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Collapsed limits, special holonomy and physics

� Weak limits of special holonomy manifolds (more generally spaces with
Ricci-curvature lower bounds) are a priori only metric spaces.

� The limit space can drop in dimension: then we say that collapse occurs
and the limit metric space is a collapsed limit.

� In general the structure theory of collapsed Ricci-limit spaces is still
poorly understood (noncollapsed limits now relatively well understood).

An ongoing research programme: Understand codimension 1 collapse
for special holonomy metrics

� Construct families of special/exceptional holonomy metrics undergoing
‘codimension 1’ collapse, i.e. dimension of the limit space drops by 1.

� Conversely, understand the structure theory for codimension 1 collapsed
limits of special and exceptional holonomy metrics.

� Codimension 1 collapse of G2 holonomy metrics in 7 dimensions to
Calabi–Yau metrics in 6 dimensions is important in physics:

it underpins limit in which an 11-dimensional physical theory (M theory)
reduces to a better-understood 10-dimensional theory (Type IIA String
Theory).



Riemannian collapse with bounded curvature I

A family of Riemannian metrics gε on M is said to collapse with bounded
curvature if ip (the injectivity radius at p) converges uniformly to 0 at all
points p of M, but the curvature Kε stays bounded (independent of p and ε).

Collapse to a point by global rescaling.

If g is a complete Riemannian metric on a compact manifold M, then the
rescaled family of metrics (M, ε2g) collapses, but curvature stays bounded
only if (M, g) is flat.

Codimension one collapse by rescaling circle fibres in a circle bundle.

Let θ be any connection on a principal circle bundle Mn+1 over a complete
Riemannian manifold (Bn, gB) (with bounded geometry) then the
1-parameter family of circle-invariant metrics gε on M

gε = gB + ε2θ2

collapses with bounded curvature to (B, gB).

(Berger 1962 considered this in the special case of Hopf fibration S3 → S2).



Riemannian collapse with bounded curvature II

Higher codimension collapse: generalise to torus bundles and “localise”.

Whenever a Riemannian manifold admits (compatible local) isometric torus
actions T , then can construct families of (T -invariant) metrics by shrinking
the metric in directions tangent to T . This leads to notion of an F-structure
of positive rank (Cheeger–Gromov 1986).

• M admits an F -structure ⇒ there is a family of metrics on M that
collapses with bounded curvature; a suitable converse also holds.

• Existence of an F -structure forces topological constraints on M,
e.g. χ(M) = 0 if M is compact.

Loosely speaking, a sufficiently highly collapsed metric must admit
continuous families of (almost) isometries. This raises 2 apparent problems
in considering highly collapsed Ricci-flat manifolds.

1. A simply connected compact Ricci-flat metric admits no Killing fields!

2. The K3 surface has χ = 24, so it does not admit any F-structure. So
Ricci-flat metrics on K3 cannot collapse with curvature bounded
everywhere.



Collapsing hyperKähler metrics on K3

Foscolo gave the following general construction of collapsing families of
hyperKähler metrics on the K3 surface utilising so-called ALF gravitational
instantons, i.e. a complete hyperKähler 4-manifold with “finite energy”, and
specific type of asymptotic geometry. The limit space is 3-dimensional.

Theorem (Foscolo 2016, JDG) Every collection of 8 ALF gravitational
instantons of dihedral type M1, . . . ,M8 and n ALF gravitational instantons
of cyclic type N1, . . . ,Nn satisfying

8∑
j=1

χ(Mj) +
n∑

i=1

χ(Ni ) = 24

appears as the collection of “bubbles” forming in a sequence of Kähler
Ricci-flat metrics on the K3 surface collapsing to the flat orbifold T 3/Z2

with bounded curvature away from n + 8 points.

I will discuss ALF gravitational instantons, cyclic and dihedral, shortly.



Ingredients of proof

� Construct (incomplete) S1–invariant hyperkähler metrics on circle
bundles over a punctured 3–torus using Gibbons-Hawking ansatz.

� Fix involution τ with 8 fixed points on T 3, choose a Z2–invariant
configuration of 2n + 8 punctures and construct a monopole with
Dirac-type singularities at these points. Pass to a Z2 quotient.

� Complete the resulting hyperkähler metrics by gluing ALF spaces at the
n + 8 punctures:

an ALF space of dihedral type at each of the 8 fixed points of τ ,
an ALF space of cyclic type at each of the other punctures.

� Deform the resulting approximately hyperKähler metric using the Implicit
Function Theorem. The setting of definite triples (due to Donaldson)
seems the most convenient framework to use.



Key features: collapsing hK metrics on K3
The main ingredients of the construction are the following:

1. A good perturbation theory for closed definite triples that are almost
hyperKähler.

2. The Gibbons–Hawking ansatz for constructing S1-invariant hK metrics
was used in several ways
� To construct the ALF gravitational instantons of cycle type (multi-centered

Taub-NUT)
� To construct the incomplete S1-invariant metric on the total space of a

suitable circle bundle over a punctured 3-torus.
� It provides a good approximation to the asymptotic geometry of the ALF

gravitational instantons of dihedral type (up to a double cover).

3. The existence of ALF gravitational instantons of dihedral type, not just
of cyclic type, including the exceptional ones D0 and D1, the
Atiyah–Hitchin manifold and its double cover.

We would like to develop analogues of these key features in the G2 case.



The Gibbons–Hawking ansatz

hyperKähler metrics in dimension 4 with a triholomorphic circle action

� U open subset of R3; h positive function on U

� π : P → U a principal U(1)–bundle with a connection θ

Gibbons–Hawking Ansatz (1978): the U(1)-invariant metric on P

g := h π∗gR3 + h−1θ2

is hyperKähler iff (h, θ) is an abelian monopole: ∗dh = dθ.

Monopole eqn ⇒ h is harmonic. h = 1
2|x| gives Euclidean metric.

h =
n∑

i=1

1

2|x − xi |
, with x1, . . . xn ∈ R3,

yields the multi-centre Eguchi–Hanson metric. Decay of h ⇒ g still has
Euclidean volume growth but asymptotic cone is C2/Zn with Zn ⊂ SU(2).
a.k.a. ALE gravitational instantons of cyclic type An



ALF gravitational instantons: cyclic and dihedral

If we add a constant term to the harmonic functions h then get complete
S1-invariant hK metrics with cubic (ALF) not Euclidean volume growth
(because h−1 and so length of the fibre now bounded at infinity).

n = 1 gives Taub-NUT metric: complete hK metric on C2 with cubic
volume growth. n > 1 gives us the multi-center Taub-NUT metrics.
Complete ALF hK metrics on minimal resolutions of C2/Zn.

These are ALF gravitational instantons of cyclic type.

One way to obtain dihedral ALF spaces:

� Take quotient of Taub-NUT metric on C2 by a dihedral group Γ,
� Resolve the resulting orbifold singularity by gluing in an ALE gravitational

instanton of dihedral type (Biquard–Minerbe).
� Could also obtain the cyclic ALF spaces this way by a gluing construction.

NB: There are also 3 exceptional ALF dihedral gravitational instantons: the
Atiyah-Hitchin manifold D0 and the Dancer deformations D1 on its
simply-connected cover and D2, the Page–Hitchin metrics.



G2 analogues of ALF gravitational instantons

I explained in talk 1 that the correct G2–analogue of an ALF gravitational
instanton is an ALC G2–space. Two ways we can construct ALC G2 spaces.

� Method I: find highly collapsed ALC G2 spaces (explained in talk 1).
� Method II: find the highly symmetric ALC G2 spaces.

(Review of ALC versus ALF)

Key feature: the metric on an ALF space M is asymptotically a circle
bundle over an exterior domain in R3 (or in R3/Z2) where the circle fibre
has asymptotically constant length.

In higher dimensional generalisations (called ALC spaces by physicists) we:

� replace the base R3 with a Riemannian cone C = C (Σ)
� C (Σ) should be a Calabi–Yau cone if we want to consider ALC G2 spaces
� C (Σ) is Calabi–Yau iff Σ is Sasaki–Einstein.
� Many Sasaki–Einstein metrics are now known to exist.



Uncollapsing highly collapsed limits

Main Theorem from talk 1 provides a very general construction of highly
collapsed ALC G2–metrics.

What happens to families of highly collapsed G2–metrics as we try to “open
up” the size of the circle fibre?

� In general currently intractable, but if Calabi–Yau base is cohomogeneity
one we can answer this using cohomogeneity one methods.

� The most interesting case is B = KP1×P1 : it has a 2-dimensional Kähler
cone, so we have many circle bundles that lead to simply connected
7-manifolds. We were therefore led to conjecture the following:

� There exists an infinite family of new complete asymptotically conical
G2–metrics Mm,n. The cross-section of the asymptotic cone of Mm,n is
the quotient of the standard nK structure on S3 × S3 by a freely acting
cyclic subgroup Z2(m+n) of the group of isometries of S3 × S3.

Previously only three asymptotically conical G2–holonomy metrics were
known (from Bryant-Salamon’s original work).



Input from physics I: late 1990s, early 2000s

Development of M-theory, string dualities and understanding limits of
M-theory led to expectation that there should be lots of G2 holonomy spaces
(possibly singular ones), but actual constructions were mainly lacking.

Some concrete developments in the noncompact setting assuming symmetry.

� In 2001 Brandhuber–Gomis–Gubser–Gukov constructed a new explicit
complete G2–metric on SS3 and suggested that their example should be
a member of a 1-parameter family of such complete G2–metrics.

� Numerical studies by Brandhuber & Cvetic–Gibbons–Lu–Pope supported
that belief, but explicit solutions or existence proofs were lacking.

� The BGGG example has cohomogeneity one, but smaller symmetry group
than Bryant–Salamon metric on SS3: SU(2)2 × U(1) versus SU(2)3.

� The asymptotic geometry of the BGGG example is also different from the
Bryant–Salamon metric. Its volume growth is r6 not r7. CGLP coined
the term ALC (asymptotically locally conical) to describe its asymptotic
geometry (generalising ALF spaces like the Taub–NUT metric.)



Input from physics II

� Further work by CGLP, and Hori–Hosomichi–Page–Rabadan–Walcher
(2005) suggested there should be four 1-parameter families of complete
cohomogeneity one ALC G2–metrics: A7, B7, C7, D7.

� BGGG example belongs to the B7 family. In 2013 Bogoyavlenskaya proved
existence of the whole 1-parameter family by qualitative ODE methods.

� No existence proof was available for any members of the A7, C7 and D7

families. Challenge is to control which solutions of ODE system give rise
to complete solutions, even though explicit general solutions are lacking.

� In physics the A7 and B7 families were viewed as deriving from certain
4-dimensional ALF manifolds:

the Atiyah–Hitchin metrics and Taub–NUT metrics respectively.

The meaning of this was not clear (to mathematicians!)

� It is natural/important to understand the behaviour of these metrics at
the two extremes of the possible range of parameters. Here a simpler
hyperKähler analogy is illustrative.



The Gibbons–Hawking ansatz again

Example: ALF and ALE metrics of cyclic type

gm =

(
m +

n∑
i=1

1

2|x − ai |

)
dx · dx +

(
m +

n∑
i=1

1

2|x − ai |

)−1
θ2

� a1, . . . , an distinct =⇒ complete metric
a1 = · · · = ak+1 =⇒ orbifold singularity C2/Zk

� m is called the mass
� m > 0 =⇒ ALF (= ALC with flat asymptotic cone)
� m = 0 =⇒ ALE (= AC with flat asymptotic cone)



Limits of ALF geometries

We can see three different limits

gm =

(
m +

n∑
i=1

1

2|x − ai |

)
dx · dx +

(
m +

n∑
i=1

1

2|x − ai |

)−1
θ2

� m→∞: collapse to R3 (with curvature blow-up at finitely many points)
� m→ 0: smooth convergence to ALE limit

� By scaling get different picture of limit m→ 0:

mgm = m

(
m +

n∑
i=1

1

2|x − ai |

)
dx · dx + m

(
m +

n∑
i=1

1

2|x − ai |

)−1
θ2

=
y=m x

(
1 +

n∑
i=1

1

2|y −mai |

)
dy · dy +

(
1 +

n∑
i=1

1

2|y −mai |

)−1
θ2

� m→ 0: convergence to orbifold ALF

� orbifold ALF + ALE  smooth ALF



Cohomogeneity 1 AC CY 3-folds
� The simplest Calabi–Yau cone (Candelas–de la Ossa): the conifold
{z21 + z22 + z23 + z24 = 0} ⊂ C4

� AC Calabi–Yau 3-folds modelled on the conifold:

� the smoothing of the conifold: T ∗S3 (tip of the cone replaced by a round
totally geodesic special Lagrangian S3)

� the small resolution of the conifold: total space of O(−1)⊕O(−1)→ P1

(tip of the cone replaced by a round totally geodesic holomorphic S2)
� KP1×P1 with Calabi’s metric and its deformations: asymptotic to

conifold/Z2 (tip of the cone replaced by an exceptional divisor P1 × P1)
� We can also consider the quotient of T ∗S3 by the standard antiholomorphic

involution, i.e. we form an orientifold of the CY metric on T ∗S3.
� The conifold itself and its asymptotically conical CY desingularisations

are cohomogeneity one: SU(2)× SU(2) acts isometrically with generic
orbit of codimension one.

� In the highly collapsed limit the four 1-parameter families B7, D7, C7,
and A7 correspond to these four AC Calabi-Yau spaces respectively.

� What happens in the uncollapsed limit? (A conical singularity develops).



AC metrics and conically singular ALC manifolds

Theorem A (Foscolo–H–Nordström, arixv:1805.02612)

� For every pair of coprime positive integers m, n there exists a complete
AC G2–metric (unique up to scale) on the (simply connected) total space
Mm,n of the circle bundle over KP1×P1 with first Chern class (m,−n).

� Mm,n is asymptotic to the cone over S3 × S3/Z2(m+n).
� There is a 1-parameter family of ALC G2–metrics on Mm,n that collapses

to a Calabi–Yau metric on KCP1×CP1 at one extreme and “opens up” at
the other extreme to the unique AC G2–metric on Mm,n.

Theorem B (Foscolo–H–Nordström, arixv:1805.02612)

� There exists a (unique up to scale) G2–metric g0 on
M0 = (0,∞)× S3 × S3 such that

� (M, g0) has an isolated conical singularity modelled on the G2–cone
over the homogeneous nearly Kähler structure over S3 × S3;

� (M, g0) has a complete ALC end.

(M0, g0) and some of its quotients can be also be desingularised by analytic
methods using the AC metrics and gives an analytic construction of smooth
ALC metrics degenerating to (M0, g0).



The A7 family: G2 analogue of Atiyah–Hitchin

We are still missing one type of bubble to glue in, the analogues of ALF
dihedal gravitational instantons. (We need a family of ALC G2 manifolds
that collapses to Stenzel metric on T ∗S3 quotiented by its standard
antiholomorphic involution to glue at fixed points of τ .)

Physicists suggested that there should be an “M-theory lift” of the
Atiyah–Hitchin manifold: the A7 family of cohomogeneity one metrics
(studied by Hori et al numerically). Still have SU(2)× SU(2) symmetry but
the absence of U(1) symmetry makes the ODE system much less tractable.

We prove existence of the A7 family in two limits: the highly collapsed limit
and close to a conically singular limit by perturbation theory.

� In the highly collapsed regime we need a better approximation to the
geometry in the neighbourhood of the singular orbit.
� We do this by rescaling in the normal directions and adapting ideas from

Donaldson’s work on adiabatic limits of coassociative fibrations.
� Gives a rigorous way to interpret the physics statement that these manifolds

are families of “Atiyah–Hitchin metrics fibred over S3”.



Collapsing G2-metrics on compact spaces

Want to use our highly collapsed ALC G2-spaces B7 as bubbles in a gluing
construction. B7 has a global isometric circle action that fixes the
exceptional orbit, which is a round S3. In the limit B7 converges to the
Stenzel metric on the smoothing T ∗S3 of the conifold.

Q: What should replace the singular limit space T3/Z2 in the hK case?

A: Quotient of a Calabi-Yau 3-fold by an anti-holomorphic involution τ .
Fixed point set of τ is a totally geodesic special Lagrangian 3-fold L

Obvious problem: In Stenzel have a round S3. How do we get round SL
3-spheres in CY 3-folds?

Answer: Start with a CY 3-fold X0 that has only ordinary double point
(conifold) singularities and assume that X is smoothable. By recent work of
Hein and Sun we know that X admits an incomplete CY metric that is
asymptotic to the standard KRF cone metric on the conifold at each ODP.

Can now construct nearby smooth CY 3-folds Yt by gluing in Stenzel metrics
at each ODP. This way we get SL 3-spheres as close as required to round.



Collapsing G2-metrics on compact spaces II

We have to require that the nodal CY 3-fold X admits an anti-holomorphic
involution whose fixed set is a subset of the nodes. This appears to be very
restrictive.

Because we need to find a circle bundle over our 6-dimensional space (with
the correct topological properties) and we need to lift the involution to the
circle bundle we also need the existence of a divisor passing through the
nodes of X in a specified way,

We do know at least one such nodal CY 3-fold satisfying our wish list!

On the total space of the circle bundle over Y ′ we also need to construct a
highly collapsed circle-invariant approximate G2-metric. Here again we use
the linearised version of Apostolov-Salamon as in Talk 1.


