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Introduction: Dynamics of naive T cells
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Healthy aging of T cells

Elderly people respond poorly to vaccination
Old mice miss some of the CD8 responses to influenza epitopes 

(holes in the repertoire) 

Number of naive T cells typically declines (in presence of CMV)
Some evidence that repertoire becomes skewed (Simpson diversity)

Effect on richness (number of clones) unclear

Thymus output declines 5% per y in humans and 50% per y in mice
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average turnover rate of the T cell population is not necessarily
equal to the loss rate of labeled cells (28).

The median turnover rates of naı̈ve CD4 and CD8 T cells were
found to be as low as p ! 0.0005 and 0.0003 per day, corre-
sponding to median half-lives of 1,517 and 2,374 days for naı̈ve
CD4 and CD8 T cells, respectively (Fig. 2 and Tables 1 and 2).
The turnover rates of memory CD4 and CD8 T cells were found
to be "10-fold higher, i.e., p ! 0.0045 and 0.0028 per day,
corresponding to half-lives of 155 and 244 days for memory CD4
and CD8 T cells, respectively. Using the individual naı̈ve CD4
and CD8 T cell counts revealed a median naı̈ve CD4 T cell
production of 8.2 # 107 cells per day and a median naı̈ve CD8
T cell production of 2.4 # 107 per day (Table 3). Because this
daily production of new naı̈ve T cells is the sum of thymic output
and homeostatic proliferation within the naı̈ve T cell pool, our
data provide an upper estimate of daily thymic production of
1.7 # 108 T cells per day (see Table 3).

The median rates at which labeled memory CD4 and CD8 T cells
were lost from the memory population were found to be 0.0145 and
0.0098 per day, respectively. Interestingly, in none of the individuals
did we find a significant loss of labeled naı̈ve CD4 or CD8 T cells
during the 16 weeks after cessation of label (Fig. 2 and Table 1),
indicating that newly produced naı̈ve T cells—whether produced by
the thymus or by peripheral T cell proliferation—had a longer
expected life span than the average naı̈ve T cell. Our data are
therefore not compatible with the presence of a substantial short-
lived RTE pool in adult healthy humans.

Discussion
By in vivo labeling of T cell subsets using 2H2O and mathematical
analysis of label enrichment, our data provide reliable estimates for
the average turnover rates of naı̈ve and memory CD4 and CD8 T
cells in healthy adults. Although isotope labeling studies in humans

are typically restricted to blood, it has been reported that labeling
kinetics in human T cells derived from blood and lymphoid tissues
are comparable (29). Label incorporation in T cells derived from
mouse peripheral lymph nodes and spleen was also similar (un-
published data). Seemingly, there is little difference in labeling of
the analyzed T cell subsets derived from the different lymphoid
compartments.

The very low accumulation of label in naı̈ve T cells ($5%) that
we observed after 9 weeks of up-labeling is compatible with the
data reported by Hellerstein et al. (20). Our median estimated
half-lives between 1,517 and 2,374 days for naı̈ve T cells and
between 155 and 244 days for memory T cells are, however, much
longer than previous estimates based on stable-isotope labeling,
which varied from 112 to 361 days for naı̈ve T cells and from 14
to 235 days for memory T cells (25). The use of T cell death rates,
which overestimate T cell turnover because of the bias toward
cells that have recently divided (30), and the lack of data points
during the up-labeling phase in previous short-term labeling
experiments might explain these discrepancies. Michie et al. (6)
used the presence of T cells with dicentric chromosomes after
radiation to measure the half-life of naı̈ve and memory T cells.
They estimated a half-life of 182 days for CD45RO% and 630
days for CD45RA% T cells. Because CD45RA% T cells can
contain a substantial fraction of effector (CD45RA%CD27&)
cells, we additionally used CD27 expression on CD45RA% T
cells to identify naı̈ve T cells. This difference in definition of the
naı̈ve subset may explain the difference in the estimated life
spans between these studies. Furthermore, it is conceivable that
the half-lives of T cells were affected by radiation.

The origin of variation in the calculated half-lives of the adult
humans is unknown: No relation was found between this parameter
and T cell counts, Ki67 expression, or age. The relative differences
in calculated half-lives were, however, in the same range as the
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Fig. 2. Best fits of the naı̈ve and memory CD4 and CD8 T cell enrichment curves. Label enrichment was scaled between 0 and 100% by normalizing for the
percentage label obtained in granulocytes (see SI Text). In the graph, the end of the labeling period is marked by a vertical line.
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Time in days                       relatively large CD95+ fraction of naive CD8+ T cells in elderly subjects

could have contributed to the faster turnover rate of the aged naive

CD8+ T-cell pool, we measured the expression of the cell-cycle marker

Ki-67 in the CD95! and CD95+ fractions of the naive CD4+ and CD8+ T-

cell pools. Indeed, the percentage of Ki-67-expressing cells was

significantly higher among CD95+ compared to CD95! cells

(P-value = 0.03 for both CD4+ and CD8+; Fig. 3D). Thus, the larger

fraction of rapidly proliferating CD95+ cells could explain the observed

increase in turnover of the ‘naive’ CD8+ T-cell pools of the elderly

individuals.

No peripheral homeostatic compensation in the naive CD4+ T-
cell pool, despite decreasing thymic output

Because the thymus involutes with age (Steinmann et al., 1985), and

deuterium is incorporated by new naive T cells that are produced in both

the thymus and the periphery, the similar turnover rates of naive CD4+ T

cells in our young and elderly individuals could be an indication for a

compensatory increase in peripheral T-cell division in the elderly.

Therefore, we quantified the contribution of thymic T-cell production

and peripheral T-cell division to the daily turnover of naive CD4+ T cells in

young and elderly subjects. We previously demonstrated that daily

thymic output can be deduced from the average turnover rate, the

absolute cell number, and the TREC content of naive T cells (den Braber

et al., 2012). Using this approach (see Supporting Information), we

estimated that thymic output declined significantly from 16 million cells

per day in young individuals to < 1 million cells per day in elderly

individuals (P-value = 0.02; Fig. 4A), a change that is well in line with the

previously estimated tenfold decrease in thymic output during adulthood

(Steinmann et al., 1985). By subtracting the estimated daily thymic

output from the total daily production of naive CD4+ T cells (Fig. 4B), we

deduced the average naive CD4+ peripheral T-cell division rate in young

and elderly subjects (see Supporting Information). Remarkably, despite

the tenfold decrease in thymic output, peripheral naive CD4+ T-cell

division rates were not significantly higher in the elderly (Fig. 4C),

suggesting that peripheral homeostatic compensation for loss of thymic

output either did not occur or was negligible.

Discussion

Using long-term in vivo 2H2O labeling in healthy young and elderly

individuals, we observed neither age-related differences in population

dynamics nor signs of compensatory mechanisms for the population

maintenance of different B-cell and T-cell subsets. Our data convinc-

ingly point out that maintenance of lymphocyte populations during

healthy aging does not require substantial alterations in lymphocyte

turnover. These results are consistent with a previous deuterated

glucose labeling study, which reported no significant age-related

difference in the turnover of total B cells (Macallan et al., 2005), and

we extend these insights by showing that also within the different B-

cell subsets as well as for cd T cells, turnover rates do not change

during healthy aging.

Although lymphopenia-induced T-cell proliferation is clearly triggered

in rodents with low T-cell numbers (Miller & Stutman, 1984; Bell et al.,

1987; Freitas & Rocha, 2000), there is no unambiguous evidence for the

occurrence of homeostatic T-cell proliferation in primates and humans.

Increased percentages of Ki-67-expressing T cells have been observed in

different clinical conditions of lymphopenia, including in HIV infection,

after SCT, and post-thymectomy (Hazenberg et al., 2000b, 2002;

Borghans et al., 2006; van Gent et al., 2011), and also under more

physiological circumstances in aging rhesus macaques and humans

(Naylor et al., 2005; Cicin-Sain et al., 2007; Sauce et al., 2012). In the

rhesus macaque model of immune senescence, fractions of Ki-67+ naive

T cells were found to correlate positively with age, and negatively with

the percentage of naive cells in the CD4+ and CD8+ T-cell pools and

with TCR diversity (Cicin-Sain et al., 2007). Naive T-cell turnover rates
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Fig. 2 Summary of estimated average
turnover rates in young and elderly
individuals. Estimates of the average
turnover rate of (A) naive, memory, and
natural effector B cells, (B) cd T cells, (C)
naive CD4+ and CD8+ T cells, and (D)
memory CD4+ and CD8+ T cells in young
(gray symbols) and aged (black symbols)
individuals. The elderly male tested
seropositive for CMV is depicted by a semi-
filled diamond (C+D). All estimates were
obtained by fitting the multi-exponential
model to the individual data sets (see
Supporting Information). Horizontal lines
represent median values. The asterisk marks
a significant difference (P-value < 0.05)
between young and aged individuals.
Individual fits are shown in Figs S3–S5.
Different symbols indicate different
individuals within panels (A+B) and panels
(C+D).

Lymphocyte turnover in young and aged individuals, L. Westera et al.4
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almost 40% during week 7 (data not shown). Thereafter, thymo-
cyte numbers declined exponentially at a rate of 50% per year
(see Experimental Procedures). Naive T cell numbers in spleen
and PLNs peaked at week 7–8 (see Figure 3) and subsequently
declined more slowly than thymocyte numbers, suggesting
that a homeostatic mechanism compensated for loss of thymus
output.

Homeostatic Compensation through Decreased
Peripheral Cell Death
A likely homeostatic mechanism by which cell numbers are
regulated is a cellular survival rate that depends on the popula-
tion density (Freitas and Rocha, 2000). When T cell numbers
are low, T lymphocytes will experience less competition for

Figure 2. Estimating Mouse Naive T Cell Turnover
with Deuterium Labeling
Twelve-week-old (n = 28, A) and 85-week-oldmice (n = 28,

B) were given 4% 2H2O for 4 weeks. Each dot represents

the normalized deuterium enrichment in the DNA of naive

CD4+ (upper graphs) or naive CD8+ T cells (lower graphs)

in the spleen of one C57Bl/6 mouse. Vertical lines mark the

end of 2H2O administration at 4 weeks. The estimated

average turnover rates (p) and death rates of the labeled

cells (d*) resulting from the best fits of the mathematical

model to the data are given in each graph.

Figure 3. Effect of Thymectomy on the Size of the
Naive T Cell Population in Mice
Numbers (3106) of naive CD4+ (A and C) and naive CD8+

T cells (B and D) were determined in spleen (A and B) and

PLNs (C and D) of euthymic mice (C, n = 130) and mice

that had been thymectomized at week 7 (+, n = 43). Pop-

ulation densities in control and thymectomized mice were

fitted with a mathematical model in which the cellular

death rate increased linearly with the population density

(model 1; see Experimental Procedures). The best fits of

the model to the combined data sets of spleen and lymph

nodes of normal and thymectomized mice are depicted by

the continuous and dotted curves, respectively. Best

fitting parameters are given in Table 2 and corresponding

average life spans are given in Table 3.

survival signals, such as contact with MHC-
peptide ligands or cytokines, and may thus
have a longer life expectancy. To study the
relative contribution of thymus output and
peripheral T cell proliferation to the mainte-
nance of the naive T cell pool in mice, we fitted
a mathematical model to the naive T cell
counts of euthymic and thymectomized mice
of different ages that were measured experi-

mentally. The model describes thymus output, peripheral
T cell renewal, and naive T cell loss, which represents both
cell death and priming of naive T cells into the memory T cell
pool and depends on the number of T cells present (see Exper-
imental Procedures and Table S2). The naive CD4+ and CD8+

T cell counts of euthymic and thymectomized mice turned
out to be described very well with a simple model that totally
lacks peripheral renewal of naive T cells and only allows for
an increase in the average life span when T cell numbers
decline (Figure 3; Table 2).
According to this ‘‘homeostatic survival’’ model, the average

life spans of naive CD4+ and CD8+ T cells in 12-week-old mice
are 31 and 72 days, respectively, which is in reasonable agree-
ment with the 47 and 80 day expected life spans estimated

Immunity

Naive T Cell Maintenance in Mouse and Man

Immunity 36, 288–297, February 24, 2012 ª2012 Elsevier Inc. 291

Human naive T cells live 5-10 y (and divide) 
Mouse naive T cells 1-3 mo (and hardly divide)

85 wk12 wk
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Thymus accounts for 20% of the production of naive T cells 
in young humans adults and for 2% in healthy elderly

RESULTS

Contribution of ThymicOutput to theHumanNaive TCell
Pool
To quantify the relative contribution of thymic output in humans,
we measured the TREC content of naive CD4+ T cells in healthy
individuals of different ages (Figure 1A). We have previously
argued that TREC contents cannot be used as a measure for
daily thymic output because the TREC content of a T cell popu-
lation increases with thymic output and with cell loss and
declines with cell division (De Boer, 2006; Dutilh and de Boer,
2003; Hazenberg et al., 2000). Given that TRECs are not copied
during peripheral proliferation, each TREC remains a truemarker
of thymic origin, and the number of TREC-positive cells in a pop-
ulation reflects the number of cells that were produced by the
thymus at any point in time and that are still present in the
periphery. Conversely, the number of TREC-negative naive
T cells reflects the number of cells in the population that have
been produced by peripheral proliferation. The average TREC
content of a naive T cell population can therefore be used to esti-
mate the fraction of cells that were originally produced by the
thymus.
One complication is that only a fraction of the cells leaving the

thymus is actually carrying a TREC. To estimate the fraction of
cells that originated from the thymus, one therefore has to
normalize the observed TREC content by the average TREC

Figure 1. Quantification of the Contribution
of Thymic Output in Humans
(A) TREC content of naive CD4+ T cells as a func-

tion of age (n = 45).

(B) Percentage of naive CD4+ T cells that were

originally produced in the thymus, calculated by

normalizing the TREC content of peripheral naive

CD4+ T cells by the TREC content of SP CD4+

thymocytes (n = 45).

(C) The percentage of CD31+ T cells within the

naive CD4+ T cell pool of healthy individuals (n =

76) decreased significantly (Rp =!0.72, p < 0.001)

with age.

(D) TREC contents of CD31+ (;) and CD31! (,)

naive CD4+ T cells in healthy donors (n = 18) of

different ages. The TREC content of both CD31+

naive CD4+ T cells (Rs = !0.78, p < 0.001) and

CD31! naive CD4+ T cells (Rs = !0.80, p < 0.001)

declined significantly with age; their slopes were

not significantly different (p = 0.25). TREC contents

of CD31+ cord blood CD4+ T cells (n = 3) were

similar to TREC contents of single-positive

CD4+CD8! thymocytes (n = 4, p = 0.86).

(E) The percentage of CD31+ naive CD4+ T cells

that were originally produced in the thymus,

calculated by normalizing the TREC content of

CD31+ naive CD4+ T cells in the blood by the TREC

content of SP CD4+ thymocytes (n = 18).

content of a recent thymic emigrant
(RTE). Thanks to the fact that the average
TREC content of thymocytes does not
decrease with age (Jamieson et al.,
1999), we could estimate the TREC

content of RTEs by measuring TRECs in single positive (SP)
thymocytes from children who underwent cardiac surgery. Along
with these samples, we measured TRECs in naive CD4+ T cells
from healthy volunteers of different ages. When these peripheral
TREC contents were normalized to the average TREC contents
of CD4+ SP thymocytes, we found that the median fraction of
naive CD4+ T cells that were originally produced by the thymus
in adults was 11% (see Figure 1B). Thus, "90% of the naive
T cell pool in these adults had been formed by peripheral naive
T cell proliferation.

Contribution of Peripheral Proliferation to the Human
CD31+ Naive CD4+ T Cell Pool
Naive CD4+ T cells expressing CD31 (PECAM-1) are thought to
be enriched in cells that were produced by the thymus (Kimmig
et al., 2002; Kohler et al., 2005). In agreement with previous
studies (Kilpatrick et al., 2008; Kimmig et al., 2002; Kohler
et al., 2005), we found that the fraction of CD31+ T cells within
the naive CD4+ T cell pool of healthy individuals decreased
substantially—and almost linearly—with age (Figure 1C) and
that the CD31+ naive CD4+ T cell population always had a higher
TREC content than the CD31- population. The average TREC
contents of CD31+ and CD31! naive CD4+ T cells declined
substantially and at similar rates with age (Figure 1D), confirming
that even CD31+ naive CD4+ T cells are in part produced by
peripheral T cell division (Kilpatrick et al., 2008).

Immunity

Naive T Cell Maintenance in Mouse and Man

Immunity 36, 288–297, February 24, 2012 ª2012 Elsevier Inc. 289

TREC	is	a	DNA	circle	
produced	when	the	 
α-chain	of	the	TCR	 

re-arranges.		
TRECs	not	duplicated	

upon	division.	
Basically	a	birthmark	of	
cells	produced	in	the	

thymus.	
(after	normalization)



Simple mathematical model

Hazenberg	et	al.	Nat.	Med.	2000

dN

dt
= s + (p� d)N

Naive	T	cells,	N,	and	total	TREC	numbers,	T:

dT

dt
= cs� dT

A = T/NNow	define	the	average	TREC	content:

Assume	quasi	steady	state:	 dA

dt
= 0

A

c
=

s

s + pN

Fraction of TREC+ cells reflects fraction produced in thymus
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In mice TRECs in naives hardly decline:  
most naive cells produced by thymus

a mouse is in sharp contrast with observations on naive TREC
dynamics in humans (see Figures 1A and 1B; Harris et al.,
2005; Kilpatrick et al., 2008; Prelog et al., 2009; Ribeiro and de
Boer, 2008). An experimental prediction that naturally follows
from our results is that—in contrast to what is observed in hu-
mans—the fraction of TREC-positive naive CD4+ and CD8+

T cells in healthy mice should not decrease with age. We tested
this prediction by comparing the average TREC contents of
naive and memory CD4+ and CD8+ T cells from normal euthymic
mice between 12 and 126 weeks of age. We found no evidence
for TREC dilution in mouse naive T cells with age, even though
the average TREC contents of memory CD4+ and CD8+ T cells
clearly declined with age (Figure 4A). The average TREC con-
tents of naive CD4+ and CD8+ T cells throughout life were very
similar to the average TREC contents of CD4+ and CD8+ SP

thymocytes, confirming that naive T cells in mice hardly divide.
Taken together, this is independent experimental confirmation
of our main finding that—irrespective of their age—naive CD4+

and CD8+ T cells in euthymic mice are almost exclusively formed
by thymus output. Interestingly, in thymectomized mice the frac-
tions of TREC-positive naive T cells were moderately decreased
(Figure 4B), suggesting that in the absence of the thymus, naive
T cells in mice may ultimately proliferate.

DISCUSSION

We here show that the source by which naive T cell numbers are
maintained during aging differs fundamentally between mouse
and man. Not only in young adult but even in very old mice, the
vast majority of the naive T cell pool is sustained by thymic
output, whereas in human adults, the majority of naive cells are
produced by peripheral T cell proliferation. Our results are in
line with studies in lymphopenic humans and mice receiving
bone marrow transplantation, which collectively suggested
that T cell reconstitution in adult humans is more comparable
to that in thymectomyzed mice than that in euthymic mice
(Mackall and Gress, 1997). It is important to realize that these
quantitative differences between mouse and man will also
have qualitative effects on the naive T cell pool because the
thymus is capable of producing new T cell specificities, whereas
peripheral T cell proliferation can only lead to the expansion of
already existing T cell clones.
The contribution of the thymus to themaintenance of the naive

T cell pool in healthy adults and its potential to reconstitute the
T cell pool in lymphopenic individuals has been much debated.
Although some have ascribed a crucial role to the thymus in
human adults (Douek et al., 1998), others have argued that
during adulthood, the thymus is producing too few T cells to
have a significant effect on the size of the naive T cell pool (Ha-
zenberg et al., 2000). Our data point out that the vast majority
of naive T cells in human adults are maintained through periph-
eral T cell proliferation. Several recent studies have suggested
that even in young, healthy children, a substantial proportion of
naive T cells are derived from peripheral T cell renewal (Bains
et al., 2009; Hazenberg et al., 2004).
Our current estimates of the contribution of thymic output to

the total daily production of naive CD4+ T cells were much lower
than previous estimates based onCD31 expression alone (Kilpa-
trick et al., 2008). Although the fraction of CD31+ T cells within the
naive CD4+ T cell pool of healthy individuals decreased from
!80% in neonates to 60% around the age of 30, and 40% at
the age of 60, our TREC analyses pointed out that, throughout
adulthood, maximally 30%—and on average only 11%—of the
naive T cell pool was originally formed by the thymus. In line
with this, we found that in adults, as many as 77% of CD31+

naive CD4+ T cells were in fact formed by peripheral T cell prolif-
eration. Although these data show that in terms of naive T cell
numbers created per day, peripheral T cell proliferation by far
exceeds thymic output in human adults, the thymus may still
have an essential role – if only because new T cell specificities
can only be created by the thymus.
In contrast to the large contribution of peripheral T cell prolif-

eration to the maintenance of naive T cells in humans, we here
show that naive T cells in euthymic mice are almost exclusively

Figure 4. TREC Analysis in Mouse Thymocytes and Peripheral T Cell
Subsets
(A) The average number of TRECs per T cell (on a logarithmic scale) from the

spleens of mice ranging from 12 to 126 weeks of age (n = 29). Lines show the

regression analyses through the data in each T cell subset. TREC contents of

SPCD4+ (p = 0.13) and SPCD8+ (p = 0.60) thymocytes did not changewith age

(not shown) and are plotted separately. TREC contents of naive CD4+ (C, p =

0.11) and naive CD8+ (B, p = 0.46) T cells did not decrease significantly with

age, whereas TREC contents of memory CD4+ (-, p = 0.0002, R2 = 0.56) and

memory CD8+ (,, p = 0.0001, R2 = 0.56) T cells did. Analyses in LNs from the

same mice revealed similar data (not shown).

(B) TREC contents of naive CD4+ and CD8+ T cells in age matched healthy

control (;, n = 13) and thymectomized mice (ATx at week 7, V, n = 8). Hori-

zontal bars depict median values. TREC contents of naive CD4+ T cells in the

spleen (p = 0.023) and naive CD4+ (p = 0.024) and naive CD8+ (p = 0.011) T cells

in the LNs were significantly lower in ATx mice compared to healthy controls.

Immunity

Naive T Cell Maintenance in Mouse and Man

Immunity 36, 288–297, February 24, 2012 ª2012 Elsevier Inc. 293
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Quantitative immunology: a few more numbers

At least 1016 possible T cell receptors 
(Robins et al., 2009; Woodsworth et al., 2013; Qi et al., 2014)
Human naive T cell pool: order of magnitude 1011 cells 
(Hansen et al., 2009; Dirksen et al., 2015; Westera et al., 2015)
Enumerating all responding cells to any novel antigen suggests that 
most naive T cells are unique  
(Mark Jenkins (mice),  Paul Thomas (mice), Su et al., 2013 (human)
NGS of 106 naive T cells gives almost 106 sequences 
(Britanova et al., JI 2014, Qi et al., PNAS, 2014)



Study effect of aging on diversity (richness)

Aging	affects	thymic	output 
(10-fold	decrease	at	age	75)	

Total	number	of	naive	T	cells	stays	
relatively	stable	

Naive	cells	are	long-lived	and	divide	
(extinction	time	of	a	clone	>>	10y)

What to expect for repertoire diversity in the elderly?



New null model similar to Hubbell’s neutral model

Fix	the	number	of	naive	T	cells	at	a	large	constant	(N)	
No	fitness	differences:	randomly	remove	a	single	cell	and	replace	this	with	another	

cell	coming	either	from	the	thymus	(θ)	or	cell	division	(1-θ)	
Every	thymic	emigrant	is	a	unique	singleton

1-θ

θ N

1
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Fluctuating fitness shapes the clone-size distribution of
immune repertoires
Jonathan Despondsa, Thierry Morab,1, and Aleksandra M. Walczaka
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The adaptive immune system relies on the diversity of receptors
expressed on the surface of B- and T cells to protect the organism
from a vast amount of pathogenic threats. The proliferation and
degradation dynamics of different cell types (B cells, T cells, naive,
memory) is governed by a variety of antigenic and environmental
signals, yet the observed clone sizes follow a universal power-law
distribution. Guided by this reproducibility we propose effective
models of somatic evolution where cell fate depends on an effective
fitness. This fitness is determined by growth factors acting either on
clones of cells with the same receptor responding to specific antigens,
or directly on single cells with no regard for clones. We identify
fluctuations in the fitness acting specifically on clones as the essential
ingredient leading to the observed distributions. Combining our
models with experiments, we characterize the scale of fluctuations
in antigenic environments and we provide tools to identify the
relevant growth signals in different tissues and organisms. Our results
generalize to any evolving population in a fluctuating environment.

immune repertoire | population dynamics | fluctuating fitness | lymphocyte
receptor | repertoire sequencing

Antigen-specific receptors expressed on the membrane of
B- and T cells (B-cell receptors, BCRs and T-cell receptors,

TCRs) recognize pathogens and initiate an adaptive immune
response (1). An efficient response relies on the large diversity of
receptors that is maintained from a source of newly generated
cells, each expressing a unique receptor. These progenitor cells
later divide or die, and their offspring make up clones of cells
that share a common receptor. The sizes of clones vary, as they
depend on the particular history of cell divisions and deaths in
the clone. The clone-size distribution thus bears signatures of the
challenges faced by the adaptive system. Understanding the form
of the clone-size distribution in healthy individuals is an impor-
tant step in characterizing the antigenic recognition process and
the functioning of the adaptive immune system. It also presents
an important starting point for describing statistical deviations
seen in individuals with compromised immune responses.
High-throughput sequencing experiments in different cell types

and species (2–9) have allowed for the quantification of clone sizes
and their distributions (2, 9–11). Previous population dynamics ap-
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modeling these processes for each compartment of the population,
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put sequencing is the observation of power laws in clone-size dis-
tributions (Fig. 1 A and B), which holds true for various species
(human, mice, zebrafish), cell type (B- and T cells), and subsets
(naive and memory, CD4 and CD8), and seems to be insensitive to
these context-dependent details. It remains unclear, however, what
universal features of these dynamics lead to the observed power-law
distributions. Here we identify the key biological parameters of the
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forming a series of validated approximations, we find a simple al-
gebraic relationship constraining the different timescales of the
problem by the experimentally observed exponent of the clone-size
distribution. This result allows for testable predictions and esti-
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Results
Clone Dynamics in a Fluctuating Antigenic Landscape. The fate of the
cells of the adaptive immune system depends on a variety of clone-
specific stimulations. The recognition of pathogens triggers large
events of fast clone proliferation followed by a relative decay, with
some cells being stored as memory cells to fend off future infec-
tions. Naive cells, which have not yet recognized an antigen, do
not usually undergo such extreme events of proliferation and
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Studying the dynamics: clone size distribution

Just	store	clone	size	distribution:	number	of	clones	of	a	particular	size
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Simulate a whole mouse 107 naive T cells:  
Clone size distribution approaches steady state

Initial	condition:all	cells	of	clone	size	one Initial	condition:	exponential	distribution

N	=	107	cells;	θ	=	0.1;	109	events	(θ	is	a	humanized	choice	here)
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Clone distribution implies cell distribution

Multiply	by	
clone	size
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N	=	107	cells;	θ	=	0.1;	109	events	(θ	is	a	humanized	choice	here)



Parameters for human simulations 

Simulate	dynamics	in	humans	
between	age	25	and	75	

Number	of	cells	N	=	1011	cells	

Thymic	output	0.01	<	θ	<	0.2
1-θ

θ N

1



Simulating a whole person takes too long

N	=	1011	cells;	θ	=	0.1;	3x109	events;	θ	is	a	realistic	choice	here

Distribution	after	one	day	computer	time	still	determined	by	initial	distribution	
	 	 	 	 ≈	6	weeks	dynamics
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To study humans we need a mathematical solution
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To study humans we need a mathematical solution
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Let	Ci	be	the	number	of	cells	in	bin	i:	Ci	=	iFi	
Leftward	arrows:	Probability	a	cell	dies	in	bin	i:		iFi/N	=	Ci/N	
Rightward	arrows:	Probability	a	cell	divides	from	bin	i:		(1-Θ)Ci/N
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To study humans we need a mathematical solution
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Gain	of	clones	
balances	their	loss

A simple neutral model for a naive lymphocyte repertoire

Consider a fixed pool size of N naive T (or B) cells, and a stochastic process killing one
randomly chosen cell, and replacing it either with a new unique cell from the thymus (or
bone marrow) with probability ✓, or by allowing one of the N � 1 cells to divide (with
probability 1�✓). Each cell produced by the thymus is assumed to express a unique novel
TCR, and hence forms a new clone (of clone size one). Let Fi be the number of clones of
clone size i, and hence Ci = iFi be the total number of cells in all clones of clone size i
(i.e., N =

P
i Ci). Since the model is completely neutral, the probability that the random

death event will kill a cell from a clone of size i is Ci/N .

Simple model. Clones are lost from the repertoire when a cell from a clone of size one
dies, which happens with probability C1/N . A novel clone is born with probability ✓. At
steady state the loss and gain of clones from the repertoire has to balance, i.e.,

✓ =
C1

N
or C1 = ✓N . (1)

A steady state distribution of the number of clones at each particular size requires that
the loss of clones at a particular size i (by death of a cell at rate Ci/N and by division
at a rate (1� ✓)Ci/(N � 1)) balances the entry of a clone from size i� 1 (by division at
a rate (1 � ✓)Ci�1/(N � 1)) plus the loss of a clone from size i + 1 (by death at a rate
Ci+1/N). This translates in the classical steady state equation for random birth death
processes

Ci

N
+

(1� ✓)Ci

N
=

(1� ✓)Ci�1

N
+

Ci+1

N
for i = 2, 3, . . . ,1 , (2)

where we simplify using the fact that N is large (i.e., N � 1 ' N). Note that this is a
chain with a uniform birth rate � = (1 � ✓)/N and death rate µ = 1/N . Since clones of
size zero are not defined, we write for the first equation

C1

N
+

(1� ✓)C1

N
= ✓ +

C2

N
or C2 = (1� ✓)C1 , (3)

By induction we arrive at

Ci = (1� ✓)Ci�1 = (1� ✓)i�1✓N and Fi = Ci/i , for i = 1, 2, . . . ,1 . (4)

The total number of clones (i.e., the richness) in the steady state repertoire is simply the
sum over all clone numbers, Fi,

r =
1X

i=1

Fi =
✓N ln ✓

✓ � 1
, (5)

and the Simpson diversity, 1/
P1

j (nj/N)2 where nj is the number of cells comprising clone
j, is given by summing over all clone sizes, i.e.,

s = 1/
1X

i=1

Fi

✓
i

N

◆2

= ✓N = C1 , (6)
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N	=	107	cells;	θ	=	0.1;	109	events	(θ	is	a	humanized	choice	here)



Use model to estimate richness (number of clones)
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A simple neutral model for a naive lymphocyte repertoire

Consider a fixed pool size of N naive T (or B) cells, and a stochastic process killing one
randomly chosen cell, and replacing it either with a new unique cell from the thymus (or
bone marrow) with probability ✓, or by allowing one of the N � 1 cells to divide (with
probability 1�✓). Each cell produced by the thymus is assumed to express a unique novel
TCR, and hence forms a new clone (of clone size one). Let Fi be the number of clones of
clone size i, and hence Ci = iFi be the total number of cells in all clones of clone size i
(i.e., N =

P
i Ci). Since the model is completely neutral, the probability that the random

death event will kill a cell from a clone of size i is Ci/N .

Simple model. Clones are lost from the repertoire when a cell from a clone of size one
dies, which happens with probability C1/N . A novel clone is born with probability ✓. At
steady state the loss and gain of clones from the repertoire has to balance, i.e.,

✓ =
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or C1 = ✓N . (1)

A steady state distribution of the number of clones at each particular size requires that
the loss of clones at a particular size i (by death of a cell at rate Ci/N and by division
at a rate (1� ✓)Ci/(N � 1)) balances the entry of a clone from size i� 1 (by division at
a rate (1 � ✓)Ci�1/(N � 1)) plus the loss of a clone from size i + 1 (by death at a rate
Ci+1/N). This translates in the classical steady state equation for random birth death
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Extrapolation to human T cell pool (N=1011)

Age Thymic	output	 Richness Simpson’s	diversity

25	year θ	≈	0.2 4	x	1010 2	x	1010

75	year θ	≈	0.02 8	x	109 2	x	109

10	fold	decrease 5	fold	decrease 10	fold	increase

A simple neutral model for a naive lymphocyte repertoire

Consider a fixed pool size of N naive T (or B) cells, and a stochastic process killing one
randomly chosen cell, and replacing it either with a new unique cell from the thymus (or
bone marrow) with probability ✓, or by allowing one of the N � 1 cells to divide (with
probability 1�✓). Each cell produced by the thymus is assumed to express a unique novel
TCR, and hence forms a new clone (of clone size one). Let Fi be the number of clones of
clone size i, and hence Ci = iFi be the total number of cells in all clones of clone size i
(i.e., N =

P
i Ci). Since the model is completely neutral, the probability that the random

death event will kill a cell from a clone of size i is Ci/N .

Simple model. Clones are lost from the repertoire when a cell from a clone of size one
dies, which happens with probability C1/N . A novel clone is born with probability ✓. At
steady state the loss and gain of clones from the repertoire has to balance, i.e.,

✓ =
C1

N
or C1 = ✓N . (1)

A steady state distribution of the number of clones at each particular size requires that
the loss of clones at a particular size i (by death of a cell at rate Ci/N and by division
at a rate (1� ✓)Ci/(N � 1)) balances the entry of a clone from size i� 1 (by division at
a rate (1 � ✓)Ci�1/(N � 1)) plus the loss of a clone from size i + 1 (by death at a rate
Ci+1/N). This translates in the classical steady state equation for random birth death
processes
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The total number of clones (i.e., the richness) in the steady state repertoire is simply the
sum over all clone numbers, Fi,

r =
1X

i=1

Fi =
✓N ln ✓

✓ � 1
, (5)

and the Simpson diversity, 1/
P1

j (nj/N)2 where nj is the number of cells comprising clone
j, is given by summing over all clone sizes, i.e.,

s = 1/
1X

i=1

Fi

✓
i

N

◆2

= ✓N = C1 , (6)

1

A simple neutral model for a naive lymphocyte repertoire

Consider a fixed pool size of N naive T (or B) cells, and a stochastic process killing one
randomly chosen cell, and replacing it either with a new unique cell from the thymus (or
bone marrow) with probability ✓, or by allowing one of the N � 1 cells to divide (with
probability 1�✓). Each cell produced by the thymus is assumed to express a unique novel
TCR, and hence forms a new clone (of clone size one). Let Fi be the number of clones of
clone size i, and hence Ci = iFi be the total number of cells in all clones of clone size i
(i.e., N =

P
i Ci). Since the model is completely neutral, the probability that the random

death event will kill a cell from a clone of size i is Ci/N .

Simple model. Clones are lost from the repertoire when a cell from a clone of size one
dies, which happens with probability C1/N . A novel clone is born with probability ✓. At
steady state the loss and gain of clones from the repertoire has to balance, i.e.,

✓ =
C1

N
or C1 = ✓N . (1)

A steady state distribution of the number of clones at each particular size requires that
the loss of clones at a particular size i (by death of a cell at rate Ci/N and by division
at a rate (1� ✓)Ci/(N � 1)) balances the entry of a clone from size i� 1 (by division at
a rate (1 � ✓)Ci�1/(N � 1)) plus the loss of a clone from size i + 1 (by death at a rate
Ci+1/N). This translates in the classical steady state equation for random birth death
processes

Ci

N
+

(1� ✓)Ci

N
=

(1� ✓)Ci�1

N
+

Ci+1

N
for i = 2, 3, . . . ,1 , (2)

where we simplify using the fact that N is large (i.e., N � 1 ' N). Note that this is a
chain with a uniform birth rate � = (1 � ✓)/N and death rate µ = 1/N . Since clones of
size zero are not defined, we write for the first equation

C1

N
+

(1� ✓)C1

N
= ✓ +

C2

N
or C2 = (1� ✓)C1 , (3)

By induction we arrive at

Ci = (1� ✓)Ci�1 = (1� ✓)i�1✓N and Fi = Ci/i , for i = 1, 2, . . . ,1 . (4)

The total number of clones (i.e., the richness) in the steady state repertoire is simply the
sum over all clone numbers, Fi,

r =
1X

i=1

Fi =
✓N ln ✓

✓ � 1
, (5)

and the Simpson diversity, 1/
P1

j (nj/N)2 where nj is the number of cells comprising clone
j, is given by summing over all clone sizes, i.e.,

s = 1/
1X

i=1

Fi

✓
i

N

◆2

= ✓N = C1 , (6)

1

Clone	size	at	25y		2.5	cells/clone	and	at	75y		12.5	cells/clone	
Richness	declines	less	than	proportional	with	thymic	output	
Simpson’s	diversity	declines	proportional	with	thymic	output



N	=	107	cells:	Human	dynamics	
downsized	to	mouse	numbers.	

Thymic	output	θ	initially	0.2	
Dashed	line:	solution	
5%	decrease	thymic	output/year	
cells	live	10y:	a	year	is	106	events

Thymic output decreases faster than 
convergence to steady state



What if clones have expanded in thymus? k=4

F1 F2 F3 F4

1-Θ 1-Θ 1-Θ 1-Θ

Gain	of	clones	
balances	their	loss

C1/N

Full model. As cells divide a few times in the thymus after rearranging the TCR they
are expected to arrive as small clones in the periphery. Defining k as the expected clone
size of RTE and leaving the definition of ✓ as the probability that a single cells arrives
from the thymus (and 1 � ✓ the probability that a single cell divides), new clones are
created at a rate ✓/k. Note that this extended model can also for situations where one
only measures the diversity of the �-chains of the TCR, and k could be interpreted as the
total number of RTE expressing a particular �-chain.

Since the loss of clones from the repertoire remains defined as C1/N we now arrive at

✓

k
=

C1

N
or C1 =

✓N

k
. (7)

The balance equation of Eq. (2) still holds, except for the first and the kth equation.
Because new clones no longer arrive with a clone size of one, the first equation becomes
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N
=

C2

N
or C2 = C1 + (1� ✓)C1 , (8)

By induction we arrive at

Ci = C1 + (1� ✓)Ci�1 and Fi = Ci/i , for i = 1, 2, . . . , k . (9)

The balance equation for clones of size k has the additional term for the addition of a
single clone of size k from the thymus with probability ✓/k:
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Summarizing: two parameter model θ and k

Full model. As cells divide a few times in the thymus after rearranging the TCR they
are expected to arrive as small clones in the periphery. Defining k as the expected clone
size of RTE and leaving the definition of ✓ as the probability that a single cells arrives
from the thymus (and 1 � ✓ the probability that a single cell divides), new clones are
created at a rate ✓/k. Note that this extended model can also for situations where one
only measures the diversity of the �-chains of the TCR, and k could be interpreted as the
total number of RTE expressing a particular �-chain.

Since the loss of clones from the repertoire remains defined as C1/N we now arrive at

✓

k
=

C1

N
or C1 =

✓N

k
. (7)

The balance equation of Eq. (2) still holds, except for the first and the kth equation.
Because new clones no longer arrive with a clone size of one, the first equation becomes

C1

N
+

(1� ✓)C1

N
=

C2

N
or C2 = C1 + (1� ✓)C1 , (8)

By induction we arrive at

Ci = C1 + (1� ✓)Ci�1 and Fi = Ci/i , for i = 1, 2, . . . , k . (9)

The balance equation for clones of size k has the additional term for the addition of a
single clone of size k from the thymus with probability ✓/k:

Ck

N
+

(1� ✓)Ck

N
=

(1� ✓)Ck�1

N
+

Ck+1

N
+

✓

k
. (10)

Because Ck = C1 + (1� ✓)Ck�1 and C1 = N✓/k, this simplifies to

Ck+1 = (1� ✓)Ck . (11)

The balance equation of Eq. (2) similarly delivers for all subsequent equations

Ck+j = (1� ✓)jCk , and Fk+j =
Ck+j

k + j
, for j = 1, 2, . . . ,1 , (12)

resembling the model for k = 1 of Eq. (4). The general model now consists of Eq. (9) for
i = 1, 2, . . . , k, and Eq. (12) for j = 1, 2, . . . ,1. Note that for k = 1 these two equations
indeed simplify to Eq. (4).

We observe that the steady state of bins larger than k are solved from just the death
from that bin (at rate Cj/N) and the division of cell in clone in the bin below (at rate
(1� ✓)Cj�1/N). Intuitively, this makes sense because there is no net flow of clones to the
left or right for clones larger than k cells. Hence, the net flux to the bin below should be
zero, and the net flux to the bin above is used to solve the steady state of the number of
clones in the bin above. This is not true for clones smaller than k cells, because in this
range there is a net flux of clones arriving in bin k and leaving the repertoire from bin
one.

2

Full model. As cells divide a few times in the thymus after rearranging the TCR they
are expected to arrive as small clones in the periphery. Defining k as the expected clone
size of RTE and leaving the definition of ✓ as the probability that a single cells arrives
from the thymus (and 1 � ✓ the probability that a single cell divides), new clones are
created at a rate ✓/k. Note that this extended model can also for situations where one
only measures the diversity of the �-chains of the TCR, and k could be interpreted as the
total number of RTE expressing a particular �-chain.

Since the loss of clones from the repertoire remains defined as C1/N we now arrive at

✓

k
=

C1

N
or C1 =

✓N

k
. (7)

The balance equation of Eq. (2) still holds, except for the first and the kth equation.
Because new clones no longer arrive with a clone size of one, the first equation becomes

C1

N
+

(1� ✓)C1

N
=

C2

N
or C2 = C1 + (1� ✓)C1 , (8)

By induction we arrive at

Ci = C1 + (1� ✓)Ci�1 and Fi = Ci/i , for i = 1, 2, . . . , k . (9)

The balance equation for clones of size k has the additional term for the addition of a
single clone of size k from the thymus with probability ✓/k:

Ck

N
+

(1� ✓)Ck

N
=

(1� ✓)Ck�1

N
+

Ck+1

N
+

✓

k
. (10)

Because Ck = C1 + (1� ✓)Ck�1 and C1 = N✓/k, this simplifies to

Ck+1 = (1� ✓)Ck . (11)

The balance equation of Eq. (2) similarly delivers for all subsequent equations

Ck+j = (1� ✓)jCk , and Fk+j =
Ck+j

k + j
, for j = 1, 2, . . . ,1 , (12)

resembling the model for k = 1 of Eq. (4). The general model now consists of Eq. (9) for
i = 1, 2, . . . , k, and Eq. (12) for j = 1, 2, . . . ,1. Note that for k = 1 these two equations
indeed simplify to Eq. (4).

We observe that the steady state of bins larger than k are solved from just the death
from that bin (at rate Cj/N) and the division of cell in clone in the bin below (at rate
(1� ✓)Cj�1/N). Intuitively, this makes sense because there is no net flow of clones to the
left or right for clones larger than k cells. Hence, the net flux to the bin below should be
zero, and the net flux to the bin above is used to solve the steady state of the number of
clones in the bin above. This is not true for clones smaller than k cells, because in this
range there is a net flux of clones arriving in bin k and leaving the repertoire from bin
one.
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Full model. As cells divide a few times in the thymus after rearranging the TCR they
are expected to arrive as small clones in the periphery. Defining k as the expected clone
size of RTE and leaving the definition of ✓ as the probability that a single cells arrives
from the thymus (and 1 � ✓ the probability that a single cell divides), new clones are
created at a rate ✓/k. Note that this extended model can also for situations where one
only measures the diversity of the �-chains of the TCR, and k could be interpreted as the
total number of RTE expressing a particular �-chain.

Since the loss of clones from the repertoire remains defined as C1/N we now arrive at
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. (7)

The balance equation of Eq. (2) still holds, except for the first and the kth equation.
Because new clones no longer arrive with a clone size of one, the first equation becomes
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By induction we arrive at

Ci = C1 + (1� ✓)Ci�1 and Fi = Ci/i , for i = 1, 2, . . . , k . (9)

The balance equation for clones of size k has the additional term for the addition of a
single clone of size k from the thymus with probability ✓/k:
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Because Ck = C1 + (1� ✓)Ck�1 and C1 = N✓/k, this simplifies to

Ck+1 = (1� ✓)Ck . (11)

The balance equation of Eq. (2) similarly delivers for all subsequent equations

Ck+j = (1� ✓)jCk , and Fk+j =
Ck+j

k + j
, for j = 1, 2, . . . ,1 , (12)

resembling the model for k = 1 of Eq. (4). The general model now consists of Eq. (9) for
i = 1, 2, . . . , k, and Eq. (12) for j = 1, 2, . . . ,1. Note that for k = 1 these two equations
indeed simplify to Eq. (4).

We observe that the steady state of bins larger than k are solved from just the death
from that bin (at rate Cj/N) and the division of cell in clone in the bin below (at rate
(1� ✓)Cj�1/N). Intuitively, this makes sense because there is no net flow of clones to the
left or right for clones larger than k cells. Hence, the net flux to the bin below should be
zero, and the net flux to the bin above is used to solve the steady state of the number of
clones in the bin above. This is not true for clones smaller than k cells, because in this
range there is a net flux of clones arriving in bin k and leaving the repertoire from bin
one.
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For	k=1	we	retrieve	the	original	model,	TREC	model	stays	the	same	θ	=	T/N

There is a closed form solution for the richness of the extended model, but for large k it
becomes unwieldy.

r =
1

(✓ � 1)k

"
✓N

k!
(1� ✓)f(k, ✓) + (�1)k�1Fk ln ✓

#

(13)

where f(1, ✓) = 0, f(2, ✓) = 1, f(3, ✓) = (5� 3✓), f(4, ✓) = 26 + ✓(11✓ � 31), and so on.

The Simpson diversity has a simple form

s = 1/
1X

i=1

Fi

✓
i

N

◆2

=
2✓N

2 + (k � 1)✓
, (14)

which surprisingly is a saturated function of ✓.
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Distributions for k=16
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N	=	107	cells;	θ	=	0.1	(θ	is	a	humanized	choice	here)



Distributions for k=16: with simulation
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N	=	107	cells;	θ	=	0.1;	109	events	(θ	is	a	humanized	choice	here)



Average clone size for k=1, 16 (human: N=1011)
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There is a closed form solution for the richness of the extended model, but for large k it
becomes unwieldy.
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where f(1, ✓) = 0, f(2, ✓) = 1, f(3, ✓) = (5� 3✓), f(4, ✓) = 26 + ✓(11✓ � 31), and so on.
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Diversity of human naive T cell pool (N=1011)

Age Thymic	output	 Richness	k=1 Richness	k=16

25	year θ	≈	0.2 4	x	1010 1.2	x	1010

75	year θ	≈	0.02 8	x	109 3.8	x	109

10	fold	decrease 5	fold	decrease 3.2	fold	decrease

A simple neutral model for a naive lymphocyte repertoire

Consider a fixed pool size of N naive T (or B) cells, and a stochastic process killing one
randomly chosen cell, and replacing it either with a new unique cell from the thymus (or
bone marrow) with probability ✓, or by allowing one of the N � 1 cells to divide (with
probability 1�✓). Each cell produced by the thymus is assumed to express a unique novel
TCR, and hence forms a new clone (of clone size one). Let Fi be the number of clones of
clone size i, and hence Ci = iFi be the total number of cells in all clones of clone size i
(i.e., N =

P
i Ci). Since the model is completely neutral, the probability that the random

death event will kill a cell from a clone of size i is Ci/N .

Simple model. Clones are lost from the repertoire when a cell from a clone of size one
dies, which happens with probability C1/N . A novel clone is born with probability ✓. At
steady state the loss and gain of clones from the repertoire has to balance, i.e.,

✓ =
C1

N
or C1 = ✓N . (1)

A steady state distribution of the number of clones at each particular size requires that
the loss of clones at a particular size i (by death of a cell at rate Ci/N and by division
at a rate (1� ✓)Ci/(N � 1)) balances the entry of a clone from size i� 1 (by division at
a rate (1 � ✓)Ci�1/(N � 1)) plus the loss of a clone from size i + 1 (by death at a rate
Ci+1/N). This translates in the classical steady state equation for random birth death
processes

Ci

N
+

(1� ✓)Ci

N
=

(1� ✓)Ci�1

N
+

Ci+1

N
for i = 2, 3, . . . ,1 , (2)

where we simplify using the fact that N is large (i.e., N � 1 ' N). Note that this is a
chain with a uniform birth rate � = (1 � ✓)/N and death rate µ = 1/N . Since clones of
size zero are not defined, we write for the first equation

C1

N
+

(1� ✓)C1

N
= ✓ +

C2

N
or C2 = (1� ✓)C1 , (3)

By induction we arrive at

Ci = (1� ✓)Ci�1 = (1� ✓)i�1✓N and Fi = Ci/i , for i = 1, 2, . . . ,1 . (4)

The total number of clones (i.e., the richness) in the steady state repertoire is simply the
sum over all clone numbers, Fi,

r =
1X

i=1

Fi =
✓N ln ✓

✓ � 1
, (5)

and the Simpson diversity, 1/
P1

j (nj/N)2 where nj is the number of cells comprising clone
j, is given by summing over all clone sizes, i.e.,

s = 1/
1X

i=1

Fi

✓
i

N

◆2

= ✓N = C1 , (6)

1
Age Thymic	output	 Simpson	k=1 Simpson	k=16

25	year θ	≈	0.2 2	x	1010 8	x	109

75	year θ	≈	0.02 2	x	109 1.7	x	109

10	fold	decrease 10	fold	decrease 4.7	fold	decrease

There is a closed form solution for the richness of the extended model, but for large k it
becomes unwieldy.

r =
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"
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#

(13)

where f(1, ✓) = 0, f(2, ✓) = 1, f(3, ✓) = (5� 3✓), f(4, ✓) = 26 + ✓(11✓ � 31), and so on.

The Simpson diversity has a simple form
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◆2

=
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2 + (k � 1)✓
, (14)

which surprisingly is a saturated function of ✓.
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A simple neutral model for a naive lymphocyte repertoire

Consider a fixed pool size of N naive T (or B) cells, and a stochastic process killing one
randomly chosen cell, and replacing it either with a new unique cell from the thymus (or
bone marrow) with probability ✓, or by allowing one of the N � 1 cells to divide (with
probability 1�✓). Each cell produced by the thymus is assumed to express a unique novel
TCR, and hence forms a new clone (of clone size one). Let Fi be the number of clones of
clone size i, and hence Ci = iFi be the total number of cells in all clones of clone size i
(i.e., N =

P
i Ci). Since the model is completely neutral, the probability that the random

death event will kill a cell from a clone of size i is Ci/N .

Simple model. Clones are lost from the repertoire when a cell from a clone of size one
dies, which happens with probability C1/N . A novel clone is born with probability ✓. At
steady state the loss and gain of clones from the repertoire has to balance, i.e.,

✓ =
C1

N
or C1 = ✓N . (1)

A steady state distribution of the number of clones at each particular size requires that
the loss of clones at a particular size i (by death of a cell at rate Ci/N and by division
at a rate (1� ✓)Ci/(N � 1)) balances the entry of a clone from size i� 1 (by division at
a rate (1 � ✓)Ci�1/(N � 1)) plus the loss of a clone from size i + 1 (by death at a rate
Ci+1/N). This translates in the classical steady state equation for random birth death
processes
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+

(1� ✓)Ci

N
=

(1� ✓)Ci�1

N
+

Ci+1

N
for i = 2, 3, . . . ,1 , (2)

where we simplify using the fact that N is large (i.e., N � 1 ' N). Note that this is a
chain with a uniform birth rate � = (1 � ✓)/N and death rate µ = 1/N . Since clones of
size zero are not defined, we write for the first equation
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N
+

(1� ✓)C1

N
= ✓ +
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N
or C2 = (1� ✓)C1 , (3)

By induction we arrive at

Ci = (1� ✓)Ci�1 = (1� ✓)i�1✓N and Fi = Ci/i , for i = 1, 2, . . . ,1 . (4)

The total number of clones (i.e., the richness) in the steady state repertoire is simply the
sum over all clone numbers, Fi,

r =
1X

i=1

Fi =
✓N ln ✓

✓ � 1
, (5)

and the Simpson diversity, 1/
P1

j (nj/N)2 where nj is the number of cells comprising clone
j, is given by summing over all clone sizes, i.e.,

s = 1/
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= ✓N = C1 , (6)
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Aging in mice: from θ=0.99 to θ=0.9 (k=8)
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Full model. As cells divide a few times in the thymus after rearranging the TCR they
are expected to arrive as small clones in the periphery. Defining k as the expected clone
size of RTE and leaving the definition of ✓ as the probability that a single cells arrives
from the thymus (and 1 � ✓ the probability that a single cell divides), new clones are
created at a rate ✓/k. Note that this extended model can also for situations where one
only measures the diversity of the �-chains of the TCR, and k could be interpreted as the
total number of RTE expressing a particular �-chain.

Since the loss of clones from the repertoire remains defined as C1/N we now arrive at
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k
=
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N
or C1 =

✓N

k
. (7)

The balance equation of Eq. (2) still holds, except for the first and the kth equation.
Because new clones no longer arrive with a clone size of one, the first equation becomes
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or C2 = C1 + (1� ✓)C1 , (8)

By induction we arrive at

Ci = C1 + (1� ✓)Ci�1 and Fi = Ci/i , for i = 1, 2, . . . , k . (9)

The balance equation for clones of size k has the additional term for the addition of a
single clone of size k from the thymus with probability ✓/k:
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Because Ck = C1 + (1� ✓)Ck�1 and C1 = N✓/k, this simplifies to

Ck+1 = (1� ✓)Ck . (11)

The balance equation of Eq. (2) similarly delivers for all subsequent equations

Ck+j = (1� ✓)jCk , and Fk+j =
Ck+j

k + j
, for j = 1, 2, . . . ,1 , (12)

resembling the model for k = 1 of Eq. (4). The general model now consists of Eq. (9) for
i = 1, 2, . . . , k, and Eq. (12) for j = 1, 2, . . . ,1. Note that for k = 1 these two equations
indeed simplify to Eq. (4).

We observe that the steady state of bins larger than k are solved from just the death
from that bin (at rate Cj/N) and the division of cell in clone in the bin below (at rate
(1� ✓)Cj�1/N). Intuitively, this makes sense because there is no net flow of clones to the
left or right for clones larger than k cells. Hence, the net flux to the bin below should be
zero, and the net flux to the bin above is used to solve the steady state of the number of
clones in the bin above. This is not true for clones smaller than k cells, because in this
range there is a net flux of clones arriving in bin k and leaving the repertoire from bin
one.
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Full model. As cells divide a few times in the thymus after rearranging the TCR they
are expected to arrive as small clones in the periphery. Defining k as the expected clone
size of RTE and leaving the definition of ✓ as the probability that a single cells arrives
from the thymus (and 1 � ✓ the probability that a single cell divides), new clones are
created at a rate ✓/k. Note that this extended model can also for situations where one
only measures the diversity of the �-chains of the TCR, and k could be interpreted as the
total number of RTE expressing a particular �-chain.

Since the loss of clones from the repertoire remains defined as C1/N we now arrive at
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The balance equation of Eq. (2) still holds, except for the first and the kth equation.
Because new clones no longer arrive with a clone size of one, the first equation becomes
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or C2 = C1 + (1� ✓)C1 , (8)

By induction we arrive at

Ci = C1 + (1� ✓)Ci�1 and Fi = Ci/i , for i = 1, 2, . . . , k . (9)

The balance equation for clones of size k has the additional term for the addition of a
single clone of size k from the thymus with probability ✓/k:
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Because Ck = C1 + (1� ✓)Ck�1 and C1 = N✓/k, this simplifies to

Ck+1 = (1� ✓)Ck . (11)

The balance equation of Eq. (2) similarly delivers for all subsequent equations

Ck+j = (1� ✓)jCk , and Fk+j =
Ck+j

k + j
, for j = 1, 2, . . . ,1 , (12)

resembling the model for k = 1 of Eq. (4). The general model now consists of Eq. (9) for
i = 1, 2, . . . , k, and Eq. (12) for j = 1, 2, . . . ,1. Note that for k = 1 these two equations
indeed simplify to Eq. (4).

We observe that the steady state of bins larger than k are solved from just the death
from that bin (at rate Cj/N) and the division of cell in clone in the bin below (at rate
(1� ✓)Cj�1/N). Intuitively, this makes sense because there is no net flow of clones to the
left or right for clones larger than k cells. Hence, the net flux to the bin below should be
zero, and the net flux to the bin above is used to solve the steady state of the number of
clones in the bin above. This is not true for clones smaller than k cells, because in this
range there is a net flux of clones arriving in bin k and leaving the repertoire from bin
one.
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LogLog Plot: power law in experimental data?
Zarnitsyna	et	al.,	2013

Clone	size

θ	=	0.1

Mouse:	N	=	107	cells	(k=1)

θ	=	0.01

1 5 10 50 100 500
Clone size

100

10000

1000000
Number of clones



Conclusions

Simple	birth	death	model	describing	clone	size	distribution	
Model	can	simulate	a	whole	mouse	
Solution	predicts	human	dynamics	

Richness	declines	slower	than	thymic	output	(steady	state	&	transient)	
Simpson	diversity	is	proportional	to	thymic	output	

Simpson	diversity	would	overestimate	effect	of	aging	
In	young	adult	and	in	old	mice	we	expect	mostly	singletons


