Parity-odd Gamma-ray Asymmetry in Polarized Neutron Capture on Hydrogen: The NPDGamma Experiment

Libertad Barrón Palos*
Instituto de Física
Universidad Nacional Autónoma de México

* for the NPDGamma collaboration
Traditional Theoretical Description

Meson-exchange Model

- One-meson-exchange potential
- Model dependent

<table>
<thead>
<tr>
<th>Coupling</th>
<th>DDH reasonable range</th>
<th>DDH “best value”</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_π^I</td>
<td>0 → 11</td>
<td>+4.6</td>
</tr>
<tr>
<td>h_ρ^0</td>
<td>11 → -31</td>
<td>-11</td>
</tr>
<tr>
<td>h_ρ^1</td>
<td>-0.4 → 0</td>
<td>-0.2</td>
</tr>
<tr>
<td>h_ρ^2</td>
<td>-7.6 → -11</td>
<td>-9.5</td>
</tr>
<tr>
<td>h_ω^0</td>
<td>5.7 → -10.3</td>
<td>-1.9</td>
</tr>
<tr>
<td>h_ω^1</td>
<td>-1.9 → -0.8</td>
<td>-1.2</td>
</tr>
</tbody>
</table>

in units of $\times 10^{-7}$

h_ρ^I is set to zero

Meson-exchange Model

- One-meson-exchange potential
- Model dependent

<table>
<thead>
<tr>
<th>Coupling</th>
<th>DDH reasonable range</th>
<th>DDH “best value”</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_π^1</td>
<td>0 → 11</td>
<td>+4.6</td>
</tr>
<tr>
<td>h_ρ^0</td>
<td>11 → -31</td>
<td>-11</td>
</tr>
<tr>
<td>h_ρ^1</td>
<td>-0.4 → 0</td>
<td>-0.2</td>
</tr>
<tr>
<td>h_ρ^2</td>
<td>-7.6 → -11</td>
<td>-9.5</td>
</tr>
<tr>
<td>h_ω^0</td>
<td>5.7 → -10.3</td>
<td>-1.9</td>
</tr>
<tr>
<td>h_ω^1</td>
<td>-1.9 → -0.8</td>
<td>-1.2</td>
</tr>
</tbody>
</table>

in units of $\times 10^{-7}$

ρ is set to zero

Motivation for NPDGamma and other few-nucleon experiments using neutrons

NPDGamma

\[\bar{n} + p \rightarrow d + \gamma \]

- Dominated by a \(\Delta I=1 \) \(^3S_1-^3P_1 \) parity-odd transition in the \(n-p \) system (\(\pi \)-exchange)
- \(h_{\pi}^I \) coupling can be isolated (heavy meson contributions very small)
- \(A_\gamma \approx -0.11 \ h_{\pi}^I \) (\(A_\gamma \approx -5 \times 10^{-8} \) using DDH “best value”)
- Also charged currents are suppressed for \(\Delta I=1 \), so potential to study neutral currents (not present in strangeness-changing HWI)
More Recent Theoretical Developments

Effective Field Theory (EFT)

\[\Lambda_0^{1S_0-3P_0} = -g_\rho (2 + \chi_\rho) b_\rho^0 - g_\omega (2 + \chi_\omega) b_\omega^0 \]
\[\Lambda_0^{3S_1-1P_1} = -3 g_\rho \chi_\rho b_\rho^0 + g_\omega \chi_\omega b_\omega^0 \]
\[\Lambda_1^{1S_0-3P_0} = -g_\rho (2 + \chi_\rho) b_\rho^1 - g_\omega (2 + \chi_\omega) b_\omega^1 \]
\[\Lambda_1^{3S_1-3P_1} = \sqrt{\frac{1}{2}} g_{\pi NN} \left(\frac{m_\rho}{m_\pi} \right)^2 b_\pi^1 + g_\rho (b_\rho^1 - b_\rho^{1'}) - g_\omega b_\omega^1 \]
\[\Lambda_2^{1S_0-3P_0} = -g_\rho (2 + \chi_\rho) b_\rho^2 \]

Not dependent on a model
Consistent with the symmetries and degrees of freedom of QCD

Hierarchy of Parameters in Large-\(N_c\) Expansion

Two leading order (LO)

\[\Lambda_0^+ \equiv \frac{3}{4} \Lambda_0^{3S_1-1P_1} + \frac{1}{4} \Lambda_0^{1S_0-3P_0} \sim N_c \]
\[\Lambda_2^{1S_0-3P_0} \sim N_c \]

Three next-to-next-to leading order (\(N^2\text{LO}\))

\[\Lambda_0^- \equiv \frac{1}{4} \Lambda_0^{3S_1-1P_1} - \frac{3}{4} \Lambda_0^{1S_0-3P_0} \sim 1/N_c \]
\[\Lambda_1^{1S_0-3P_0} \sim \sin^2 \theta_w \]
\[\Lambda_1^{3S_1-3P_1} \sim \sin^2 \theta_w \]

More Recent Theoretical Developments

Effective Field Theory (EFT)

\[\Lambda_0^{1S_0-3P_0} = -g_\rho (2 + \chi_\rho) b^0_\rho - g_\omega (2 + \chi_\omega) b^0_\omega \]
\[\Lambda_0^{3S_1-1P_1} = -3g_\rho \chi_\rho b^0_\rho + g_\omega \chi_\omega b^0_\omega \]
\[\Lambda_1^{1S_0-3P_0} = -g_\rho (2 + \chi_\rho) b^1_\rho - g_\omega (2 + \chi_\omega) b^1_\omega \]
\[\Lambda_1^{3S_1-3P_0} = \sqrt{\frac{1}{2}} g_{\pi NN} \left(\frac{m_\rho}{m_\pi} \right)^2 b^1_\pi + g_\rho (b^1_\rho - b^{1'}_\rho) - g_\omega b^1_\omega \]
\[\Lambda_2^{1S_0-3P_0} = -g_\rho (2 + \chi_\rho) b^2_\rho \]

Not dependent on a model
Consistent with the symmetries and degrees of freedom of QCD

Hierarchy of Parameters in Large-\(N_c \) Expansion

Two leading order (LO)

\[\Lambda_0^+ \equiv \frac{3}{4} \Lambda_0^{3S_1-1P_1} + \frac{1}{4} \Lambda_0^{1S_0-3P_0} \sim N_c \]
\[\Lambda_2^{1S_0-3P_0} \sim N_c \]

Three next-to-next-to leading order (N\(^2\)LO)

\[\Lambda^-_0 \equiv \frac{1}{4} \Lambda_0^{3S_1-1P_1} - \frac{3}{4} \Lambda_0^{1S_0-3P_0} \sim 1/N_c \]
\[\Lambda_1^{1S_0-3P_0} \sim \sin^2 \theta_w \]
\[\Lambda_1^{3S_1-3P_1} \sim \sin^2 \theta_w \]

Isolated in \(\gamma \) polarization in \(^{18}\text{F} \) decay and NPDGamma
A Long Way Coming

First Stage at the Los Alamos Neutron Science Center (LANL)

- Letter of intent in 1998
- Construction of FP12
- Data taking at Los Alamos in 2006-2007
- Statistically limited result: $A_\gamma = [-1.2 \pm 2.1{\text{(stat.)}} \pm 0.2{\text{(syst.)}}] \times 10^{-7}$

Second Stage at the Spallation Neutron Source (ORNL)

- More intense neutron flux available
- Modifications to some components, installation and commissioning (2008-2012)
- H_2 data taking at the SNS (November 2012 - March 2014)
- Apparatus decommissioned in the Summer of 2014 and partially reinstalled again in 2016 for background asymmetry measurement (Aluminium inconsistencies)
- Final result to be announced at the CIPANP 2018 meeting
- Preliminary result: $A_\gamma = [-3.1 \pm 1.5{\text{(stat.)}} \pm 0.3{\text{(syst.)}}] \times 10^{-8}$
 [David Blyth, PhD thesis, Arizona State University (2017)]
The Experiment

@ FnPB
The Experiment

Neutron Flux

60 pulses per second

\[5.4 \times 10^8 \text{ n/cm}^2/s/MW \]
The Experiment

Neutron Flux

60 pulses per second

$5.4 \times 10^8 \text{ n/cm}^2\text{s/MW}$
The Experiment

Beam Monitors

- Ionization chamber with N$_2$ and some 3He (1-2%)
- About 1% of the neutrons are absorbed
- Number of neutron per pulse determined to a precision of 10$^{-4}$
The Experiment

Super Mirror (SM) Polarizer

- Magnetized Fe/Si SM
- Scattering length $b \pm p$, with p the magnetic component

Fe/Si on boron float glass, no Gd

$m=3.0$ = critical angle
$n=45$ = channels
$R=9.6 \text{ m}$ = radius of curvature
$L=40 \text{ cm}$ = length
$d=0.3\text{ mm}$ = vane thickness

$T=25.8\%$ = transmission
$P=95.3\%$ = polarization
$N=2.2 \times 10^{10} \text{ n/s}$ = output flux (chopped)
The Experiment

Holding Magnetic Field and RF Spin Rotator

\[B_0 = B_0 \hat{x} \]

\[B_{RF} = B_1 \hat{z} \cos(\omega_L t) = B^+_{RF} + B^-_{RF} \]

\[B^\pm_{RF} = \frac{B_1}{2} \left[\hat{z} \cos(\pm \omega_L t) - \hat{y} \sin(\pm \omega_L t) \right] \]

\[B_1 = \frac{n \pi \hbar}{\mu_n L t_{lof}} \]

The Experiment

LH$_2$ Target

$\phi_{\text{ortho-H}_2} < 0.0015$
The Experiment

LH$_2$ Target

Scattering cross section of neutrons on para-H$_2$

The Experiment

Gamma-ray Detector

- 48 CsI detectors
- 3π acceptance
- Current mode operation (5x10^7 gammas/pulse)
Extraction of A_γ

Corrections

- Neutron polarization (P_n)
- Spin Flipper efficiency (ϵ_{SR})
- Neutron depolarization (C_d)
- Background prompt gammas from materials other than hydrogen, which contribute in different fractions (F_{BG}). The main background contribution comes from Aluminum ($\sim 20\%$)
- Geometrical factors (G_{UD} and G_{LR}), which include the finite structure of the beam, the effective solid angle of the detector, the spatial distribution of the material in question and other effects
Extraction of A_γ

Corrections

- Neutron polarization (P_n)
- Spin Flipper efficiency (ϵ_{SR})
- Neutron depolarization (C_d)
- Background prompt gammas from materials other than hydrogen, which contribute in different fractions (F_{BG}). The main background contribution comes from Aluminum ($\sim 20\%$)
- Geometrical factors (G_{UD} and G_{LR}), which include the finite structure of the beam, the effective solid angle of the detector, the spatial distribution of the material in question and other effects

\[
A_{\gamma,\text{raw}} = \frac{1}{2} \left(\frac{Y_\theta^\uparrow - Y_{\theta+\pi}^\uparrow}{Y_\theta^\uparrow + Y_{\theta+\pi}^\uparrow} - \frac{Y_\theta^\downarrow - Y_{\theta+\pi}^\downarrow}{Y_\theta^\downarrow + Y_{\theta+\pi}^\downarrow} \right)
\]

\[
A_{\gamma} = P_n \epsilon_{SR} C_d \left(A_{\gamma,\text{raw}} - \sum_i \frac{A_{\gamma,i}}{P_{n,i} \epsilon_{SR,i} C_{d,i}} \right)
\]

\[
A_{\gamma,i} = A_{\gamma,i}^{PV} G_{UD,i} + A_{\gamma,i}^{PC} G_{LR,i}
\]

Monte Carlo
The Aluminium Background

- Capture of neutrons on 27Al produces 28Al*
- Several (3-4) prompt gammas are emitted in the transition to 28Al g.s. (total energy of 7.8 MeV)
- Asymmetries (PV and PC) correlated to the neutron spin are expected in the emission of prompt gammas

- After the experiment was decommissioned and analysis was nearing completion, inconsistencies revealed the dedicated Aluminium target was not 6061 alloy
- The uncertainty goal of the experiment was not achievable without a new background subtraction strategy
- The experiment was partially mounted again in 2016 to perform measurements with background targets made out of the actual windows of the LH$_2$ target cryostat and other components
Systematic Uncertainties (preliminary)

<table>
<thead>
<tr>
<th>False Asymmetries</th>
<th>Process</th>
<th>A_γ, PV unc.</th>
<th>A_γ, PC unc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stern-Gerlach</td>
<td>$\vec{\mu} \cdot \nabla B$</td>
<td>8×10^{-11}</td>
<td>9×10^{-9}</td>
</tr>
<tr>
<td>Mott-Schwinger</td>
<td>$\vec{n} + p \rightarrow \vec{n} + p$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ-ray circular polarization</td>
<td>$\vec{n} + p \rightarrow d + \gamma$</td>
<td>7×10^{-13}</td>
<td></td>
</tr>
<tr>
<td>β decay in flight</td>
<td>$\vec{n} \rightarrow e^- + p + \bar{\nu}$</td>
<td>3×10^{-11}</td>
<td></td>
</tr>
<tr>
<td>Radiative β decay</td>
<td>$\vec{n} \rightarrow e^- + p + \bar{\nu} + \gamma$</td>
<td>2×10^{-11}</td>
<td></td>
</tr>
<tr>
<td>Capture on 6Li</td>
<td>$\vec{n} + ^6$ Li $\rightarrow ^7$ Li* $\rightarrow \alpha + t$</td>
<td>2×10^{-12}</td>
<td>$< 1 \times 10^{-9}$</td>
</tr>
<tr>
<td>28Al β decay</td>
<td>$\vec{n} + ^{27}$ Al $\rightarrow ^{28}$ Al $\rightarrow ^{28}$ Si $+ e^-$ alloy($\vec{n}, \gamma s$)</td>
<td>$< 1 \times 10^{-9}$</td>
<td>6×10^{-9}</td>
</tr>
<tr>
<td>Capture on Al alloy</td>
<td></td>
<td>2×10^{-9}</td>
<td>6×10^{-10}</td>
</tr>
<tr>
<td>Beam power modulation</td>
<td></td>
<td>6×10^{-10}</td>
<td>8×10^{-10}</td>
</tr>
<tr>
<td>Instrumental</td>
<td></td>
<td>$< 1 \times 10^{-9}$</td>
<td>$< 1 \times 10^{-9}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiplicative Factors</th>
<th>Value</th>
<th>A_γ unc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric factors</td>
<td>Detector-dependent</td>
<td>3%</td>
</tr>
<tr>
<td>Beam polarization</td>
<td>0.936(5)</td>
<td>0.5%</td>
</tr>
<tr>
<td>LH$_2$ SF efficiency</td>
<td>0.969(9)</td>
<td>0.9%</td>
</tr>
<tr>
<td>2016 SF efficiency</td>
<td>0.997(3)</td>
<td>0.3%</td>
</tr>
<tr>
<td>Beam depolarization</td>
<td>0.946 (avg. for LH$_2$)</td>
<td>1.4%</td>
</tr>
</tbody>
</table>

The New Landscape for NPDGamma

In the context of new theoretical descriptions and the hierarchization of parameters in large-N_c expansion, NPDGamma, as well as gamma polarization from 18F, can provide a tests for this theory, measuring the two N2LO parameters.

NPDGamma preliminary result is

$$A_\gamma = [-3.1 \pm 1.5\text{(stat.)} \pm 0.3\text{ (syst.)}] \times 10^{-8}$$

The New Landscape for NPDGamma

In the context of new theoretical descriptions and the hierarchization of parameters in large-N_c expansion, NPDGamma, as well as gamma polarization from 18F, can provide a test for this theory, measuring the two N2LO parameters.

NPDGamma preliminary result is

$$A_\gamma = [-3.1 \pm 1.5\text{(stat.)} \pm 0.3\text{ (syst.)}] \times 10^{-8}$$

Assuming A_γ centered in zero and statistical uncertainty of 1.3×10^{-8}

Improvement Possibilities

• One either has to do this measurement on a pulsed neutron beam or at least pulse the beam in some way so that one can analyze the transient signals in the gamma detectors.

• We were not limited by systematics. In this experiment they were \(\sim 3 \times 10^{-9} \). This could be decreased to about \(1 \times 10^{-9} \).

• It would be nice to try to find something better than Aluminum. A different Al alloy or one could try Titanium for the target vessel.

• Put the Lithium plastic inside the hydrogen target vessel?

• 4300 hours life time with average beam power about 1 MW at SNS for the LH\(_2\) running gave a statistical error of \(\sim 1.5 \times 10^{-8} \). Other potential beams/sources?
Summary

• The NPDGamma is about to conclude a long-time effort to measure the gamma asymmetry in the capture of polarized neutrons on Hydrogen, with in unprecedented precision ($\sim 1.5 \times 10^{-8}$ stat.)

• The process is dominated by a $\Delta I=1$ $^3S_1-^3P_1$ parity-odd transition (π-exchange) and therefore this experiment is appropriate to constrain the h_π weak coupling (longest range interaction in meson-exchange models).

• The value observed by the NPDGamma collaboration is smaller than the value predicted in the DDH model by about a factor of 0.6.

• More recent theoretical approaches (EFT + large-N_c expansion) have produced a hierarchization of LEC in LO (2) and N^2LO (3). The LEC related to the observable measured in NPDGamma, $A_{^3S_1-^3P_1}$, is a N^2LO.
The NPDGamma Collaboration
The NPDGamma Collaboration