# Self-consistent Reionization Models: Observational Constraints

Tirthankar Roy Choudhury

SISSA, Trieste, Italy

chou@sissa.it

Collaborator: A. Ferrara

### Plan of the talk

- Background
- Formalism
  - Simple reionization models
  - Reionization of the inhomogeneous IGM
  - Self-consistent models
- Results
- Future work

### **Background**

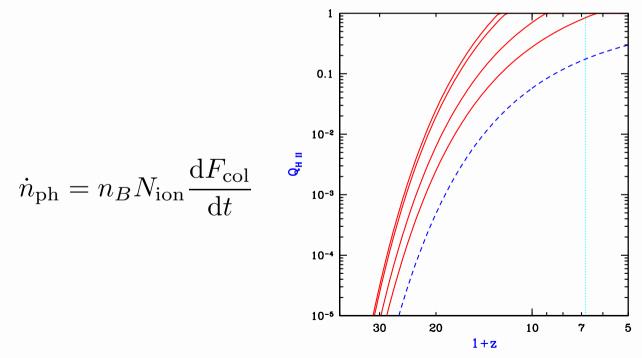
- Apparent discrepancy between Gunn-Peterson optical depths at  $z \gtrsim 6$  and the first year WMAP results? White et al. (2003); Kogut et al. (2003)
- Explanation of the excess in the cosmic Near Infra Red Background observations requires Population III stars at z > 9 what effect do they (and other sources) have on the reionization history? Salvaterra & Ferrara (2003)
- Require reionization models to deal with wide variety of spatial scales:
  - ◆ IGM inhomogeneities sub-kpc
  - formation of (first) haloes with luminous sources kpc
  - transfer of the ionizing radiation tens of kpc
  - background radiation Mpc
  - effect of QSOs tens of Mpc
- Goal is to develop semi-analytical models with most of the essential physics incorporated

Evolution of the volume filling factor of ionized regions:

$$\frac{\mathrm{d}Q_{\mathrm{HII}}}{\mathrm{d}t} = \frac{\dot{n}_{\mathrm{ph}}}{n_{H}} - Q_{\mathrm{HII}} \frac{n_{e}}{a^{3}} \alpha_{R}(T)$$

#### Source term

 $\dot{n}_{\rm ph}$ : Rate of ionizing photons per unit volume


#### Recombination term

 $C_{\rm HII} \equiv \langle n_{\rm HII}^2 \rangle / \langle n_{\rm HII} \rangle^2$ : Clumping factor

 $\alpha_R(T)$ : Recombination rate

Evolution of the volume filling factor of ionized regions:

$$\frac{\mathrm{d}Q_{\mathrm{HII}}}{\mathrm{d}t} = \frac{\dot{n}_{\mathrm{ph}}}{n_H} - Q_{\mathrm{HII}} \frac{n_e}{a^3} \alpha_R(T)$$



Barkana & Loeb (2000)

Evolution of the volume filling factor of ionized regions:

$$\frac{\mathrm{d}Q_{\mathrm{HII}}}{\mathrm{d}t} = \frac{\dot{n}_{\mathrm{ph}}}{n_H} - Q_{\mathrm{HII}} \frac{n_e}{a^3} \alpha_R(T)$$

Evolution of the temperature

$$\frac{\mathrm{d}T}{\mathrm{d}t} \approx -2H(z)T + \frac{2}{3k_{\mathrm{boltz}}n_B} \frac{\mathrm{d}E}{\mathrm{d}t}$$

Adiabatic cooling-

Net heating rate per baryon

 $\frac{\mathrm{d}E}{\mathrm{d}t} =$  Photoheating-Recombination cooling-Compton cooling

Evolution of the volume filling factor of ionized regions:

$$\frac{\mathrm{d}Q_{\mathrm{HII}}}{\mathrm{d}t} = \frac{\dot{n}_{\mathrm{ph}}}{n_H} - Q_{\mathrm{HII}} \frac{n_e}{a^3} \alpha_R(T)$$

Evolution of the temperature

$$\frac{\mathrm{d}T}{\mathrm{d}t} \approx -2H(z)T + \frac{2}{3k_{\mathrm{boltz}}n_B} \frac{\mathrm{d}E}{\mathrm{d}t}$$

Evolution of the ionization fraction

$$\frac{\mathrm{d}n_{\mathrm{HII}}}{\mathrm{d}t} =$$
 Photoionization – Recombination

Evolution of the volume filling factor of ionized regions:

$$\frac{\mathrm{d}Q_{\mathrm{HII}}}{\mathrm{d}t} = \frac{\dot{n}_{\mathrm{ph}}}{n_{\mathrm{H}}} - Q_{\mathrm{HII}} \frac{n_{e}}{a^{3}} \alpha_{R}(T)$$

Evolution of the temperature

$$\frac{\mathrm{d}T}{\mathrm{d}t} \approx -2H(z)T + \frac{2}{3k_{\mathrm{boltz}}n_B} \frac{\mathrm{d}E}{\mathrm{d}t}$$

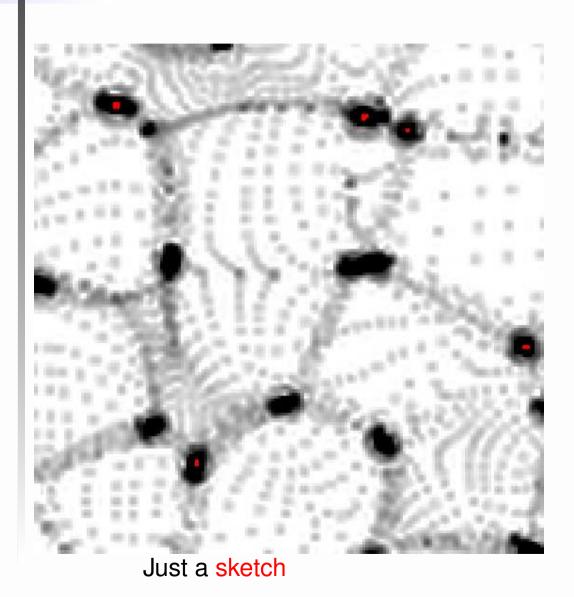
Evolution of the ionization fraction

$$\frac{\mathrm{d}n_{\mathrm{HII}}}{\mathrm{d}t} = \mathsf{Photoionization} - \mathsf{Recombination}$$

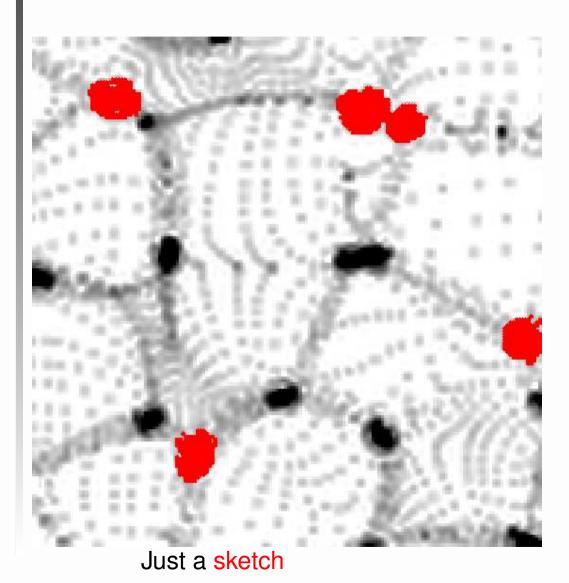
Evolution of the volume filling factor of ionized regions:

$$\frac{\mathrm{d}Q_{\mathrm{HII}}}{\mathrm{d}t} = \frac{\dot{n}_{\mathrm{ph}}}{n_H} - Q_{\mathrm{HII}} \frac{n_e}{a^3} \alpha_R(T)$$

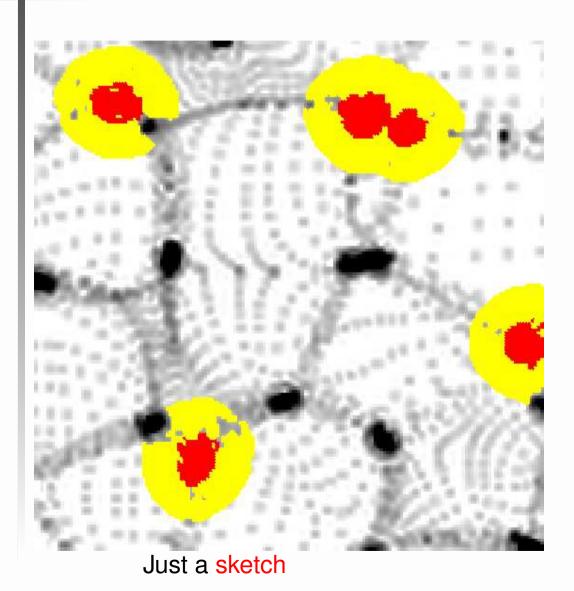
Evolution of the temperature


$$\frac{\mathrm{d}T}{\mathrm{d}t} \approx -2H(z)T + \frac{2}{3k_{\mathrm{boltz}}n_B} \frac{\mathrm{d}E}{\mathrm{d}t}$$

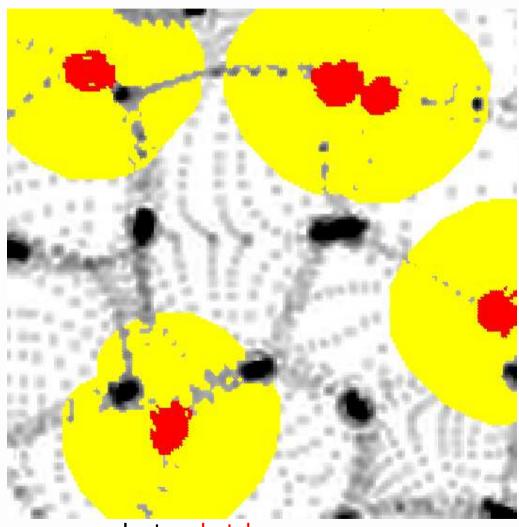
Evolution of the ionization fraction


$$\frac{\mathrm{d}n_{\mathrm{HII}}}{\mathrm{d}t}$$
 = Photoionization – Recombination

Ionizing flux is determined by the mean free path

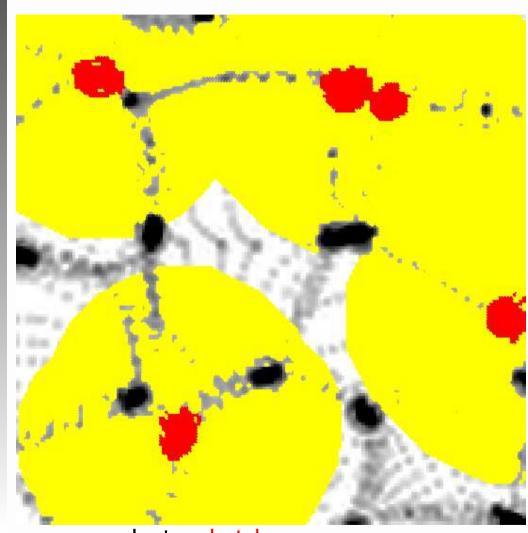

$$J_{
u} \propto \lambda_{
u} \; \dot{n}_{
m ph}$$




Random density distribution

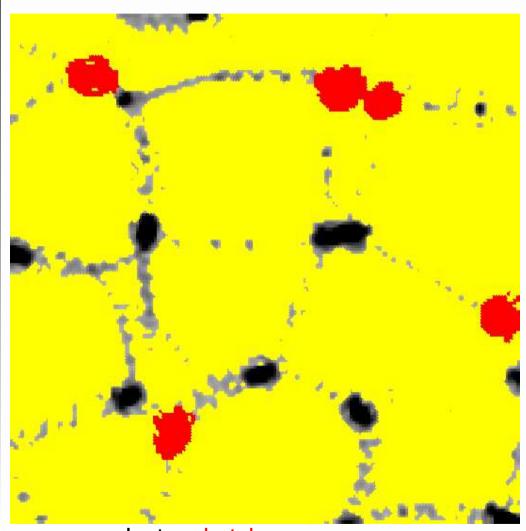


- Random density distribution
- Sources of ionizing photons



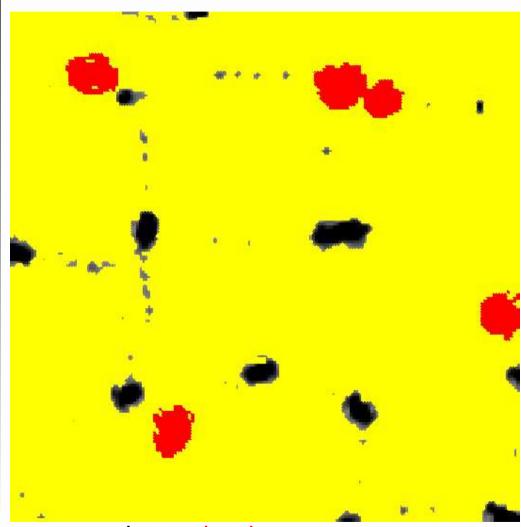

- Random density distribution
- Sources of ionizing photons
- Ionized regions




- Random density distribution
- Sources of ionizing photons
- Ionized regions
- Pre-overlap era

Just a sketch




Just a sketch

- Random density distribution
- Sources of ionizing photons
- Ionized regions
- Pre-overlap era
- Approaching reionization

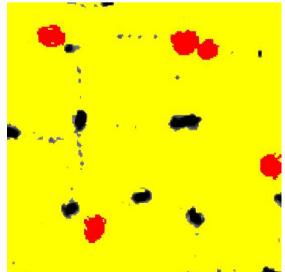


Just a sketch

- Random density distribution
- Sources of ionizing photons
- Ionized regions
- Pre-overlap era
- Approaching reionization
- Reionization



Just a sketch


- Random density distribution
- Sources of ionizing photons
- Ionized regions
- Pre-overlap era
- Approaching reionization
- Reionization
- Post-overlap era

# Reionization of the inhomogeneous IGM

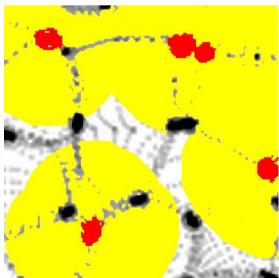
Post-overlap era

$$\frac{\mathrm{d}[F_M(\Delta_{\mathrm{HII}})]}{\mathrm{d}t} = \frac{\dot{n}_{\mathrm{ph}}(z)}{n_H} - R(\Delta_{\mathrm{HII}}) \frac{n_e}{a^3} \alpha_R(T)$$

Clumping Factor: 
$$R(\Delta_{\rm HII}) = \int_0^{\Delta_{\rm HII}} {\rm d}\Delta \ \Delta^2 \ P(\Delta)$$



# Reionization of the inhomogeneous IGM


Post-overlap era

$$\frac{\mathrm{d}[F_M(\Delta_{\mathrm{HII}})]}{\mathrm{d}t} = \frac{\dot{n}_{\mathrm{ph}}(z)}{n_H} - R(\Delta_{\mathrm{HII}}) \frac{n_e}{a^3} \alpha_R(T)$$

Pre-overlap era

$$\frac{\mathrm{d}[Q_{\mathrm{HII}}F_{M}(\Delta_{\mathrm{HII,crit}})]}{\mathrm{d}t} = \frac{\dot{n}_{\mathrm{ph}}(z)}{n_{H}} - Q_{\mathrm{HII}}R(\Delta_{\mathrm{HII,crit}})\frac{n_{e}}{a^{3}}\alpha_{R}(T)$$

Clumping Factor: 
$$R(\Delta_{\rm HII}) = \int_0^{\Delta_{\rm HII}} {\rm d}\Delta \ \Delta^2 \ P(\Delta)$$



# Reionization of the inhomogeneous IGM

Post-overlap era

$$\frac{\mathrm{d}[F_M(\Delta_{\mathrm{HII}})]}{\mathrm{d}t} = \frac{\dot{n}_{\mathrm{ph}}(z)}{n_H} - R(\Delta_{\mathrm{HII}}) \frac{n_e}{a^3} \alpha_R(T)$$

Pre-overlap era

$$\frac{\mathrm{d}[Q_{\mathrm{HII}}F_{M}(\Delta_{\mathrm{HII,crit}})]}{\mathrm{d}t} = \frac{\dot{n}_{\mathrm{ph}}(z)}{n_{H}} - Q_{\mathrm{HII}}R(\Delta_{\mathrm{HII,crit}})\frac{n_{e}}{a^{3}}\alpha_{R}(T)$$

Mean free path determined by the fraction of ionized volume Miralda-Escude, Haehnelt & Rees (2000)

Self-consistent treatment for the evolution of ionized regions and thermal history.

- Self-consistent treatment for the evolution of ionized regions and thermal history.
- Follow evolution of neutral, HII and HeIII regions simultaneously. Treat the IGM as a multi-phase medium.

- Self-consistent treatment for the evolution of ionized regions and thermal history.
- Follow evolution of neutral, HII and HeIII regions simultaneously. Treat the IGM as a multi-phase medium.
- Inhomogeneous IGM density distribution: lognormal model

Found to be a reasonable approximation for the low-density IGM at 2 < z < 6

- Self-consistent treatment for the evolution of ionized regions and thermal history.
- Follow evolution of neutral, HII and HeIII regions simultaneously. Treat the IGM as a multi-phase medium.
- Inhomogeneous IGM density distribution: lognormal model
- Three sources of ionizing radiation:

- Self-consistent treatment for the evolution of ionized regions and thermal history.
- Follow evolution of neutral, HII and HeIII regions simultaneously. Treat the IGM as a multi-phase medium.
- Inhomogeneous IGM density distribution: lognormal model
- Three sources of ionizing radiation:
  - 1. PopIII stars: early redshifts, high mass, low metallicity Required to match the excess in NIRB

- Self-consistent treatment for the evolution of ionized regions and thermal history.
- Follow evolution of neutral, HII and HeIII regions simultaneously. Treat the IGM as a multi-phase medium.
- Inhomogeneous IGM density distribution: lognormal model
- Three sources of ionizing radiation:
  - 1. PopIII stars: early redshifts, high mass, low metallicity
  - 2. PopII stars: normal stars, transition from PopIII at  $z\gtrsim 9$  Press-Schechter and Sasaki formalism to calculate the formation rate and survival time of dark matter haloes.

Model for SFR: peaking around the dynamical time of the halo, decreasing exponentially thereafter.

- Self-consistent treatment for the evolution of ionized regions and thermal history.
- Follow evolution of neutral, HII and HeIII regions simultaneously. Treat the IGM as a multi-phase medium.
- Inhomogeneous IGM density distribution: lognormal model
- Three sources of ionizing radiation:
  - 1. PopIII stars: early redshifts, high mass, low metallicity
  - 2. PopII stars: normal stars, transition from PopIII at  $z \gtrsim 9$
  - 3. Quasars: significant at  $z \lesssim 6$  Model based on the empirical  $v_c-M_{\rm BH}$  relation; Wyithe & Loeb (2002); Mahmood et al. (2003)

- Self-consistent treatment for the evolution of ionized regions and thermal history.
- Follow evolution of neutral, HII and HeIII regions simultaneously. Treat the IGM as a multi-phase medium.
- Inhomogeneous IGM density distribution: lognormal model
- Three sources of ionizing radiation:
  - 1. PopIII stars: early redshifts, high mass, low metallicity
  - 2. PopII stars: normal stars, transition from PopIII at  $z \gtrsim 9$
  - 3. Quasars: significant at  $z \lesssim 6$
- Radiative feedback suppressing star formation in low-mass haloes

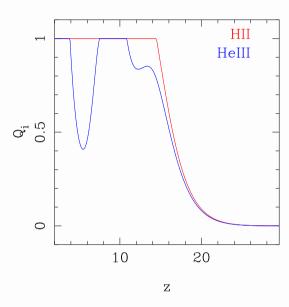
Lower limit of the mass function

- set by molecular cooling in neutral regions
- set by photoionization temperature in the ionized regions

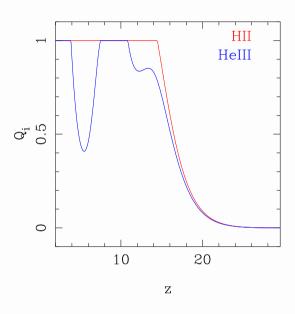
### Free parameters

- Star forming efficiencies  $(\epsilon_*)$  and escape fractions  $(f_{\rm esc})$  for PopII and PopIII stars
- lacktriangle Transition redshift  $(z_{
  m trans})$  for PopIII  $\longrightarrow$  PopII

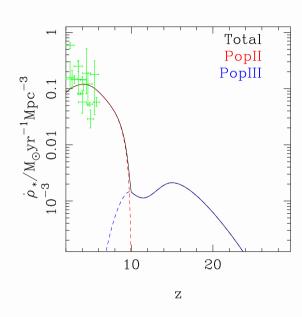
### Free parameters


- Star forming efficiencies  $(\epsilon_*)$  and escape fractions  $(f_{\rm esc})$  for PopII and PopIII stars
- Transition redshift  $(z_{\text{trans}})$  for PopIII  $\longrightarrow$  PopII

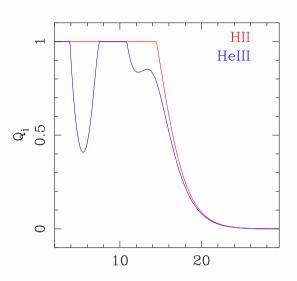
Use a model with "fiducial" values of parameters.


- ullet  $\epsilon_{*,\mathrm{III}} \sim$  0.5% (NIRB studies)
- $f_{
  m esc, III} \sim 1$  (Whalen et al. (2004))
- ullet  $\epsilon_{*,\mathrm{II}} \sim$  10% (Low-z SFR)
- $lacktriangleq f_{
  m esc,II} \sim$  2% (uncertain)
- $z_{\mathrm{trans}} \approx 10$  (NIRB studies)

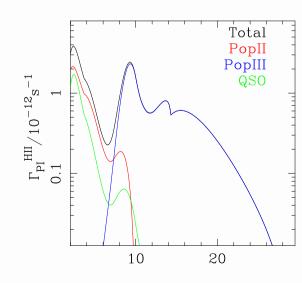
Check the effects of varying the parameters, and try to constrain by matching with observations.


### Volume filling factor

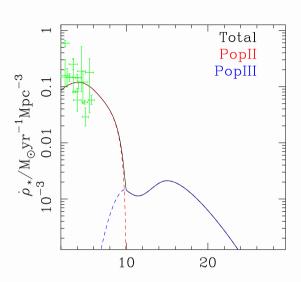



### Volume filling factor

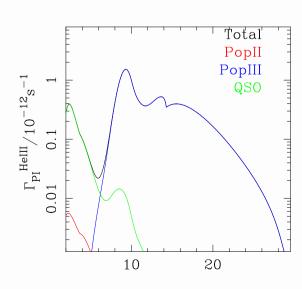



#### SFR

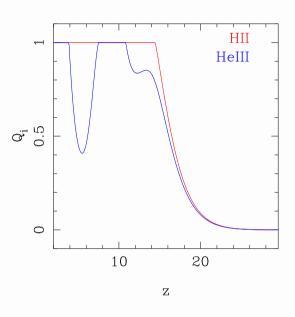



### Volume filling factor

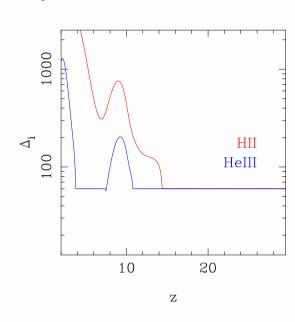



### Photoionization rate for HI

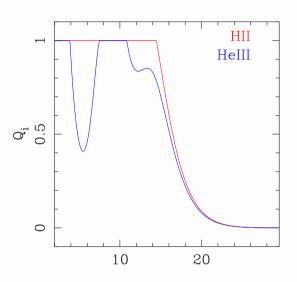



#### SFR

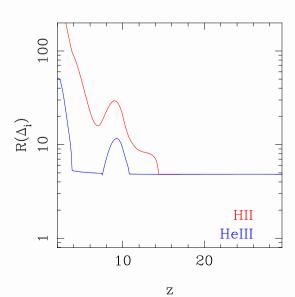



Photoionization rate for HeII

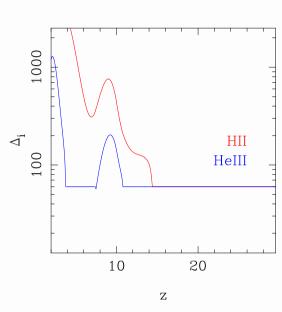



### Volume filling factor

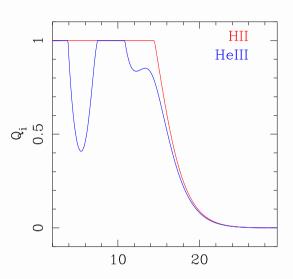



#### $\Delta_i$

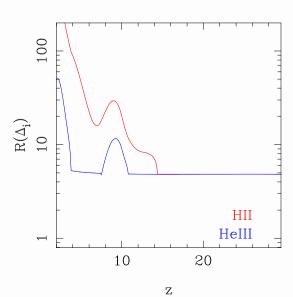



### Volume filling factor

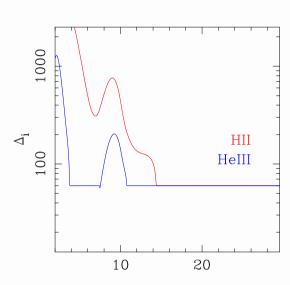



# Clumping factor $^{\rm z}$

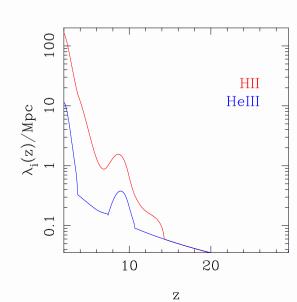




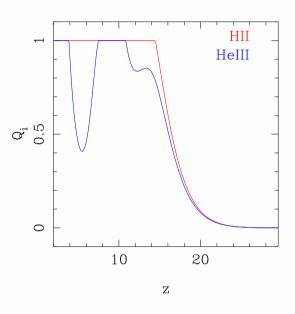




### Volume filling factor

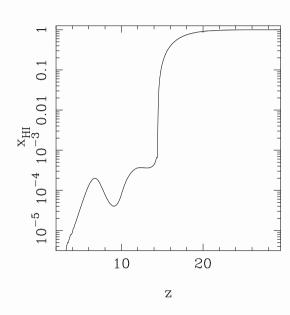



# Clumping factor $^{\rm z}$

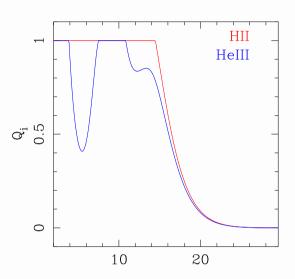



#### $\Delta_i$

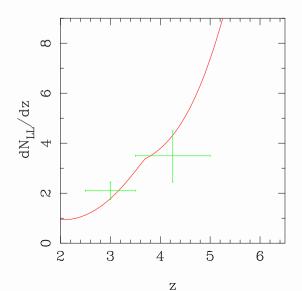



Mean free path<sup>z</sup>




### Volume filling factor



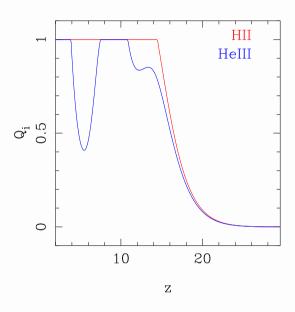

#### **Neutral fraction**



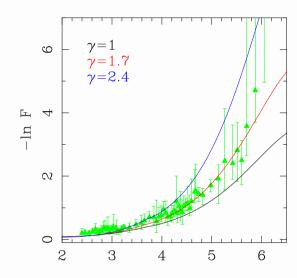

#### Volume filling factor



### Lyman limit systems

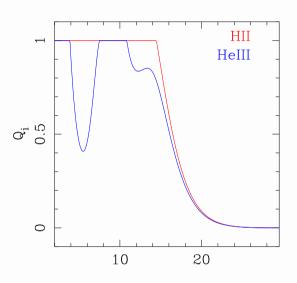



#### Mean free path

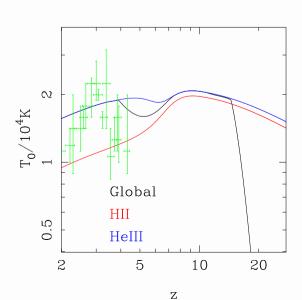



Lyman limit system data points from Storrie-Lombardi et al. (1994)

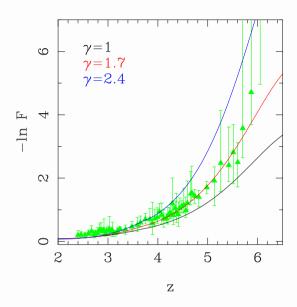
#### Volume filling factor




#### GP optical depth

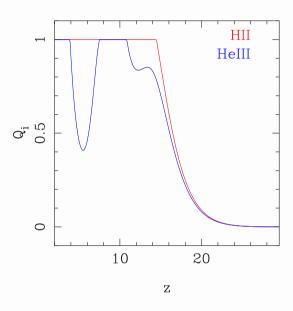



GP optical depth data from Songaila (2004)

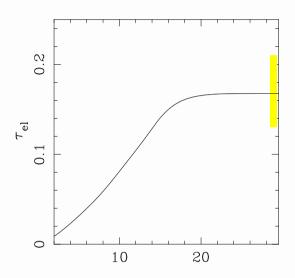

#### Volume filling factor



#### **Temperature**




#### GP optical depth




 $T_0$  data from Schaye et al. (1999)

#### Volume filling factor



#### Electron scattering optical depth



TE cross <sup>z</sup> power spectrum (WMAP) data from Kogut et al. (2003)

### **Results: Possible variations**

- 0.15%  $< \epsilon_{*,\mathrm{III}} <$  2% from WMAP data.
- $f_{\rm esc,II}$  < 10% from GP optical depth at  $2 \lesssim z \lesssim 6$ .
- Different feedback models: Higher feedback at high redshifts can suppress the growth of HeIII regions and can delay or prohibit the (first) HeII reionization.
- Reduced power on small scales by suppressing cooling in minihaloes ( $T_{\rm vir} < 10^4$  K):
  - require higher  $\epsilon_{*,III}$  to match WMAP data
  - the effect of feedback is less severe

### **Results: Summary**

- H-reionization at  $z \approx 14$ .
- Double HeII-reionization at  $z \approx 12$  (PopIII-induced) and at  $z \approx 3.5$  (QSO-induced). Recombination at  $z \lesssim z_{\rm trans}$ .
- Observations of  $T_0$ : consistent with HII regions at  $z \gtrsim 3.5$  and with HeIII regions at  $z \lesssim 3.5$ .
- About 0.2% of total stars need to be PopIII in order to explain the WMAP data and to achieve the H-reionization at high redshifts.

### **Future Studies**

- Detailed look into the Gunn-Peterson optical depths around  $z \approx 6$  using line-of-sight realizations.
- Implications on future CMB polarization and 21cm observations.
- Incorporate evolution of the IGM metallicity?