
on numerical solutions of the generalized Eliashberg equations.
(Solid blue superconducting and dashed black normal state.) The
electron-boson exchange spectral density used is shown as the
dash-dotted blue curve. The superconducting gap value is # ¼
22:4 meV.

FIG. 2 (color online). Top frame, the optical scattering rate
1="opðT;!Þ for Hg1201 vs ! for 8 temperatures (light curves).
The wider curves are our maximum entropy reconstructions.
Bottom frame, the electron-boson spectral function I2!ð!Þ vs
!. The inset gives the peak position (blue triangles) left scales as
a function of temperature and the red squares give the corre-
sponding peak amplitude.
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change but only if we use a biased maximum entropy
inversion with the default model set to the previous lower
temperature solution instead of being set to the constant of
the unbiased inversion.

In the inset to the lower frame of Fig. 2, we show the
frequency (left scale, triangles) of the prominent peak in
I2!ð!Þ as a function of temperature. As also noted by
van Heumen et al. [20], !r is fairly constant at
#56 meV but in our analysis, this frequency clearly in-
creases for T above 200 K. More importantly, the ampli-
tude of the peak shows strong temperature dependence in
the superconducting state and also above 200 K. Further,
the width of the peak increases with increasing T. As noted
for Bi2212 [8], the shift in spectral weight into the peak at
60 meV can be interpreted to proceed through a transfer of
spectral weight from high to low frequencies as the tem-
peratures is lowered. We note here that in contrast a
bosonic function from the electron-phonon interaction
would not have these properties: its amplitude, width,
and center frequency would all be temperature independent
and would not vary from one cuprate to another (as shown
in Fig. 4 below).

In Fig. 3 we display similar results for Hg1223 with
Tc ¼ 130 K. In Fig. 3(a) we reproduce the optical scatter-
ing rate at four temperatures (with T ¼ 15 and 125 K in the
superconducting state) from the work of McGuire et al.
[14]. Our results for I2!ð!Þ are presented in Fig. 3(b) and
the quality of the data reconstruction is demonstrated by
the heavy lines in Fig. 3(a) to be compared with the
corresponding light line (data). We find significant residual
(static impurity 1="imp ’ 95 meV) scattering rate in con-

trast to Hg1201 which is in the clean limit (1="imp ¼ 0).
The superconducting state data (blue, dotted curve) for
1="opð!Þ at T ¼ 15 K shows a peak around 140 meV
which is the indication of a gap in the charge carrier density
of states (DOS). Currently there is no known kernel which
allows maximum entropy inversion of such data and so we
do not show results in this instance. On the other hand, in
the T ¼ 125 K data there is no signature of such a DOS
gap. Results are shown in Fig. 3(b). The prominent peak at
!r ffi 72 meV seen in the curve at T ¼ 125 K is missing
at higher T. In contrast to the Hg1201 case no reasonable
alternate fits can be found for T ¼ 225 and 295 K which
show a significant peak amplitude at 72 meV.

In Fig. 4, we place our results for !r, the frequency of
the peak in I2!ð!Þ, in the context of other such results by
plotting !r as a function of the superconducting Tc for a
number of cuprates. In all cases, I2!ð!Þ has been extracted
from the optical data but not always using a maximum
entropy technique. Some are fits to assumed forms includ-
ing a broad background introduced in Ref. [23] to model
antiferromagnetic fluctuations, augmented with a reso-
nance peak. Both methods give very much the same results
as documented in Ref. [5]. The heavy long dashed line is a
least square fit to all the optical data and gives !r &

6:3kBTc. This is close to, but not quite, the position of
the spin-one neutron resonance obtained by He et al.
[24,25] where !neutron

r & 5:4kBTc represented in Fig. 4 as
the dotted line.
Several comments should be made about such a com-

parison between charge excitations and the magnetic sus-
ceptibility. First, the neutron resonance plotted in Fig. 4
refers to the sharp peak that appears at q ¼ ð#;#Þ whereas
the bosonic function that governs the optical response is
the q averaged local susceptibility. This arises because the
Fermi-surface to Fermi-surface electron scattering in-
volves momentum transfers to boson excitations that
span all momenta in the Brillouin zone, some involving
umklapp processes. Where magnetic neutron scattering
data for the q-averaged susceptibility are available such
as the Ortho II YBCO [26] or optimally doped LSCO [27]
the agreement between the neutron data and the optical
data is excellent: not only are the peaks in the response at
the same frequencies but also the temperature dependence
of the amplitude of the peaks are in agreement [8,9].
Second, it should be noted that in some cuprates, the
resonance described involves only a very small fraction
of the total weight seen in the local spin susceptibility as in

FIG. 3 (color online). Same as Fig. 2 but for Hg1223 (Tc ¼
130 K).
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LaSrCuO [9] and PrCeCuO [10]. In YBCO6:5 it is esti-
mated to be 3% [26] and in some cases there is no reso-
nance [5,28], but it is always the local, Brillouin zone
averaged spin susceptibility which controls superconduc-
tivity. Finally, the two points at !r ¼ 0 (not used in the fit
to the data in Fig. 4) are for YBCO6:35 [28] and overdoped
Tl2201 [5]. In both cases, no optical resonance could be
identified. The resonance may enhance but is not essential
for superconductivity in the cuprates and the scaling of the
position of the peak with Tc shown in Fig. 4 must be the
result and not the cause of the rearrangement of the elec-
tronic DOS in the superconducting state as suggested by
several theorists [29,30]. We also note here that recent
dynamical mean field calculations of the one-band
Hubbard model yield bosonic spectral functions very simi-
lar to what is shown in Figs. 2 and 3 [12,13].

In summary we find that in Hg1201 and Hg1223 optical
resonances are found in maximum entropy inversions of
the optical scattering, at 56 and 72 meV, respectively.
However, when the temperature is increased towards
300 K, the spectral weight under this resonance moves to
higher energy and broadens significantly, in contrast to the
findings of van Heumen et al. [21]. The optical resonance
scales with Tc over a broad set of materials with !r "
6:3kBTc which is remarkably close to the energy of the
spin-one resonance seen in polarized neutron scattering,
namely !neutron ¼ 5:4kBTc leaving no doubt that the
charge carriers are coupled to spin fluctuations, while there
is no evidence for an important phonon contribution.
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Note added in proof.—We have learned of a neutron

scattering study by Yu et al. [31], where a magnetic reso-
nance in optimally doped Hg1201 is reported at 56 meV,
exactly the same energy as the peak we found here. Recent
Raman data find a superconducting gap 2" very close to
the values found in our calculations [32].
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LaSrCuO [9] and PrCeCuO [10]. In YBCO6:5 it is esti-
mated to be 3% [26] and in some cases there is no reso-
nance [5,28], but it is always the local, Brillouin zone
averaged spin susceptibility which controls superconduc-
tivity. Finally, the two points at !r ¼ 0 (not used in the fit
to the data in Fig. 4) are for YBCO6:35 [28] and overdoped
Tl2201 [5]. In both cases, no optical resonance could be
identified. The resonance may enhance but is not essential
for superconductivity in the cuprates and the scaling of the
position of the peak with Tc shown in Fig. 4 must be the
result and not the cause of the rearrangement of the elec-
tronic DOS in the superconducting state as suggested by
several theorists [29,30]. We also note here that recent
dynamical mean field calculations of the one-band
Hubbard model yield bosonic spectral functions very simi-
lar to what is shown in Figs. 2 and 3 [12,13].

In summary we find that in Hg1201 and Hg1223 optical
resonances are found in maximum entropy inversions of
the optical scattering, at 56 and 72 meV, respectively.
However, when the temperature is increased towards
300 K, the spectral weight under this resonance moves to
higher energy and broadens significantly, in contrast to the
findings of van Heumen et al. [21]. The optical resonance
scales with Tc over a broad set of materials with !r "
6:3kBTc which is remarkably close to the energy of the
spin-one resonance seen in polarized neutron scattering,
namely !neutron ¼ 5:4kBTc leaving no doubt that the
charge carriers are coupled to spin fluctuations, while there
is no evidence for an important phonon contribution.
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by fitting the top portion of Re!ð!Þ with a Gaussian.
To quantify the energy scale of the kink as well as the
isotopic kink shift, we have studied multiple samples
systematically.

Figure 3(a) shows the real part of the self-energy
Re!ð!Þ both for 16O (blue lines) and 18O (red lines)
multiple samples. From these Re!ð!Þ, we obtained kink
energy plotted as a function of five different samples each
for both 16O and 18O in Fig. 3(c). Error bars for each
sample were determined from a statistical analysis, and
are smaller than the overall (sample-to-sample) spread
which is more dominated by systematics. We found a clear
isotopic softening of the kink energy from about 69.0 meV
to about 65.6 meV, or a softening of 3:4# 0:5 meV [33].
Additionally, we used a completely independent analysis
method using the widths of the ARPES peaks. This analy-
sis has the advantage of not having any assumptions about
a bare band, such that the isotope effect should appear
more straightforward. Thus we see a 3:2# 0:6 meV shift
in the imaginary part of the self-energy Im!ð!Þ [Figs. 3(b)

and 3(d)]. By studying ten samples as well as by using
multiple independent analysis methods, we compensated
for possible systematic errors which might come into play
when trying to determine energies to such a great preci-
sion. Further, we have also found a similar 3 meV isotope
shift in the real and imaginary parts of the self-energy
derived from the energy distribution curves. Therefore,
we can state with confidence that the $70 meV feature
in the nodal electron self-energy is due to the coupling of
the electrons with phonons. That this is the dominant
feature in the electron self-energy, as is seen from both
the real [Fig. 3(a)] and imaginary [Fig. 3(b)] parts of the
spectrum, is clear and significant.
Then, which phonons are responsible for this coupling?

Neutron scattering experiments [34] as well as first-
principles phonon calculations [35] indicate a few phonon
modes that are likely to be most relevant for the coupling:
the in-plane ‘‘half-breathing’’ phonon mode ("$70meV)
and the ‘‘buckling or stretching’’ modes ("$ 36 meV).
The apical oxygen stretching mode ("$ 50 meV) could
also be considered, though calculations indicate that the
number of allowed final states for these phonons is negli-
gible [24]. By coupling the nodal electrons with momen-
tum, k, to other parts of the Fermi surface (k0), the electron
self-energy can in principle pick up the energy of the
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FIG. 3 (color online). (a) Real part of the self-energy Re!ð!Þ
from five samples both for 16O (blue lines) and 18O (red lines)
along the nodal direction indicated by the gray (red) line in
Fig. 1(c). All Re!ð!Þ are deduced by subtracting a bare band
dispersion from the experimental one, where ! is the energy
relative to the Fermi energy, and normalized by the peak maxi-
mum, and are also offset for clarity. (b) Imaginary part of the
self-energy Im!ð!Þ determined from MDC full widths. An
impurity scattering term at ! ¼ 0 is subtracted as an energy
independent constant background. (c),(d) Obtained kink energy
as a function of sample numbers both for 16O (blue line) and 18O
(red line) from Re!ð!Þ and Im!ð!Þ, respectively.
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FIG. 2 (color online). (a) Energy-momentum dispersions near
the nodal region both for 16O (blue lines) and 18O (red lines)
from optimally doped Bi2212. Those measured cuts are labeled
&5 to þ5, displayed in the inset. Gray shaded area roughly
indicates the kink in all the dispersions. (b) Real parts of the self-
energy both for 16O [blue (lower) lines] and 18O [red (upper)
lines], showing an isotope shift of $70 meV peak. Blue dashed
lines and red dashed lines indicates the kink energy, averaged
from cut &5 to cut þ5, for 16O and 18O, respectively. Positive
and negative cuts are represented by solid lines and dashed lines,
respectively.
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by fitting the top portion of Re!ð!Þ with a Gaussian.
To quantify the energy scale of the kink as well as the
isotopic kink shift, we have studied multiple samples
systematically.

Figure 3(a) shows the real part of the self-energy
Re!ð!Þ both for 16O (blue lines) and 18O (red lines)
multiple samples. From these Re!ð!Þ, we obtained kink
energy plotted as a function of five different samples each
for both 16O and 18O in Fig. 3(c). Error bars for each
sample were determined from a statistical analysis, and
are smaller than the overall (sample-to-sample) spread
which is more dominated by systematics. We found a clear
isotopic softening of the kink energy from about 69.0 meV
to about 65.6 meV, or a softening of 3:4# 0:5 meV [33].
Additionally, we used a completely independent analysis
method using the widths of the ARPES peaks. This analy-
sis has the advantage of not having any assumptions about
a bare band, such that the isotope effect should appear
more straightforward. Thus we see a 3:2# 0:6 meV shift
in the imaginary part of the self-energy Im!ð!Þ [Figs. 3(b)

and 3(d)]. By studying ten samples as well as by using
multiple independent analysis methods, we compensated
for possible systematic errors which might come into play
when trying to determine energies to such a great preci-
sion. Further, we have also found a similar 3 meV isotope
shift in the real and imaginary parts of the self-energy
derived from the energy distribution curves. Therefore,
we can state with confidence that the $70 meV feature
in the nodal electron self-energy is due to the coupling of
the electrons with phonons. That this is the dominant
feature in the electron self-energy, as is seen from both
the real [Fig. 3(a)] and imaginary [Fig. 3(b)] parts of the
spectrum, is clear and significant.
Then, which phonons are responsible for this coupling?

Neutron scattering experiments [34] as well as first-
principles phonon calculations [35] indicate a few phonon
modes that are likely to be most relevant for the coupling:
the in-plane ‘‘half-breathing’’ phonon mode ("$70meV)
and the ‘‘buckling or stretching’’ modes ("$ 36 meV).
The apical oxygen stretching mode ("$ 50 meV) could
also be considered, though calculations indicate that the
number of allowed final states for these phonons is negli-
gible [24]. By coupling the nodal electrons with momen-
tum, k, to other parts of the Fermi surface (k0), the electron
self-energy can in principle pick up the energy of the
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FIG. 3 (color online). (a) Real part of the self-energy Re!ð!Þ
from five samples both for 16O (blue lines) and 18O (red lines)
along the nodal direction indicated by the gray (red) line in
Fig. 1(c). All Re!ð!Þ are deduced by subtracting a bare band
dispersion from the experimental one, where ! is the energy
relative to the Fermi energy, and normalized by the peak maxi-
mum, and are also offset for clarity. (b) Imaginary part of the
self-energy Im!ð!Þ determined from MDC full widths. An
impurity scattering term at ! ¼ 0 is subtracted as an energy
independent constant background. (c),(d) Obtained kink energy
as a function of sample numbers both for 16O (blue line) and 18O
(red line) from Re!ð!Þ and Im!ð!Þ, respectively.
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FIG. 2 (color online). (a) Energy-momentum dispersions near
the nodal region both for 16O (blue lines) and 18O (red lines)
from optimally doped Bi2212. Those measured cuts are labeled
&5 to þ5, displayed in the inset. Gray shaded area roughly
indicates the kink in all the dispersions. (b) Real parts of the self-
energy both for 16O [blue (lower) lines] and 18O [red (upper)
lines], showing an isotope shift of $70 meV peak. Blue dashed
lines and red dashed lines indicates the kink energy, averaged
from cut &5 to cut þ5, for 16O and 18O, respectively. Positive
and negative cuts are represented by solid lines and dashed lines,
respectively.
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Isotope effect in YBCO

• Underdoped samples with 16O and 18O
• Isotope effect: Δω/ω=-αΔm/m

• The phonon lines show isotope effect with α =−0.5

• The normal state shoulder shows α =−0.1 +−0.1

• The superconducting state shoulder α =−0.23 +−0.1  
The mode giving rise to the shoulder 

is unlikely to be of phonon origin.

N.L. Wang et al. PRL (2002).



Contradiction !

• ARPES finds α =−0.5 for nodal kink
• Optics finds α =−0.1 Fermi surface average kink

48



Maximum entropy inversion of nodal ARPES

49

3

FIG. 2: (Color online) The I2χ(ω) spectrum from maximum
entropy inversion of the T = 17 K Zhang et al. [21] data
(solid line) with λ = 1.19, and the area under the spectrum
A = 51.9 meV. The (red) dashed line shows the spectrum
I2χiso(ω) which was used to simulate the isotope effect. Only
the area of the peak equal to 6.15 meV or a partial λ of 0.21 is
shifted in energy by 6% with λ = 1.19 and Aiso = 51.4 meV.
The inset presents a fit to the real part of the superconducting
state T = 17 K QP self energy ARPES data of Ref. [21] as
reported by Schachinger and Carbotte [22].

distribution curves, nor is it seen in optical data. Both
methods find scattering rates [19, 20] which continue to
increase up to energies of order 400 meV. This is well be-
yond any phonon energy (∼ 86 meV in Bi2212 [39]) and
shows that the charge carriers are coupled to high energy
boson modes of some other origin. Secondly the model
predicts a reduction of the amplitude of the real part of
the self energy but our analysis of the data of Iwasawa
et al. shows little change in this amplitude on isotope
substitution in the range around 70 meV. While the fre-
quency of the peak is shifted by the expected amount,
the magnitude of the maximum in −Σ1(ω) appears not
to be significantly changed. This contradicts the model
of the self energy expected from the interaction with a
single phonon.

We will next show that these contradictions can be re-
solved by assuming that in addition to a (weak) phonon
contribution there is a strong contribution from magnetic
scattering and that there is additional influence due to
finite band widths. Taking this into account we are able
to estimate the relative strength of the phonon and mag-
netic contributions to the QP self energy.

To accomplish this we use the recent high resolution
ARPES work of Zhanget al. [21]. Analyzing this data
with a maximum entropy inversion [22] in the supercon-
ducting state based on finite band width d-wave Eliash-
berg equations, we calculated the spectral density I2χ(ω)
of the bosons contributing to the self energy in the nodal
direction. Results for the spectral density at tempera-
ture T = 17 K and a bandwidth of 1.2 eV are shown in

FIG. 3: (Color online) The real part of the optical self energy
−Σ1(ω) vs energy ω of Bi2212 in the superconducting state at
T = 17K. The solid line corresponds to the (black) solid line
in the inset of Fig. 2. The dashed line is the result due to the
isotope effect simulated by the spectral function I2χiso(ω).
The peak position shifts from 83.8 meV down to 80.1 meV, a
change of 4.5% and the amplitude at the peak position drops
from 55.6 meV to 54.1 meV or by 3%. (b) The same as (a)
but for a numerical simulation with a cutoff of 200 meV in
the spectra of Fig. 2. The dashed-dotted and dotted lines
correspond to the 16O and 18O data for cut zero presented
by Iwasawa et al. [38] in their Fig. 2(b) rescaled to meet our
theoretical results in amplitude.

Fig. 2 as the solid (black) line. Note first that this spec-
trum is very different from the single sharp Lorentzian
form we have used so far. It does have a broad peak
around ωp = 65 meV but this is superimposed on a large
background extending to 400 meV. In ARPES studies the
cutoff in this spectrum depends critically on the choice
of the bare dispersion curve since the renormalizations
end at the crossing between bare and dressed dispersions
and in the work of Zhang et al. [21] this was taken to
be 400 meV. This choice is consistent with optical data
[14, 18, 20, 23, 24]. It is also consistent with the obser-
vation that the QP as well as optical scattering rates are
found to still be increasing with increasing ω in the range
of a few 100 meV.

Our estimate of the effect of the isotope substitution
on the real part of the self energy is shown in Fig. 3(a).

Wentao Zhang et al.  PRL 101,  107002 (2008).

Bi-2212 nodal Σ1

       O16 spectral function

       O18 spectral function

Model:  Shift peak of bosonic function by 6 % and calculate Σ1 change

λep   = 0.2
λmag = 0.8

Predicted shift      4.5% 
Observed shift of 5 ± 0.8 % 



Controversy resolved
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Both optics and ARPES are consistent with a 
10 to 20 %  self energy contributions from phonons.
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FIG. 14: The mode contribution (upper panel) and the MMP
back ground contribution (lower panel) on the scattering rate
based on Eq. 4 with the parameter shown in Table II and
pseudogap information of Fig 13 for the normal states. We
note the opposite temperature dependencies of the mode and
the background contributions.

peak.

temp. peak MMP depth
(K) A ΩPK d λPK Is Ω0 λBG 1 − N(0)

67 179 248 80 1.47 382 356 3.17 0.50
100 163 248 80 1.34 382 356 3.17 0.50
147 114 248 80 0.94 382 356 3.17 0.40
200 58 248 80 0.68 382 356 3.17 0.30
244 28 248 80 0.33 382 356 3.17 0.25
295 0 248 80 0.00 382 356 3.17 0.00

TABLE II: The parameters of the bosonic mode analysis at
six representative temperatures, T = 67 K, 100 K, 147 K,
200 K, 244 K, and 295 K. The peak is a Gaussian function
(see Eq. 7) and MMP is the background (see Eq. 8). The
quantities λPK and λBG are the coupling constants for the
peak and the MMP background, respectively. The depth (1-
N(0)) is the depth of the gap in the density of state. All the
frequencies are measured in cm−1.

In Fig. 16 we compare three quantities: the total area
under the magnetic susceptibility in the 25 to 43 meV
energy range from Stock et al. [28], the area under the
peak at 350 cm−1 in the W (Ω) = α2F (Ω) obtained from
the second derivative of 1/τ(ω), and the area under the
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tion shown in Fig 12 and pseudogap information of Fig 13
for the normal states. We note that the negative tempera-
ture dependence of the mode contribution combined with the
almost equal and opposite contribution of the background re-
sults in a nearly temperature independent scattering rate at
high frequencies, in complete agreement with the experimen-
tal results.
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peak at 248 cm−1 in the α2F (Ω) from our fit. We note
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peak.

temp. peak MMP depth
(K) A ΩPK d λPK Is Ω0 λBG 1 − N(0)

67 179 248 80 1.47 382 356 3.17 0.50
100 163 248 80 1.34 382 356 3.17 0.50
147 114 248 80 0.94 382 356 3.17 0.40
200 58 248 80 0.68 382 356 3.17 0.30
244 28 248 80 0.33 382 356 3.17 0.25
295 0 248 80 0.00 382 356 3.17 0.00

TABLE II: The parameters of the bosonic mode analysis at
six representative temperatures, T = 67 K, 100 K, 147 K,
200 K, 244 K, and 295 K. The peak is a Gaussian function
(see Eq. 7) and MMP is the background (see Eq. 8). The
quantities λPK and λBG are the coupling constants for the
peak and the MMP background, respectively. The depth (1-
N(0)) is the depth of the gap in the density of state. All the
frequencies are measured in cm−1.

In Fig. 16 we compare three quantities: the total area
under the magnetic susceptibility in the 25 to 43 meV
energy range from Stock et al. [28], the area under the
peak at 350 cm−1 in the W (Ω) = α2F (Ω) obtained from
the second derivative of 1/τ(ω), and the area under the
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peak at 248 cm−1 in the α2F (Ω) from our fit. We note



Summary of self energy spectroscopy

51

0 200 400 600 800 1000

0

1

2

3

4

5

T
c
 = 59 K

Y123-OrthoII

   67 K

  100 k

  126 K

  147 K

  171 K

  200 K

  244 K

  295 K

 

 

!! !!
2
F

( "" ""
)

Frequency (cm
-1
)

F
IG

.4:
α

2F
(ω

)
from

the
fits.

5

0.0

0.4

0.8

1.2

1.6

2.0

0.0

0.4

0.8

1.2

1.6

0 100 200 300 400
0.0

0.4

0.8

1.2

1.6

0 100 200 300
0.0

0.2

0.4

0 100 200 300

40

60

80

0 100 200 300
0.0

0.5

1.0

1.5

*

*

*
*

a

 

 

OPT96A

 

 

  27 K

  72 K

 102 K

 200 K

 300 K

*

b

 

OD82B

 

 

I2
!
("
)

!
("
)

!
("
)

!
("
)

  26 K

  70 K

 100 K

 200 K

 300 K

c

 

OD60G

 

 

"""" (meV)

  29 K

  46 K

  70 K

 100 K

 200 K

 300 K

 

 

I2
!
("
)

!
("
)

!
("
)

!
("
)

"""" (meV)

 OPT96A

 OD82B

 OD60G

 

 

M
a
x
. 
F

re
q

. 
(m

e
V

)

Temperature (K)

SC
 OPT96A

 OD82B

 OD60G

 

 

I2
!
("
)

!
("
)

!
("
)

!
("
)

"""" (meV)

FIG. 1: Hwang, J. et al.

9

4

0

10

20

30

40

50

60

0

100

200

300

400

0 50 100 150 200 250 300 350

-
2

R
e
!

 (
m

e
V

) -
2

*
R

e
!

 (
c
m

-
1
)

E(meV)

#1

#2

-2Re!(")

(b)

0

1

2

3

4

0 20 40 60 80 100 120 140 160

#
2
F

(
"

)

" (meV)

#1

#2

Boson spectral function

(a)

FIG. 3: (a) Electron-boson functions,α2
F (ω)) , which result

from the strong-coupling fits to the near optimal SIN data
of Fig. 1 (inset) and the overdoped SIS data of Fig. 2, la-
beled as #1 and #2 respectively. (b) corresponding real part
of the diagonal self-energies, -2Re(Σ(ω)), obtained from the
α

2
F (ω)) shown in (a).

scattering rate and will reflect all electron interactions
which enter the full diagonal self-energy Σ(ω). The large
size of the broad, high energy background relative to
the resonance mode observed in optical self-energy is not
compatible with the α2F (ω) or Σ(ω) found in Fig. 3.
This implies that a large fraction of the high energy bo-
son continuum indeed couples to electrons but is not rel-
evant to superconductivity. This is reminiscent of con-
ventional superconductors where the high frequency part
of the coulomb interaction plays no role in the supercon-
ductivity and this repulsive interaction enters φ(ω) as
µ∗

! 0.1, reduced from the total electron-electron cou-
pling constant,µ ! 1.0 . [19, 20] Thus the tunneling data
indicate that the mode has not disappeared in the optical
conductivity. Rather, Fig. 3(b) shows that (-2 ReΣ(ω))
# 2 from tunneling is considerably reduced in size com-
pared with # 1 and the mode becomes unresolved in a
broad spectrum of excitations which do not participate
in superconductivity.

In summary, SIS break junction tunneling data on near
optimal and heavily overdoped Bi2212 have been ana-
lyzed quantitatively to provide the electron-boson spec-
tral function α2F (ω) and the diagonal self-energy Σ(ω).
The robust dip feature is directly linked to strong elec-
tronic coupling to a narrow boson spectrum, a peak in
α2F (ω), which drives the superconductivity and shows
no evidence of disappearing with overdoping. This fun-
damental disagreement with optical conductivity can be
resolved by considering the way each experiment probes
the electron self-energy. Tunneling directly measures the
pairing part,φ(ω), and the resulting α2F (ω) and Σ(ω)
reflect only those electronic interactions which partici-
pate in pairing. The more detailed analysis presented
here confirms previous reports[1] that the mode energy
Ω decreases substantially with overdoping which seems to
rule out the B1g phonon and favors the resonance spin
excitation as its origin.
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the background contributions.

peak.

temp. peak MMP depth
(K) A ΩPK d λPK Is Ω0 λBG 1 − N(0)

67 179 248 80 1.47 382 356 3.17 0.50
100 163 248 80 1.34 382 356 3.17 0.50
147 114 248 80 0.94 382 356 3.17 0.40
200 58 248 80 0.68 382 356 3.17 0.30
244 28 248 80 0.33 382 356 3.17 0.25
295 0 248 80 0.00 382 356 3.17 0.00

TABLE II: The parameters of the bosonic mode analysis at
six representative temperatures, T = 67 K, 100 K, 147 K,
200 K, 244 K, and 295 K. The peak is a Gaussian function
(see Eq. 7) and MMP is the background (see Eq. 8). The
quantities λPK and λBG are the coupling constants for the
peak and the MMP background, respectively. The depth (1-
N(0)) is the depth of the gap in the density of state. All the
frequencies are measured in cm−1.

In Fig. 16 we compare three quantities: the total area
under the magnetic susceptibility in the 25 to 43 meV
energy range from Stock et al. [28], the area under the
peak at 350 cm−1 in the W (Ω) = α2F (Ω) obtained from
the second derivative of 1/τ(ω), and the area under the
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scattering rate and will reflect all electron interactions
which enter the full diagonal self-energy Σ(ω). The large
size of the broad, high energy background relative to
the resonance mode observed in optical self-energy is not
compatible with the α2F (ω) or Σ(ω) found in Fig. 3.
This implies that a large fraction of the high energy bo-
son continuum indeed couples to electrons but is not rel-
evant to superconductivity. This is reminiscent of con-
ventional superconductors where the high frequency part
of the coulomb interaction plays no role in the supercon-
ductivity and this repulsive interaction enters φ(ω) as
µ∗

! 0.1, reduced from the total electron-electron cou-
pling constant,µ ! 1.0 . [19, 20] Thus the tunneling data
indicate that the mode has not disappeared in the optical
conductivity. Rather, Fig. 3(b) shows that (-2 ReΣ(ω))
# 2 from tunneling is considerably reduced in size com-
pared with # 1 and the mode becomes unresolved in a
broad spectrum of excitations which do not participate
in superconductivity.

In summary, SIS break junction tunneling data on near
optimal and heavily overdoped Bi2212 have been ana-
lyzed quantitatively to provide the electron-boson spec-
tral function α2F (ω) and the diagonal self-energy Σ(ω).
The robust dip feature is directly linked to strong elec-
tronic coupling to a narrow boson spectrum, a peak in
α2F (ω), which drives the superconductivity and shows
no evidence of disappearing with overdoping. This fun-
damental disagreement with optical conductivity can be
resolved by considering the way each experiment probes
the electron self-energy. Tunneling directly measures the
pairing part,φ(ω), and the resulting α2F (ω) and Σ(ω)
reflect only those electronic interactions which partici-
pate in pairing. The more detailed analysis presented
here confirms previous reports[1] that the mode energy
Ω decreases substantially with overdoping which seems to
rule out the B1g phonon and favors the resonance spin
excitation as its origin.
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FIG. 3: Magnetic excitation spectrum and evolution
of the form of the magnetic response with energy.
The susceptibility wavevector-averaged susceptibility χ′′(ω)
(a) shows a “peak-dip-hump” structure suggesting that the
magnetic response has two components. The emergence of
the higher frequency component above about 40 meV corre-
sponds to a broadening of response in wavevector as demon-
strated by the rapid increase in the κ (b). There is a strong
dispersion of the peak positions in constant excitation-energy
cuts as shown by the energy dependence of the incommen-
surability δ(ω) (c). The high-energy dispersion indicates the
persistence of residual antiferromagnetic interactions. Sym-
bols in the main panels indicate different incident energies:
Ei = 30(♦), 55("), 90(#), 160(•), 240 meV (◦). The inset to
(a) shows that the low-energy peak is strongly suppressed at
T=300 K confirming that it mostly magnetic in origin. Error
bars are statistically determined from least squares fitting.
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back ground contribution (lower panel) on the scattering rate
based on Eq. 4 with the parameter shown in Table II and
pseudogap information of Fig 13 for the normal states. We
note the opposite temperature dependencies of the mode and
the background contributions.

peak.

temp. peak MMP depth
(K) A ΩPK d λPK Is Ω0 λBG 1 − N(0)

67 179 248 80 1.47 382 356 3.17 0.50
100 163 248 80 1.34 382 356 3.17 0.50
147 114 248 80 0.94 382 356 3.17 0.40
200 58 248 80 0.68 382 356 3.17 0.30
244 28 248 80 0.33 382 356 3.17 0.25
295 0 248 80 0.00 382 356 3.17 0.00

TABLE II: The parameters of the bosonic mode analysis at
six representative temperatures, T = 67 K, 100 K, 147 K,
200 K, 244 K, and 295 K. The peak is a Gaussian function
(see Eq. 7) and MMP is the background (see Eq. 8). The
quantities λPK and λBG are the coupling constants for the
peak and the MMP background, respectively. The depth (1-
N(0)) is the depth of the gap in the density of state. All the
frequencies are measured in cm−1.

In Fig. 16 we compare three quantities: the total area
under the magnetic susceptibility in the 25 to 43 meV
energy range from Stock et al. [28], the area under the
peak at 350 cm−1 in the W (Ω) = α2F (Ω) obtained from
the second derivative of 1/τ(ω), and the area under the
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tal results.

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

0 50 100 150 200 250 300
0

50

100

150

200

250

300

 energy integrated  

          magnetic resonance (25 - 43 meV)

 

 

!! !!
''(

Q
) 

( µµ µµ
B

2
)

Temperature (K)

 From Eq. 4 fits: area of the peak

 area of peak the W(")(x1/2)

 

YBa
2
Cu

3
O

6.50
 OrthoII

T
c
 = 59 K

 P
e
a
k
 I
n

te
n

s
it

y

 

Temperature (K)

FIG. 16: Temperature dependence of the amplitude of the
sharp mode. The open circles are from the second derivative
analysis of the scattering rate, the closed circles are from fit
to a scattering rate model including a sharp mode and a back-
ground. The triangles show the energy integrated amplitude
of the neutron mode Stock et al. [28].

peak at 248 cm−1 in the α2F (Ω) from our fit. We note
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LaSrCuO [9] and PrCeCuO [10]. In YBCO6:5 it is esti-
mated to be 3% [26] and in some cases there is no reso-
nance [5,28], but it is always the local, Brillouin zone
averaged spin susceptibility which controls superconduc-
tivity. Finally, the two points at !r ¼ 0 (not used in the fit
to the data in Fig. 4) are for YBCO6:35 [28] and overdoped
Tl2201 [5]. In both cases, no optical resonance could be
identified. The resonance may enhance but is not essential
for superconductivity in the cuprates and the scaling of the
position of the peak with Tc shown in Fig. 4 must be the
result and not the cause of the rearrangement of the elec-
tronic DOS in the superconducting state as suggested by
several theorists [29,30]. We also note here that recent
dynamical mean field calculations of the one-band
Hubbard model yield bosonic spectral functions very simi-
lar to what is shown in Figs. 2 and 3 [12,13].

In summary we find that in Hg1201 and Hg1223 optical
resonances are found in maximum entropy inversions of
the optical scattering, at 56 and 72 meV, respectively.
However, when the temperature is increased towards
300 K, the spectral weight under this resonance moves to
higher energy and broadens significantly, in contrast to the
findings of van Heumen et al. [21]. The optical resonance
scales with Tc over a broad set of materials with !r "
6:3kBTc which is remarkably close to the energy of the
spin-one resonance seen in polarized neutron scattering,
namely !neutron ¼ 5:4kBTc leaving no doubt that the
charge carriers are coupled to spin fluctuations, while there
is no evidence for an important phonon contribution.
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Note added in proof.—We have learned of a neutron

scattering study by Yu et al. [31], where a magnetic reso-
nance in optimally doped Hg1201 is reported at 56 meV,
exactly the same energy as the peak we found here. Recent
Raman data find a superconducting gap 2" very close to
the values found in our calculations [32].
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A scaling law  Ωres ∝ 6.3 kBTc

by fitting the top portion of Re!ð!Þ with a Gaussian.
To quantify the energy scale of the kink as well as the
isotopic kink shift, we have studied multiple samples
systematically.

Figure 3(a) shows the real part of the self-energy
Re!ð!Þ both for 16O (blue lines) and 18O (red lines)
multiple samples. From these Re!ð!Þ, we obtained kink
energy plotted as a function of five different samples each
for both 16O and 18O in Fig. 3(c). Error bars for each
sample were determined from a statistical analysis, and
are smaller than the overall (sample-to-sample) spread
which is more dominated by systematics. We found a clear
isotopic softening of the kink energy from about 69.0 meV
to about 65.6 meV, or a softening of 3:4# 0:5 meV [33].
Additionally, we used a completely independent analysis
method using the widths of the ARPES peaks. This analy-
sis has the advantage of not having any assumptions about
a bare band, such that the isotope effect should appear
more straightforward. Thus we see a 3:2# 0:6 meV shift
in the imaginary part of the self-energy Im!ð!Þ [Figs. 3(b)

and 3(d)]. By studying ten samples as well as by using
multiple independent analysis methods, we compensated
for possible systematic errors which might come into play
when trying to determine energies to such a great preci-
sion. Further, we have also found a similar 3 meV isotope
shift in the real and imaginary parts of the self-energy
derived from the energy distribution curves. Therefore,
we can state with confidence that the $70 meV feature
in the nodal electron self-energy is due to the coupling of
the electrons with phonons. That this is the dominant
feature in the electron self-energy, as is seen from both
the real [Fig. 3(a)] and imaginary [Fig. 3(b)] parts of the
spectrum, is clear and significant.
Then, which phonons are responsible for this coupling?

Neutron scattering experiments [34] as well as first-
principles phonon calculations [35] indicate a few phonon
modes that are likely to be most relevant for the coupling:
the in-plane ‘‘half-breathing’’ phonon mode ("$70meV)
and the ‘‘buckling or stretching’’ modes ("$ 36 meV).
The apical oxygen stretching mode ("$ 50 meV) could
also be considered, though calculations indicate that the
number of allowed final states for these phonons is negli-
gible [24]. By coupling the nodal electrons with momen-
tum, k, to other parts of the Fermi surface (k0), the electron
self-energy can in principle pick up the energy of the
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FIG. 3 (color online). (a) Real part of the self-energy Re!ð!Þ
from five samples both for 16O (blue lines) and 18O (red lines)
along the nodal direction indicated by the gray (red) line in
Fig. 1(c). All Re!ð!Þ are deduced by subtracting a bare band
dispersion from the experimental one, where ! is the energy
relative to the Fermi energy, and normalized by the peak maxi-
mum, and are also offset for clarity. (b) Imaginary part of the
self-energy Im!ð!Þ determined from MDC full widths. An
impurity scattering term at ! ¼ 0 is subtracted as an energy
independent constant background. (c),(d) Obtained kink energy
as a function of sample numbers both for 16O (blue line) and 18O
(red line) from Re!ð!Þ and Im!ð!Þ, respectively.
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FIG. 2 (color online). (a) Energy-momentum dispersions near
the nodal region both for 16O (blue lines) and 18O (red lines)
from optimally doped Bi2212. Those measured cuts are labeled
&5 to þ5, displayed in the inset. Gray shaded area roughly
indicates the kink in all the dispersions. (b) Real parts of the self-
energy both for 16O [blue (lower) lines] and 18O [red (upper)
lines], showing an isotope shift of $70 meV peak. Blue dashed
lines and red dashed lines indicates the kink energy, averaged
from cut &5 to cut þ5, for 16O and 18O, respectively. Positive
and negative cuts are represented by solid lines and dashed lines,
respectively.
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Phonons vs. magnetism

λep   = 0.2
λmag = 0.8

Ba0.35K0.45Fe2As2



Remaining problems:

• Highly underdoped YBCO
• LSCO0.22
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Remaining tests:
No magnetic mode in:

• Origin of magnetic susceptibility
• Materials differences
• Pseudogap, friend or foe?



Thank you
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