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A T cell immune response to a mouse virus (LCMV)

Just a few cells (< 100) start divide around day 3, 
they peak at day 8, decline, and then persist (memory)

antigen concentration to achieve a similar degree of stimula-
tion as the NP118 response. We also consider a worst-case
scenario by assuming that the activation function is the same
for the different biological processes in the model, i.e., activa-
tion, proliferation, and apoptosis are all governed by the same
K parameter. Our model with a single K parameter is a special
case of a model allowing for different values of the K param-
eter. Because we can fit the data with a single K, it is clear that
we could also fit the data to a model having several K param-
eters; however, we would have little confidence in the various
K values.

Figure 4 depicts the actual activation, proliferation, and ap-
optosis rates over time. Note that in the continuous model,
proliferation, for example, occurs at rate !F(V) per cell. Con-
sistent with the results of the on-off model, we find small
differences in the actual values of several rates. The largest
difference seems to be that the actual proliferation rate de-
clines more slowly in response to the dominant epitope. This
extends the proliferation period and allows a larger clonal
expansion.

As shown in Fig. 4, the time courses for the activation rates
are very similar for both epitopes. Thus, there is little differ-
ence in the recruitment rate of naive CD8" T cells specific for
the two epitopes. Since our activation function depends only

on the viral load and not on the time of the response, the
model suffers from the artifact that the apoptosis rate is high
early in the response when the viral load is still low (Fig. 4).
This is probably not realistic but hardly affects the behavior of
the model because there are very few activated cells present at
this early state of the response (Fig. 3). Summarizing, the data
are most parsimoniously explained by a 3.5-fold difference in
the parameters K, i.e., by a difference in the antigen concen-
tration required for half-maximal stimulation.

DISCUSSION

We have developed two simple models for the CD8" T-cell
response to LCMV in mice. In one of the models, we assumed
that T-cell activation is an all-or-none process, while in a more
complex model we allowed a continuous change in activation
level. Using these models, we have shown that the immune
responses to the dominant NP118 epitope and the subdomi-
nant GP283 epitope in the LCMV CD8" T-cell immune re-
sponse may involve differences in the proliferation period and
the actual proliferation rates. The most parsimonious explana-
tion for these differences is a difference in the antigenic stim-
ulation of the two responses. In our model the subdominant
response requires a 3.5-fold-higher antigen load than the dom-

FIG. 3. Dynamics of the NP118- and GP283-specific cell populations in the continuous model. (A) Broken line gives the viral load in PFU per
spleen (14), the heavy line gives the total population size of the NP118 response, and the light line gives that of the GP283 response. (B)
Subpopulations within each clone. Solid lines depict activated cells, long-dashed lines show memory cells, and short-dashed lines show naive cells
(14).

TABLE 4. Parameter estimates for the NP118 and GP283 epitopes obtained by simultaneously fitting the data
for both epitopes in the continuous modela

Parameter Symbol Units
Both epitopes NP118 GP283

Value 95% Value 95% Value 95%

Apoptosis rate # Day$1 0.41 0.31–0.58
Proliferation rate ! Day$1 2.92 2.74–3.10
Memory cell formation r Day$1 0.015 0.009–0.024
Saturation constant K PFU 3.8 % 104 1.9–6.1 1.3 % 105 0.87–1.9

a The parameters a & 1 day$1, 'M & 10$5 day$1 and N(0) & 60 cells were fixed. The summed squared residuals is SSR & 11.4, which is only somewhat poorer than
that of the piecewise linear model.
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CD8 T cell responses to several “epitopes” of the virus

Inset is 912 days: memory lasts “forever”

Six CD8 epitopes: immunodominance of responses

0 14 28 42

Days after LCMV

10
3

10
4

10
5

10
6

10
7

10
8

S
p
e
c
if
ic

 C
D

8
 T

 c
e
lls

 p
e
r 

s
p
le

e
n

GP33

0 14 28 42
Days after LCMV

103

104

105

106

107

108

S
pe

ci
fic

 C
D

8 
T 

ce
lls

 p
er

 s
pl

ee
n

NP396

0 14 28 42
Days after LCMV

103

104

105

106

107

108

S
pe

ci
fic

 C
D

8 
T 

ce
lls

 p
er

 s
pl

ee
n

GP118

0 14 28 42
Days after LCMV

103

104

105

106

107

108

S
pe

ci
fic

 C
D

8 
T 

ce
lls

 p
er

 s
pl

ee
n

GP276

0 14 28 42
Days after LCMV

103

104

105

106

107

108

S
pe

ci
fic

 C
D

8 
T 

ce
lls

 p
er

 s
pl

ee
n

NP205

0 14 28 42
Days after LCMV

103

104

105

106

107

108

S
pe

ci
fic

 C
D

8 
T 

ce
lls

 p
er

 s
pl

ee
n

GP92

Immunodominance “explained” by small differences in re-
cruitment (and division rates for the last two).
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Towards a more quantitative immunology
Systems biology: new type of questions:

What is the expected life span of a normal naive T cell, and how 
are these cells maintained (thymus/renewal & mouse/man*)?

What is the life span of an effector/memory T cell?
How does a virus like HIV interfere with these normal population 
dynamics, and how does that cause the depletion of CD4+ T cells?

What fraction of the naive T cell population is composed of
short-lived RTE and long-lived truly naive T cells, and what is 

actually the expected life span within each subset?

Approach:
Labeling experiments with deuterium, BrdU and CFSE
Interpret data with appropriate mathematical models

*Den Braber et al. Immunity 2012



Population at steady state maintained by
renewal source

Turnover rate, average 
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Examples of labeling with deuterium in volunteers

People drink 4% heavy water for T=9 weeks and are followed for another 
16 weeks.  Naive and memory T cells are sorted from the blood and the 

deuterium enrichment in their DNA is measured my mass-spec 
Deuterium labeling much easier to interpret than BrdU labeling
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DNA strands largely disappear by cell death.
Model loss of unlabeled strands during up-labeling: 

dU/dt = -dU or L(t) = 1-e-dt

and the loss of labeled strands during down-labeling: 
dL/dt = -dL or L(t) = L(T)e-d(t-T)

0:10 2:10 4:10

D2O D2O H2O

3:10L:U

Modeling seems relatively easy
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Three examples of quite different deuterium studies

Vrisekoop et al, PNAS 2008

Macallan et al, Eur J Imm 2003
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fall of labeled DNA were obviously greater than those ob-
served in normal controls, even in P5 who was given
D-glucose for 4.3 d. Likewise, the peak labeling was con-
sistently higher in infected individuals, with some reaching
a labeled fraction of !0.20. Interestingly, the lowest deu-
terium incorporation in infected subjects was seen in P3,
the one with the lowest viral load (Table I). There was no
consistent relationship noted when comparing labeling
profiles in CD4! versus CD8! lymphocytes. Overall, the
findings in Fig. 3 provide a qualitative impression that
lymphocyte turnover is substantially more rapid in infected
patients than in normal persons.

Proliferation and Death Rates of CD4! and CD8! T Cells
Are Elevated Several-fold in HIV-1 Infection. To obtain
quantitative estimates of CD4! and CD8! T cell turnover
from the data, we developed a new mathematical model of
lymphocyte dynamics that tracks the number of deute-
rium-labeled and unlabeled strands of cellular DNA before,
during and after D-glucose administration (Fig. 1 and Ma-
terials and Methods). Then we used the model to fit the la-
beling results generated from CD4! and CD8! T cells
from each study subject as described in Materials and
Methods. As shown in Fig. 3, a good fit of the theory to
the data was obtained in every case. In so doing, rate esti-
mates of cellular proliferation (p) and death (d) were de-
rived for both lymphocyte populations in each subject (Ta-
ble I). By comparing the mean value of p for CD4! T cells
of normal individuals (0.004/d) to that of infected patients
(0.025/d), it was clear that proliferation rates were signifi-
cantly increased (!6.3-fold) in HIV-1 infection (P value
"0.01). A similar comparison of mean values of d (0.044/d

vs. 0.129/d) showed CD4! lymphocyte death rates to be
significantly elevated (approximately threefold) in infected
individuals (P value "0.04). Likewise, the mean value of p
for CD8! T cells was significantly higher (!7.7-fold) in
patients (0.023/d) than in normal controls (0.003/d) (P
value "0.01), although mean values of d for the two
groups were not significantly different (0.050/d vs. 0.043/
d). These quantitative estimates, therefore, validate the
qualitative impression above that HIV-1 infection results in
a faster turnover of both CD4! and CD8! T cells.

Source of CD4! T Cells May Increase in HIV-1 Infection.
Note that in Table I the data fitting also provided esti-
mates for , which is, to a good approximation, the frac-
tion of T cells in the proliferating compartment input
from a source per day (Fig. 1, references 18 and 19). The
mean value of   for CD4! lymphocytes in infected pa-
tients (0.123/d) was significantly higher (P value "0.05)
than in normal persons (0.033/d); however, the mean val-
ues of   for CD8! lymphocytes were not very different
(0.031/d vs. 0.040/d) between the two groups. There was
no evidence to suggest that HIV-1 infection results in a
decrease of CD4! T cells coming from a source. As we
have discussed previously (7, 18, 19), this source could be
the thymus or merely a population of resting or slowly di-
viding lymphocytes that upon activation would undergo
rapid clonal expansion and enter the pool of cells acquir-
ing label during the experiment. A model that includes
separate populations of resting and proliferating T cells can
also fit the data and supports the concept that the source
corresponds to activation of resting cells (unpublished
data).

ŝU

ŝU

ŝU

Figure 3. Sequential changes
in the fraction of labeled DNA in
blood T lymphocytes. The data
of healthy controls (C1–C4) ver-
sus HIV-1–infected patients (P1–
P7) are shown in each graph.
The period of D-glucose admin-
istration is indicated by a box
(top left corner). The data points
are represented by symbols, and
the lines show the best fit of the
data to a mathematical model.
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Fig. 1. Enrichment curves for lymphocyte subsets. Enrichment of deuterium in deoxyadenosine (mean±SD of triplicate measure-
ments) in lymphocyte populations following 24-h infusion of 6,6-D2-glucose. Values are expressed as proportion of labeled cells
relative to total cells in each subpopulation (equivalent to A*/(Ab) in the model in Fig. 2); lines represent best-fit curves.

from the pool and includes both death within and exit
from the pool, the latter either by trafficking or by pheno-
typic transformation.

During the labeling period, if a cell divides, then each of
the two new cells produced will contain one strand of

original DNA and one newly synthesized strand [16]. The
newly synthesized strands, equivalent to the number of
new cells, will contain labeled deoxyadenosine, the
quantity of which will depend upon the proportion of
deoxyadenosine triphosphate molecules that are
labeled. As the deoxyribose moiety of deoxyadenosine is

2318 D.C. Macallan et al. Eur. J. Immunol. 2003. 33: 2316–2326

Mohri et al, J Exp Med 2001
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fall of labeled DNA were obviously greater than those ob-
served in normal controls, even in P5 who was given
D-glucose for 4.3 d. Likewise, the peak labeling was con-
sistently higher in infected individuals, with some reaching
a labeled fraction of !0.20. Interestingly, the lowest deu-
terium incorporation in infected subjects was seen in P3,
the one with the lowest viral load (Table I). There was no
consistent relationship noted when comparing labeling
profiles in CD4! versus CD8! lymphocytes. Overall, the
findings in Fig. 3 provide a qualitative impression that
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patients than in normal persons.
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rium-labeled and unlabeled strands of cellular DNA before,
during and after D-glucose administration (Fig. 1 and Ma-
terials and Methods). Then we used the model to fit the la-
beling results generated from CD4! and CD8! T cells
from each study subject as described in Materials and
Methods. As shown in Fig. 3, a good fit of the theory to
the data was obtained in every case. In so doing, rate esti-
mates of cellular proliferation (p) and death (d) were de-
rived for both lymphocyte populations in each subject (Ta-
ble I). By comparing the mean value of p for CD4! T cells
of normal individuals (0.004/d) to that of infected patients
(0.025/d), it was clear that proliferation rates were signifi-
cantly increased (!6.3-fold) in HIV-1 infection (P value
"0.01). A similar comparison of mean values of d (0.044/d

vs. 0.129/d) showed CD4! lymphocyte death rates to be
significantly elevated (approximately threefold) in infected
individuals (P value "0.04). Likewise, the mean value of p
for CD8! T cells was significantly higher (!7.7-fold) in
patients (0.023/d) than in normal controls (0.003/d) (P
value "0.01), although mean values of d for the two
groups were not significantly different (0.050/d vs. 0.043/
d). These quantitative estimates, therefore, validate the
qualitative impression above that HIV-1 infection results in
a faster turnover of both CD4! and CD8! T cells.

Source of CD4! T Cells May Increase in HIV-1 Infection.
Note that in Table I the data fitting also provided esti-
mates for , which is, to a good approximation, the frac-
tion of T cells in the proliferating compartment input
from a source per day (Fig. 1, references 18 and 19). The
mean value of   for CD4! lymphocytes in infected pa-
tients (0.123/d) was significantly higher (P value "0.05)
than in normal persons (0.033/d); however, the mean val-
ues of   for CD8! lymphocytes were not very different
(0.031/d vs. 0.040/d) between the two groups. There was
no evidence to suggest that HIV-1 infection results in a
decrease of CD4! T cells coming from a source. As we
have discussed previously (7, 18, 19), this source could be
the thymus or merely a population of resting or slowly di-
viding lymphocytes that upon activation would undergo
rapid clonal expansion and enter the pool of cells acquir-
ing label during the experiment. A model that includes
separate populations of resting and proliferating T cells can
also fit the data and supports the concept that the source
corresponds to activation of resting cells (unpublished
data).
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average turnover rate of the T cell population is not necessarily
equal to the loss rate of labeled cells (28).

The median turnover rates of naı̈ve CD4 and CD8 T cells were
found to be as low as p ! 0.0005 and 0.0003 per day, corre-
sponding to median half-lives of 1,517 and 2,374 days for naı̈ve
CD4 and CD8 T cells, respectively (Fig. 2 and Tables 1 and 2).
The turnover rates of memory CD4 and CD8 T cells were found
to be "10-fold higher, i.e., p ! 0.0045 and 0.0028 per day,
corresponding to half-lives of 155 and 244 days for memory CD4
and CD8 T cells, respectively. Using the individual naı̈ve CD4
and CD8 T cell counts revealed a median naı̈ve CD4 T cell
production of 8.2 # 107 cells per day and a median naı̈ve CD8
T cell production of 2.4 # 107 per day (Table 3). Because this
daily production of new naı̈ve T cells is the sum of thymic output
and homeostatic proliferation within the naı̈ve T cell pool, our
data provide an upper estimate of daily thymic production of
1.7 # 108 T cells per day (see Table 3).

The median rates at which labeled memory CD4 and CD8 T cells
were lost from the memory population were found to be 0.0145 and
0.0098 per day, respectively. Interestingly, in none of the individuals
did we find a significant loss of labeled naı̈ve CD4 or CD8 T cells
during the 16 weeks after cessation of label (Fig. 2 and Table 1),
indicating that newly produced naı̈ve T cells—whether produced by
the thymus or by peripheral T cell proliferation—had a longer
expected life span than the average naı̈ve T cell. Our data are
therefore not compatible with the presence of a substantial short-
lived RTE pool in adult healthy humans.

Discussion
By in vivo labeling of T cell subsets using 2H2O and mathematical
analysis of label enrichment, our data provide reliable estimates for
the average turnover rates of naı̈ve and memory CD4 and CD8 T
cells in healthy adults. Although isotope labeling studies in humans

are typically restricted to blood, it has been reported that labeling
kinetics in human T cells derived from blood and lymphoid tissues
are comparable (29). Label incorporation in T cells derived from
mouse peripheral lymph nodes and spleen was also similar (un-
published data). Seemingly, there is little difference in labeling of
the analyzed T cell subsets derived from the different lymphoid
compartments.

The very low accumulation of label in naı̈ve T cells ($5%) that
we observed after 9 weeks of up-labeling is compatible with the
data reported by Hellerstein et al. (20). Our median estimated
half-lives between 1,517 and 2,374 days for naı̈ve T cells and
between 155 and 244 days for memory T cells are, however, much
longer than previous estimates based on stable-isotope labeling,
which varied from 112 to 361 days for naı̈ve T cells and from 14
to 235 days for memory T cells (25). The use of T cell death rates,
which overestimate T cell turnover because of the bias toward
cells that have recently divided (30), and the lack of data points
during the up-labeling phase in previous short-term labeling
experiments might explain these discrepancies. Michie et al. (6)
used the presence of T cells with dicentric chromosomes after
radiation to measure the half-life of naı̈ve and memory T cells.
They estimated a half-life of 182 days for CD45RO% and 630
days for CD45RA% T cells. Because CD45RA% T cells can
contain a substantial fraction of effector (CD45RA%CD27&)
cells, we additionally used CD27 expression on CD45RA% T
cells to identify naı̈ve T cells. This difference in definition of the
naı̈ve subset may explain the difference in the estimated life
spans between these studies. Furthermore, it is conceivable that
the half-lives of T cells were affected by radiation.

The origin of variation in the calculated half-lives of the adult
humans is unknown: No relation was found between this parameter
and T cell counts, Ki67 expression, or age. The relative differences
in calculated half-lives were, however, in the same range as the
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Length of labeling period increases estimated life spans

Borghans & De Boer, Imm Rev 2007; De Boer & Perelson, JTB, submitted.

depending on whether 2H2-glucose or 2H2O has been
used for the labelling. Another problem is that the
upslopes and the downslopes depend on the period of
labelling, with steeper slopes for shorter labelling periods
[1] (figure 1a). For the downslopes, this is relatively well
understood because Asquith et al. [16] demonstrated that
whenever the population is kinetically heterogeneous,
the labelled fraction will initially be enriched in cells
with a higher than average turnover rate. For the
upslopes, this is not understood. The initial upslope
should reflect the average turnover rate [1,16], and
there should be one unique labelling curve that monoto-
nically approaches the asymptote, L(1) ¼ 1, where all
cells are labelled. Thus, in situations where the estimated
upslope seems to depend on the labelling period, one
either has insufficient data to determine the one
common slope, and/or one is fitting the true labelling
curve with an incorrect model.

One of the major problems for interpreting labelling
experiments is that we do not know which mathematical
model should be employed to fit the data, and that truly
realistic models have so many parameters that one would
be overfitting the simple up- and downslopes of deuterium
enrichment over time. The appropriate model may also
depend on the cells types that have been labelled, as
naive T cells, self-renewing memory T cells and clonally
expanding effector T cells have very different dynamics.
Even if one deals with a single population of sorted
cells, the population may still be heterogeneous. Here,
we will analyse two types of heterogeneity: heterogeneity
in phenotype, i.e. what type of cell; and in history, i.e.
what has recently happened to the cell [3], which have
been called ‘kinetic heterogeneity’ and ‘temporal hetero-
geneity’, respectively [20]. Kinetic heterogeneity implies
that there exist separate subpopulations of cells that

have different turnover rates. Temporal heterogeneity is
more subtle and implies that a cell may transiently have
a different turnover rate. For example, lymphocytes
after being activated may have an increased death rate,
a phenomenon called activation-induced cell death.

Currently, there is reasonable consensus on what
models to use for describing the labelling of a possibly
heterogeneous population of cells that are turning over
at different rates. Ganusov et al. [20] demonstrated
that the several models that have previously been
used for describing kinetically heterogeneous popu-
lations [8,16,21] can all be written as a model for n
independent subpopulations, each turning over at a
rate di,

LðtÞ ¼
P

aið1$ e$ditÞ; if t % tend;P
aið1$ e$ditendÞe$diðt$tendÞ; otherwise;

!

ð1:1Þ

where ai is the fraction of cells with turnover rate di,
and tend defines the end of the labelling phase [20].
The first equation describes the kinetics of label acqui-
sition from which one can derive the upslope. The
second equation describes the kinetics of label loss
after the end of the labelling period, from which one
can derive the downslope. For the case of just one popu-
lation, n ¼ 1 and no asymptote, a1 ¼ 1, this model is
formally identical to the precursor product model that
Hellerstein [22] used to describe deuterium data. For
the case n ¼ 1 and a1 , 1, the model has been shown
[20] to be identical to the model of Asquith et al. [16],
and to that used by Mohri et al. [8]. For n ! 1, this
model can be used to describe populations with a
continuous distribution of turnover rates [20]. The
average turnover rate of the model is defined as
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Figure 1. Examples of memory T cell kinetics inferred from deuterium labelling. (a) Half-lives of memory T cells taken from
table 1 in Borghans & De Boer [1]. The half-life is based on the average proliferation rate (i.e., the upslope of labelling) estimated
in various deuterium labelling experiments, and is not expected to depend on the length of labelling period [1,16]. The bullets and
the squares represent the CD4 and CD8 estimates, and the solid and the dashed lines depict their averages, respectively. The data
points at a labelling period of 63 days were obtained with heavy water labelling, all others with D-glucose labelling; see Borghans
& De Boer [1] for a discussion the various data sets. The horizontal axis is logarithmic to bring the time points closer together.
(b) Raw deuterium enrichment data of the CD4þ (bullets) and CD8þ (squares) memory T cells from subject E in Vrisekoop et al.
[10], which is their case with the most dense time sampling. Label was withdrawn at day 63. The vertical axis is logarithmic to
better see the biphasic decline. The dashed thin lines depict the extrapolation of the initial downslope between day 63 and 75, and
illustrate that late time points remain above those lines. Since the half-life of heavy water is relatively slow, i.e. 5–10 days [10],
this simple extrapolation is conservative as some of the dividing cells continue to become labelled between day 63 and 75. Fitting
one and two compartment models like equation (1.1) to these data confirms that all memory T cell data from these healthy
volunteers [10] show evidence of heterogeneity [19].
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infusion, thereby losing all information from other data points,

making the estimates vulnerable to variation.

More recently, Hellerstein et al. (54) presented the results of

the first long-term labeling experiment based on 9 weeks of

administration of deuterated water. The non-linear accrual

of isotope label that was observed during administration of
2H2O was intuitively interpreted to reflect the turnover of

different subpopulations within the total and E/M CD4þ and

CD8þ T-cell pools. However, even based on the precursor–

product relationship, a non-linear accrual of label would be

expected. Indeed, using Eqn 9 to estimate the cellular half-lives

from the level of enrichment attained after 5 and 9 weeks of

label administration gives very similar estimates for the

replacement rate k. The estimated half-lives of total CD4þ

(385 days), total CD8þ (420 days), E/M CD4þ (213 days), and

E/M CD8þ (235 days) T cells based on this study were,

however, several folds larger than those of the previous studies

based on deuterated glucose labeling (Table 1).

An important limitation of the use of the precursor–product

relationship in the interpretation of labeling data is that it only

measures the net accrual of label. Cells that have taken up label

during division but are lost from the population during the

labeling period do not contribute to the turnover measured by

the precursor–product relationship. The use of the precursor–

product relationship is therefore expected to underestimate the

extent of T-cell turnover, especially during long-term labeling,

when the chance to loose labeled cells during the labeling

period is large. Although the single parameter k that can be

estimated by the use of the precursor–product relationship is

a natural parameter in terms of protein chemistry, it may be very

hard to interpret in immunological terms. A perfect illustration

of this problem was given when stable-isotope-labeling data

from healthy individuals and HIV-infected patients with and

without therapy were compared (2). The maximal level of

label enrichment that was achieved after 2-day labeling with

deuterated glucose was found to be the lowest in healthy

individuals and the highest in patients with HIV on highly active

anti-retroviral treatment (HAART). As a result, the replacement

rate k was found to be higher in patients on HAART than in

untreated patients with HIV and healthy individuals. From these

data, the paradoxical conclusion was drawn that the half-life of

T cells in patients onHAART is shorter than in untreated patients

and that themechanismbywhichHAART increases the CD4þT-

cell count in patients with HIV is not through increased CD4þ T-

cell survival but by increased production of new CD4þ T cells

(2). Moreover, these data were taken as evidence for increased

CD4þ T-cell production during HAART because the absolute

CD4þ T-cell production rate, that is kmultiplied by the CD4þ T-

cell count, was found to be higher in patients on HAART than

in untreated patients. Analogously, it was argued that HIV

infection decreases the half-life of CD4þ T cells and that there is

no increased CD4þ T-cell production to compensate for this

reduced survival because kwas higher in patients with HIV than

in healthy individuals, whereas the absolute CD4þ T-cell

production rate was not. These interpretations may fail for two

reasons. First, the absolute CD4þ T-cell production rates that

were calculated are largely determined by the CD4þ T-cell

counts of the individuals, and it may thus not be surprising that

they were higher in patients on HAART than in untreated

patients. Second, high levels of enrichment may be as a result of

high levels of T-cell proliferation or increased survival of cells

that have recently picked up label (see below). The fact that

Table 1. Average half-lives (in days) of different T-cell populations in healthy individuals estimated by stable isotope labeling

Reference (2) (53) (54) (7) (8) (55) (56) (57) (Vrisekoop et al.)

Method 2H2-glucose
2H2-glucose

2H2O
2H2-glucose

2H2-glucose
2H2-glucose

2H2-glucose
2H2-glu-
cose

2H2O

Label period 2 days 2 days 9 weeks 1 week 1 week 1 day 1 day 1 day 9 weeks

Model pp pp pp 1comp 2comp Asq Asq Asq Asq

CD4 87 82 385 173 154
CD8 77 139 420 231 257
Naive CD4 187 118 361 119 184 1517
Naive CD8 204 154 131 112 2398
Memory CD4 80 213 26 21 28 36 155
Memory CD8 40 235 14 18 24 244

The half-lives have been recalculated from previous studies (2, 7, 8, 53, 54, 55–57). For every model distinguishing between proliferation and death rates,
we based the half-life on the proliferation rate (which is mostly based on the upslope during the labeling period) because the downslope reflects the
turnover rate of labeled cells (6, 58), which tends to be faster than the average turnover rate. pp, precursor–product relationship; 1comp and 2comp, 1-
and 2-compartment mathematical models, respectively; Asq, the model by Asquith et al. (6) accounting for cellular heterogeneity. The two columns
under ref (57) refer to T-cell half-lives measured in young and elderly individuals, respectively.
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Data have mostly been interpreted with models having one exponential

with asymptote α, turnover rate d & average turnover rate αd.
(models used by Asquith (p= αd) and Mohri are mathematically equivalent)

So why then are the estimates of αd so different?

d is the death rate of cells carrying labeled strands. For the de-labeling phase they assumed
dL/dt = −dL, resulting in the following model

L(t) =

{
p
d(1− e−dt) , if t ≤ Tend ,
L(Tend)e−d(t−Tend), otherwise ,

(18)

with an initial up-slope of p, and where d ≥ p so that the asymptote p/d ≤ 1. The
average proliferation rate in this model defines the average turnover rate of the population
[6], and should hence be equal to the average death rate if the population is at steady state.
The death rate of labeled cells, d, is required to be larger than the average turnover rate
p because initially the labeled sub-population is expected to be enriched in cells with a
more rapid turnover. Only after long labeling periods, i.e., when a large enough fraction
of the populations is labeled, Asquith et al. [6] expect that the death rate of labeled cells
approaches the average turnover, i.e., d → p. Thus, the reason that ultimately not all cells
become labeled in Eq. (18) is a consequence of the fact that for any labeling period the
model assumes a fixed death rate, d, although this death rate should actually be declining
and ultimately approach the average turnover p. Only when d→ p the asymptote approaches
one. Labeling curves obtained from a kinetically heterogeneous population would by this
single exponential model be fitted with a d > p parameter regime.

This model is intuitively attractive because one indeed expects that labeled cells are enriched
in cells with a more rapid turnover, and hence that labeled and unlabeled cells could have
different death rates. The model remains phenomenological however and is difficult to derive
mechanistically. For instance, if one were to start from the other end by only writing an
equally correct equation for the unlabeled fraction, i.e., dU/dt = −dUU , where dU < d is the
slower death rate of the unlabeled fraction, one would see that adding these two equations
fail to conserve the total amount of DNA, i.e., dL/dt+dU/dt %= 0. Another criticism is that
if a population is truly heterogeneous the up and down slopes in the data should not be single
exponentials, and instead reflect the ignored change in the turnover rates of unlabeled and
labeled cells over time. Indeed, it seems an inconsistent approximation to write in Eq. (18)
that dL/dt = p(U +L)−dL, saying cells carrying labeled or unlabeled strands of DNA divide
at the same rate, i.e., share the same average turnover rate, but that those expressing labeled
DNA die faster. Finally, this model cannot be used to concurrently describe experiments
with different labeling periods, because each experiment may require its own death rate to
account for its unique down-slope, whereas all up-slopes should fall on the same smooth
continuous curve [63].

Fortuitously, both models Eqs. (17) and (18) are mathematically identical to the more general
model

L(t) =

{
α(1− e−dt) , if t ≤ Tend ,
L(Tend)e−d(t−Tend), otherwise ,

(19)

having a asymptote, α, in the labeling phase, and a single exponent, d, for both the labeling
and delabeling phase. A direct way of arriving at this general model is to argue that the
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Repeat the effect of labeling period in one experiment

label mice for 
1, 4 & 8 weeks

and

fit with “single-
exponential” model:

up-slope decreases with 
labeling period
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Memory T cells form a kinetically heterogeneous population

Heterogeneity cannot 
be captured by single 
exponential models:
compromise at long 

labeling periods

Westera et al. Submitted
Asquith Trends Imm 2002
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Generalize into explicit kinetic heterogeneity model

where αi is the fraction of cells with turnover rate di

dP

dt
= aM + pP − caM(t− τ) , (22)

where f = m/(dA + m) < 1 and c = epτ . This begins to resemble Eq. (20), but note that
c > 1, that the temporal heterogeneity of a short-lived stage after clonal expansion has
been taken away by the QSSA, and the death rate in Eq. (20) has been replaced with the
fraction, f , of cells surviving clonal expansion in Eq. (22). Unfortunately, Eqs. (21–22) still
contain too many parameters to estimate from the available data. From the steady condition
0 = fcaM − dM − aM = aM + pP − caM one can again obtain the fraction of proliferating
cells, and eliminate one parameter, but the number of parameters still remains too large.
A more trivial way of deriving Eq. (20) from the general model is to assign a slow time
scale to the resting cells, and let R be a constant, which simplifies dA/dt in Eq. (20) to Eq.
(1) with σ = aR [66]. Since Mohri et al. [7] were comparing deuterated glucose labeling of
healthy human volunteers with that in HIV-1 infected patients, it could however be that the
latter derivation would be valid for healthy volunteers, and that Eqs. (21–22) would be more
realistic for the chronically infected patients.

The generalized precursor product-relationship of Eq. (16) (and similarly Eq. (19)) can be
further generalized to explicitly model kinetic heterogeneity by assigning different turnover
rates for subpopulations i = 1, . . . , n, i.e.,

L(t) =

{ ∑
αi(1− e−dit) , if t ≤ Tend ,∑
αi(1− e−diTend)e−di(t−Tend), otherwise ,

(23)

where αi is the fraction of cells with turnover rate di [65]. This model is valid for popula-
tions maintaining themselves by a source and/or division because for all subpopulations one
can model the labeling phase by considering the loss of unlabeled strands (at rate di) and
the de-labeling phase by the loss of labeled strands (at rate di); see Eq. (16). The major
advantage of this model is that for n > 1 the up-slope can be slower than the down-slope
because the initial up-slope reflects the average turnover rate, d̄ =

∑
αidi, whereas the ini-

tial down-slope is dominated by the fastest subpopulation [65]. Hence, a straightforward
procedure of estimating an average turnover rate from deuterium labeling data would be to
fit Eq. (23) to the data for i = 1, 2, . . . , n compartments, until one finds that increasing the
number of compartments no longer increases the quality of the fit. Probably the estimates
of the individual compartment sizes, αi, and turnover rates, di, will be noisy and have large
confidence levels, but the mean turnover rate, d̄, tends to be more robust [11, 12].

To illustrate this procedure we fitted the CD4+ and CD8+ T cell data from a healthy vol-
unteer who was labeled with deuterated glucose for one week [7], with the model of Eq. (23)
for n = 1 and n = 2 compartments. The quality of the n = 1 fits were poor (not shown),
whereas those with n = 2 compartments explain the data reasonably well with an up-slope
that is slower than the initial down-slope (Fig. 2). The estimated average turnover rates of
the CD4+ and CD8+ T cells, were d̄ = 0.006 d−1 and d̄ = 0.0044 d−1, respectively (corre-
sponding to expected life spans, 1/d̄, of 167 and 227 days). Similar expected life spans were
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Fit model for n = 1, 2, .. compartments until increasing the 
number of compartments no longer changes the estimated 

average turnover rate d = Σ αidi

d is the death rate of cells carrying labeled strands. For the de-labeling phase they assumed
dL/dt = −dL, resulting in the following model

L(t) =

{
p
d(1− e−dt) , if t ≤ Tend ,
L(Tend)e−d(t−Tend), otherwise ,

(18)

with an initial up-slope of p, and where d ≥ p so that the asymptote p/d ≤ 1. The
average proliferation rate in this model defines the average turnover rate of the population
[6], and should hence be equal to the average death rate if the population is at steady state.
The death rate of labeled cells, d, is required to be larger than the average turnover rate
p because initially the labeled sub-population is expected to be enriched in cells with a
more rapid turnover. Only after long labeling periods, i.e., when a large enough fraction
of the populations is labeled, Asquith et al. [6] expect that the death rate of labeled cells
approaches the average turnover, i.e., d → p. Thus, the reason that ultimately not all cells
become labeled in Eq. (18) is a consequence of the fact that for any labeling period the
model assumes a fixed death rate, d, although this death rate should actually be declining
and ultimately approach the average turnover p. Only when d→ p the asymptote approaches
one. Labeling curves obtained from a kinetically heterogeneous population would by this
single exponential model be fitted with a d > p parameter regime.

This model is intuitively attractive because one indeed expects that labeled cells are enriched
in cells with a more rapid turnover, and hence that labeled and unlabeled cells could have
different death rates. The model remains phenomenological however and is difficult to derive
mechanistically. For instance, if one were to start from the other end by only writing an
equally correct equation for the unlabeled fraction, i.e., dU/dt = −dUU , where dU < d is the
slower death rate of the unlabeled fraction, one would see that adding these two equations
fail to conserve the total amount of DNA, i.e., dL/dt+dU/dt %= 0. Another criticism is that
if a population is truly heterogeneous the up and down slopes in the data should not be single
exponentials, and instead reflect the ignored change in the turnover rates of unlabeled and
labeled cells over time. Indeed, it seems an inconsistent approximation to write in Eq. (18)
that dL/dt = p(U +L)−dL, saying cells carrying labeled or unlabeled strands of DNA divide
at the same rate, i.e., share the same average turnover rate, but that those expressing labeled
DNA die faster. Finally, this model cannot be used to concurrently describe experiments
with different labeling periods, because each experiment may require its own death rate to
account for its unique down-slope, whereas all up-slopes should fall on the same smooth
continuous curve [63].

Fortuitously, both models Eqs. (17) and (18) are mathematically identical to the more general
model

L(t) =

{
α(1− e−dt) , if t ≤ Tend ,
L(Tend)e−d(t−Tend), otherwise ,

(19)

having a asymptote, α, in the labeling phase, and a single exponent, d, for both the labeling
and delabeling phase. A direct way of arriving at this general model is to argue that the
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Bi-exponential model also describes prenatal labeling
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But “true” memory cells live 50 days?

[Ganusov et al submitted]
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Homeostatic Turnover of Virus-Specific Memory CD8 T Cells
Occurs Stochastically and Is Independent of CD4 T Cell Help

Daniel K. Choo,* Kaja Murali-Krishna,† Rustom Anita,‡ and Rafi Ahmed*

Memory CD8 T cells persist by Ag-independent homeostatic proliferation. To examine the dynamics of this cell turnover, we trans-
ferred lymphocytic choriomeningitis virus specific memory CD8 T cells into naive mice and analyzed their in vivo division kinetics
longitudinally in individual recipients.Using mathematical modeling, we determined that proliferation of this stably maintained
memory CD8 T cell population was homogeneous and stochastic with a small fraction of cells completing division at any given time
with an intermitotic interval of 50 d. This homeostatic turnover was comparable between memory CD8 T cells of different viral
epitope specificities and also the total memory phenotype (CD44high) CD8 T cells. It is well established that CD4 T cell help is
critical for maintenance of CD8 T cells during chronic infections, but recent studies have suggested that CD4 T cell help is also
required for maintenance of memory CD8 T cells following acute infections. Hence, we assessed the role of CD4 T cells in Ag-
independent maintenance of memory CD8 T cells. Consistent with previous reports, we found that memory CD8 T cells declined
when transferred into MHC class II-deficient mice. However, their numbers were maintained stably when transferred into CD4
T cell-deficient mice. Interestingly, their homeostatic proliferation, ability to make recall responses, and phenotype were in-
dependent of CD4 T cell help because none of these qualities were affected when memory CD8 T cells were transferred and
maintained in either MHC class II- or CD4-deficient recipients. The Journal of Immunology, 2010, 185: 3436–3444.

T he hallmarks of memory CD8 T cells include not only their
ability to respond faster andmore efficiently comparedwith
naive cells upon secondary challenge, but also their ability

to persist long after the infection has been resolved (1–6). This latter
quality of memory cells is essential in providing long-term pro-
tective immunity in experimental animals and in humans (7, 8).
Due to this importance in host immunity, there has been much
interest over the years in understanding the mechanisms by which
CD8 T cell memory is maintained (9, 10). Initially, it was argued
that this persistence of memory CD8 T cells was due to continual
stimulation from small amounts of persisting Ag (11). However,
subsequent studies have demonstrated that memory T cell mainte-
nance is independent of Ag, and is instead associatedwith IL-7– and
IL-15–mediated survival and homeostatic turnover of memory CD8
T cells (12–20). More recent experiments have shown that helper
CD4 T cells are also important for the continued persistence of
memory CD8 T cells (21, 22). Although this role of Th cells in
the maintenance of memory CD8 T cells after an acute infection is
a fairly recent discovery, for most chronic infections, it has long
been established that CD4 T cell help is necessary to prevent the
exhaustion and deletion of Ag-specific CD8 T cells (23–26).
Despite the substantial progress made in understanding the

mechanisms of memory CD8 T cell maintenance, there still remain

questions that have yet to be fully addressed. First, do all memory
CD8 T cells undergo homeostatic turnover or is there a sub-
population of cells that do not homeostatically divide? Next, what
characterizes the turnover of memory cells; that is, do cells divide
after a fixed time or is this turnover stochastic? Additionally, how do
CD4 T cells aid (e.g., survival versus homeostatic turnover) in
promoting the persistence of memory CD8 T cells, and is the Ag-
specificity of these Th cells important? Lastly, do memory CD8
T cells continue to require CD4 T cell help to retain their overall
quality (e.g., phenotypic profile and function)?
To more carefully address the above questions, we longitudinally

analyzed, within individual mice, both the frequency and the ho-
meostatic turnover of fully functional lymphocytic choriomeningitis
virus (LCMV)–specific memory CD8 T cells after their adoptive
transfer into naive wild-type (WT) mice. This information allowed
us to use mathematical modeling to more rigorously and more
accurately quantify the homeostatic turnover and the dynamics of
memory CD8 T cell maintenance. We also used naive CD42/2 and
MHC II2/2 mice as recipients to address the requirement for CD4
T cell help in the long-term maintenance and the overall quality of
memory CD8 T cells. These animals are ideal models to study the
role of CD4 T cells, as they exhibit significant impairment in the
generation and maintenance of memory CD8 T cells in the context
of both acute and chronic infections, and this impairment has been
described to be due to the absence of CD4 T cells in these mice (23–
30). This study provides a longitudinal and quantitative analysis of
the homeostatic turnover of virus-specific memory CD8 T cells and
investigates the requirement of CD4 T cells in this process.

Materials and Methods
Virus infection

LCMV Armstrong and recombinant vaccinia virus expressing the gp33
epitope of LCMV (VV-gp33) were propagated, titered, and used as previ-
ously described (31).

Mice

Six to 8-wk-old female C57BL/6 (B6), BALB/c, CD42/2, and MHC II2/2

mice were purchased from The Jackson Laboratory (Bar Harbor, ME) or
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T he hallmarks of memory CD8 T cells include not only their
ability to respond faster andmore efficiently comparedwith
naive cells upon secondary challenge, but also their ability

to persist long after the infection has been resolved (1–6). This latter
quality of memory cells is essential in providing long-term pro-
tective immunity in experimental animals and in humans (7, 8).
Due to this importance in host immunity, there has been much
interest over the years in understanding the mechanisms by which
CD8 T cell memory is maintained (9, 10). Initially, it was argued
that this persistence of memory CD8 T cells was due to continual
stimulation from small amounts of persisting Ag (11). However,
subsequent studies have demonstrated that memory T cell mainte-
nance is independent of Ag, and is instead associatedwith IL-7– and
IL-15–mediated survival and homeostatic turnover of memory CD8
T cells (12–20). More recent experiments have shown that helper
CD4 T cells are also important for the continued persistence of
memory CD8 T cells (21, 22). Although this role of Th cells in
the maintenance of memory CD8 T cells after an acute infection is
a fairly recent discovery, for most chronic infections, it has long
been established that CD4 T cell help is necessary to prevent the
exhaustion and deletion of Ag-specific CD8 T cells (23–26).
Despite the substantial progress made in understanding the

mechanisms of memory CD8 T cell maintenance, there still remain

questions that have yet to be fully addressed. First, do all memory
CD8 T cells undergo homeostatic turnover or is there a sub-
population of cells that do not homeostatically divide? Next, what
characterizes the turnover of memory cells; that is, do cells divide
after a fixed time or is this turnover stochastic? Additionally, how do
CD4 T cells aid (e.g., survival versus homeostatic turnover) in
promoting the persistence of memory CD8 T cells, and is the Ag-
specificity of these Th cells important? Lastly, do memory CD8
T cells continue to require CD4 T cell help to retain their overall
quality (e.g., phenotypic profile and function)?
To more carefully address the above questions, we longitudinally

analyzed, within individual mice, both the frequency and the ho-
meostatic turnover of fully functional lymphocytic choriomeningitis
virus (LCMV)–specific memory CD8 T cells after their adoptive
transfer into naive wild-type (WT) mice. This information allowed
us to use mathematical modeling to more rigorously and more
accurately quantify the homeostatic turnover and the dynamics of
memory CD8 T cell maintenance. We also used naive CD42/2 and
MHC II2/2 mice as recipients to address the requirement for CD4
T cell help in the long-term maintenance and the overall quality of
memory CD8 T cells. These animals are ideal models to study the
role of CD4 T cells, as they exhibit significant impairment in the
generation and maintenance of memory CD8 T cells in the context
of both acute and chronic infections, and this impairment has been
described to be due to the absence of CD4 T cells in these mice (23–
30). This study provides a longitudinal and quantitative analysis of
the homeostatic turnover of virus-specific memory CD8 T cells and
investigates the requirement of CD4 T cells in this process.

Materials and Methods
Virus infection

LCMV Armstrong and recombinant vaccinia virus expressing the gp33
epitope of LCMV (VV-gp33) were propagated, titered, and used as previ-
ously described (31).

Mice

Six to 8-wk-old female C57BL/6 (B6), BALB/c, CD42/2, and MHC II2/2

mice were purchased from The Jackson Laboratory (Bar Harbor, ME) or
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LCMV specific memory CD8+ T cells divide once every 50 days

2010

We observed that the rate of division (l) estimated from the fit to the
entire CFSE distributionwas indeed in agreement with that estimated
from the rate of increase in the mean number of divisions described
above. Collectively, these observations implied that the homeostatic
turnover of memory CD8 T cells occurred stochastically, where the
probability that a memory cell divided did not depend on its previous
division history. This stochastic turnover resulted in the mean num-
ber of divisions of cells in the population increasing at a rate of∼0.04
divisions per day, which corresponds to an average rate of division
(l) of 0.02 divisions per day or an intermitotic time (1/l) of ∼50 d.

Comparison of the homeostatic turnover of memory CD8
T cells specific for different epitopes of LCMV

Next, we wanted to examine whether the pattern of homeostatic
turnover observed for transgenic Db gp33–41+ memory P14 CD8
T cells also held true for populations of endogenous memory CD8
T cells specific for different epitopes of LCMV in two distinct
strains of mice. To do this, we infected naive WT C57BL/6 mice
and naive WT BALB/c mice with the Armstrong strain of LCMV.
At .60 d postinfection, LCMV-infected animals were sacrificed,
and the total splenocytes were labeled with CFSE and adoptively
transferred into normal naive C57BL/6 or BALB/c recipients. The
recipient mice were then sacrificed at different time points post-
transfer and the CFSE profiles of different populations of fully

functional LCMV-specific memory CD8 T cells (Db NP396–404+

in C57BL/6 and Ld NP118–126+ in BALB/c) were assessed.
As observed in Fig. 3B and 3C, the overall pattern of the ho-

meostatic turnover of Db NP396–404+ and Ld NP118–126+ mem-
ory CD8 T cells closely resembled that observed earlier with
memory P14 CD8 T cells. For example, we observed that for both
Db NP396–404+ and Ld NP118–126+ memory CD8 T cells, the
mean number of divisions and the variance in the number of divi-
sions also increased linearly with time. Additionally, the CFSE
distribution of these memory CD8 T cells followed a Poisson dis-
tribution. These data indicated that the homeostatic turnover of
memory cells of different specificities (Db NP396–404+ versus Ld

NP118–126+) in different strains of mice (C57BL/6 versus BALB/c)
was consistent with a stochastic model of cell division. We also
observed that the CFSE profile of the total CD44high memory CD8
T cells was virtually identical to that of Db NP396–404+ memory
CD8 T cells at day 21 posttransfer (Fig. 3A), suggesting that all
memory CD8 T cells, irrespective of their specificity and mouse
strain, exhibit similar homeostatic turnover (slow, continuous, and
stochastic recruitment into division).

Role of CD4 T cell help in the homeostatic turnover and
persistence of memory CD8 T cells

For most acute infections, CD4 T cell help has been traditionally
thought to be important in the development of fully functional

FIGURE 1. Longitudinal analysis of the long-termmaintenance of donor memory CD8 T cells. A andC, Maintenance of donor memory CD8 T cells inWT
recipient mice shown as percentage of total peripheral blood at different time points posttransfer. Data shown are three representative experiments out of seven
different experiments in A and n = 10 in C. B, CFSE profile of the homeostatic turnover of donor memory CD8 T cells maintained in WT recipients at various
time points posttransfer. Number shown is the percentage of donor cells in each division. Data shown are three representative experiments out of seven
different experiments.
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Taconic (Germantown, NY). Thy1.1+ P14 transgenic mice with T cells
expressing the TCR specific for the Db gp33-41 epitope of LCMV were
obtained from The Jackson Laboratory and backcrossed to B6 mice in our
colony (4). LCMV-immune WT P14 chimeric mice were generated by
adoptively transferring 1 3 105 naive Thy1.1+ P14 CD8 T cells into con-
genic B6 mice and subsequently infecting these animals with 23 105 PFU
LCMV-Armstrong. For secondary challenge experiments, 33 104 immune
Thy1.1+ P14 CD8 T cells were adoptively transferred into naive B6 mice
and infected with 53 106 PFU VV-gp33. All mice were used in accordance
with National Institutes of Health (Bethesda,MD) and the EmoryUniversity
Institutional Animal Care and Use Committee guidelines.

Lymphocyte isolation and purification

Single-cell suspensionswere prepared from the spleen and from the brachial,
inguinal, and mesenteric lymph nodes. Bone marrow was obtained by flush-
ing two femurs with cold RPMI 1640. Total number of cells in bone marrow
was calculated as follows: no. of cells in two femurs37.9 (32). Lymphocytes
from blood and liver were obtained as described in Becker et al. (17).
Memory P14 CD8 T cells were purified using anti-CD8 MACS magnetic
beads and columns (Miltenyi Biotec, Auburn, CA) according to the manu-
facturer’s instructions. The purity of MACS-purified samples was .90%.

CFSE labeling and adoptive transfer

LCMV-specific memory CD8 T cells were labeled with CFSE (Molecular
Probes, Eugene, OR) by incubating at 5 mM in PBS, quenching with FCS,
and washing as described previously (33). Approximately 13 106 memory
P14 CD8 T cells or 20–50 3 106 total LCMV-immune splenocytes (from
B6 or BALB/c) were adoptively transferred i.v. into naive recipient mice.

Cell surface and intracellular staining

All Abs were purchased from BD Biosciences (San Diego, CA), except for
anti-mouse IL-7Ra, which was purchased from eBioscience (San Diego,
CA). Cells were stained for surface proteins and intracellular proteins
and cytokines as described previously (34).

Preparation of H-2Db and H-2Ld tetramers

Tetramers of Db containing NP396–404 and gp33–41 and Ld containing
NP118–126 to quantify CD8 T cells specific for these LCMV epitopes
were prepared as previously described (35).

Calculations and mathematical modeling

The mean number of divisions and variance in the number of divisions of
memory CD8 T cells from the CFSE data were calculated as follows. If fn(t)
equals the fraction of cells having undergone n divisions at time t, then the
mean and variance in the number of divisions are given by

m
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n¼0
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$
ðn2mðtÞÞ2; respectively:

Frequencies rather than absolute numbers were used because the average
number of memory CD8 T cells remains constant over time, and thus the
measurementof frequencies ismore accurate than that of total number of cells.

For a stochastic model of division it can be shown that the frequency
of cells with n divisions follows a Poisson distribution (see Ref. 36 for
details). If we assume both division and death occur at random (i.e., a
random birth-death model), then the number and the frequency of cells
with n divisions, xn and fn, are given by

xn ¼ fne
ðl2 dÞt and

fn ¼ ð2ltÞne2ð2ltÞ

n!
;

where l and d are the rate constants for division and death (per unit of
time). We see that the frequency of cells with n divisions, fn, follows
a Poisson distribution with the mean number of divisions and variance in
the number of divisions increasing at rate 2l.

Results
Quantitative analysis of homeostatic turnover of LCMV-
specific memory CD8 T cells

To quantitatively analyze the homeostatic turnover of fully functional
memory CD8 T cells, naive Thy1.1+ P14 CD8 T cells (specific for
the Db gp33–41 epitope of LCMV) were adoptively transferred
into naive WT congenic (Thy1.2+) mice, and then these P14 chi-
meric mice were infected with the Armstrong strain of LCMV.
At .60 d postinfection, most memory P14 CD8 T cells had differ-
entiated into canonical central memory T cells (CD127high,
CD62Lhigh, Bcl-2high) that are capable of making rapid recall re-
sponses, persisting for extended periods by homeostatic prolif-
eration, and conferring long-term protective immunity (37). These
(day .60 postinfection) memory P14 CD8 T cells were labeled
in vitro with CFSE and adoptively transferred into naive WT con-
genic (Thy1.2+) recipients. Recipient mice were then serially bled
at various time points posttransfer and both the number and the
CFSE profiles of the transferred memory cells were longitudi-
nally assessed in individual mice. Consistent with earlier studies
demonstrating long-term persistence of memory CD8 T cells (9,
10), we observed that the transferred memory CD8 T cells were
stably maintained in WT animals for the entire duration of the
experiment (Fig. 1A). At day 1 posttransfer, the percentage of donor
memory cells observed in the peripheral blood ranged between
0.14 and 0.26%. Although this percentage fluctuated slightly over
time, overall, the number of transferred memory CD8 T cells
remained constant as far out as 120 d posttransfer.More specifically,
we calculated the mean rate of the loss of donor memory cells to
be 0.0005, which was not statistically different from 0 (p = 0.78).
This stability in the maintenance of the donor memory cells can be
better visualized in Fig. 1C.
In regard to the homeostatic turnover of the transferred memory

cells, the initial inspection of the CFSE profiles of these cells at
different time points posttransfer suggested that the turnover of
memoryCD8Tcells occurred slowly but continuously. In support of
this observation, the percentage of cells that had undergone at least
one round of division increased from∼60% at day 21 posttransfer to
∼80–90% by 60 d posttransfer (Fig. 1B). Examination of the fre-
quency of undivided cells at different time points revealed that the
percentage of undivided cells decreased exponentially with time
(Fig. 2A), suggesting that there was a single homogeneous pop-
ulation of memory cells (no separate population of nondividing
memory CD8 T cells) and that the recruitment into division was
stochastic.
To confirm this stochastic nature of memory CD8 T cell turnover,

we subjected the CFSE profiles of donor memory CD8 T cells to
further mathematical analysis (see Materials and Methods). If all
memory cells were capable of division and the recruitment into di-
vision were stochastic, then the frequency of cells having undergone
different numbers of divisions at a given timewould follow a Poisson
distribution. A characteristic of the Poisson distribution is that the
mean number of divisions and the variance in the number of divisions
are the same, and if the division rate does not change over time, they
should both increase linearly with time. In Fig. 2B, we show that this
was indeed the case, and the mean number of divisions and the
variance in the number of divisions both increased linearly with time.
As might be expected, the variance in the number of divisions was
slightly less than the mean number of divisions because while the
time for cells to undergo division was much smaller than the rate of
recruitment into division, it was not 0 as we had assumed in the
model. In Fig. 2C, we made maximum use of all the CFSE data by
fitting the entire dataset for the CFSE distribution in the number
of cells over time, in eachmouse, to themodel for stochastic division.
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Taconic (Germantown, NY). Thy1.1+ P14 transgenic mice with T cells
expressing the TCR specific for the Db gp33-41 epitope of LCMV were
obtained from The Jackson Laboratory and backcrossed to B6 mice in our
colony (4). LCMV-immune WT P14 chimeric mice were generated by
adoptively transferring 1 3 105 naive Thy1.1+ P14 CD8 T cells into con-
genic B6 mice and subsequently infecting these animals with 23 105 PFU
LCMV-Armstrong. For secondary challenge experiments, 33 104 immune
Thy1.1+ P14 CD8 T cells were adoptively transferred into naive B6 mice
and infected with 53 106 PFU VV-gp33. All mice were used in accordance
with National Institutes of Health (Bethesda,MD) and the EmoryUniversity
Institutional Animal Care and Use Committee guidelines.

Lymphocyte isolation and purification

Single-cell suspensionswere prepared from the spleen and from the brachial,
inguinal, and mesenteric lymph nodes. Bone marrow was obtained by flush-
ing two femurs with cold RPMI 1640. Total number of cells in bone marrow
was calculated as follows: no. of cells in two femurs37.9 (32). Lymphocytes
from blood and liver were obtained as described in Becker et al. (17).
Memory P14 CD8 T cells were purified using anti-CD8 MACS magnetic
beads and columns (Miltenyi Biotec, Auburn, CA) according to the manu-
facturer’s instructions. The purity of MACS-purified samples was .90%.

CFSE labeling and adoptive transfer

LCMV-specific memory CD8 T cells were labeled with CFSE (Molecular
Probes, Eugene, OR) by incubating at 5 mM in PBS, quenching with FCS,
and washing as described previously (33). Approximately 13 106 memory
P14 CD8 T cells or 20–50 3 106 total LCMV-immune splenocytes (from
B6 or BALB/c) were adoptively transferred i.v. into naive recipient mice.

Cell surface and intracellular staining

All Abs were purchased from BD Biosciences (San Diego, CA), except for
anti-mouse IL-7Ra, which was purchased from eBioscience (San Diego,
CA). Cells were stained for surface proteins and intracellular proteins
and cytokines as described previously (34).

Preparation of H-2Db and H-2Ld tetramers

Tetramers of Db containing NP396–404 and gp33–41 and Ld containing
NP118–126 to quantify CD8 T cells specific for these LCMV epitopes
were prepared as previously described (35).

Calculations and mathematical modeling

The mean number of divisions and variance in the number of divisions of
memory CD8 T cells from the CFSE data were calculated as follows. If fn(t)
equals the fraction of cells having undergone n divisions at time t, then the
mean and variance in the number of divisions are given by

m
!
t
"
¼ +

‘

n¼0

nfn
!
t
"
  and

s2
#
t
$
¼ +

‘

n¼0

fn
#
t
$
ðn2mðtÞÞ2; respectively:

Frequencies rather than absolute numbers were used because the average
number of memory CD8 T cells remains constant over time, and thus the
measurementof frequencies ismore accurate than that of total number of cells.

For a stochastic model of division it can be shown that the frequency
of cells with n divisions follows a Poisson distribution (see Ref. 36 for
details). If we assume both division and death occur at random (i.e., a
random birth-death model), then the number and the frequency of cells
with n divisions, xn and fn, are given by

xn ¼ fne
ðl2 dÞt and

fn ¼ ð2ltÞne2ð2ltÞ
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;

where l and d are the rate constants for division and death (per unit of
time). We see that the frequency of cells with n divisions, fn, follows
a Poisson distribution with the mean number of divisions and variance in
the number of divisions increasing at rate 2l.

Results
Quantitative analysis of homeostatic turnover of LCMV-
specific memory CD8 T cells

To quantitatively analyze the homeostatic turnover of fully functional
memory CD8 T cells, naive Thy1.1+ P14 CD8 T cells (specific for
the Db gp33–41 epitope of LCMV) were adoptively transferred
into naive WT congenic (Thy1.2+) mice, and then these P14 chi-
meric mice were infected with the Armstrong strain of LCMV.
At .60 d postinfection, most memory P14 CD8 T cells had differ-
entiated into canonical central memory T cells (CD127high,
CD62Lhigh, Bcl-2high) that are capable of making rapid recall re-
sponses, persisting for extended periods by homeostatic prolif-
eration, and conferring long-term protective immunity (37). These
(day .60 postinfection) memory P14 CD8 T cells were labeled
in vitro with CFSE and adoptively transferred into naive WT con-
genic (Thy1.2+) recipients. Recipient mice were then serially bled
at various time points posttransfer and both the number and the
CFSE profiles of the transferred memory cells were longitudi-
nally assessed in individual mice. Consistent with earlier studies
demonstrating long-term persistence of memory CD8 T cells (9,
10), we observed that the transferred memory CD8 T cells were
stably maintained in WT animals for the entire duration of the
experiment (Fig. 1A). At day 1 posttransfer, the percentage of donor
memory cells observed in the peripheral blood ranged between
0.14 and 0.26%. Although this percentage fluctuated slightly over
time, overall, the number of transferred memory CD8 T cells
remained constant as far out as 120 d posttransfer.More specifically,
we calculated the mean rate of the loss of donor memory cells to
be 0.0005, which was not statistically different from 0 (p = 0.78).
This stability in the maintenance of the donor memory cells can be
better visualized in Fig. 1C.
In regard to the homeostatic turnover of the transferred memory

cells, the initial inspection of the CFSE profiles of these cells at
different time points posttransfer suggested that the turnover of
memoryCD8Tcells occurred slowly but continuously. In support of
this observation, the percentage of cells that had undergone at least
one round of division increased from∼60% at day 21 posttransfer to
∼80–90% by 60 d posttransfer (Fig. 1B). Examination of the fre-
quency of undivided cells at different time points revealed that the
percentage of undivided cells decreased exponentially with time
(Fig. 2A), suggesting that there was a single homogeneous pop-
ulation of memory cells (no separate population of nondividing
memory CD8 T cells) and that the recruitment into division was
stochastic.
To confirm this stochastic nature of memory CD8 T cell turnover,

we subjected the CFSE profiles of donor memory CD8 T cells to
further mathematical analysis (see Materials and Methods). If all
memory cells were capable of division and the recruitment into di-
vision were stochastic, then the frequency of cells having undergone
different numbers of divisions at a given timewould follow a Poisson
distribution. A characteristic of the Poisson distribution is that the
mean number of divisions and the variance in the number of divisions
are the same, and if the division rate does not change over time, they
should both increase linearly with time. In Fig. 2B, we show that this
was indeed the case, and the mean number of divisions and the
variance in the number of divisions both increased linearly with time.
As might be expected, the variance in the number of divisions was
slightly less than the mean number of divisions because while the
time for cells to undergo division was much smaller than the rate of
recruitment into division, it was not 0 as we had assumed in the
model. In Fig. 2C, we made maximum use of all the CFSE data by
fitting the entire dataset for the CFSE distribution in the number
of cells over time, in eachmouse, to themodel for stochastic division.
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Memory Phenotype CD4 T Cells Undergoing Rapid,
Nonburst-Like, Cytokine-Driven Proliferation Can Be
Distinguished from Antigen-Experienced Memory Cells
Souheil-Antoine Younes, George Punkosdy, Stephane Caucheteux, Tao Chen, Zvi Grossman, William E.

Paul*

Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America

Abstract

Memory phenotype (CD44bright, CD25negative) CD4 spleen and lymph node T cells (MP cells) proliferate rapidly in normal or
germ-free donors, with BrdU uptake rates of 6% to 10% per day and Ki-67 positivity of 18% to 35%. The rapid proliferation of
MP cells stands in contrast to the much slower proliferation of lymphocytic choriomeningitis virus (LCMV)-specific memory
cells that divide at rates ranging from ,1% to 2% per day over the period from 15 to 60 days after LCMV infection. Anti-
MHC class II antibodies fail to inhibit the in situ proliferation of MP cells, implying a non–T-cell receptor (TCR)-driven
proliferation. Such proliferation is partially inhibited by anti–IL-7Ra antibody. The sequence diversity of TCRb CDR3 gene
segments is comparable among the proliferating and quiescent MP cells from conventional and germ-free mice, implying
that the majority of proliferating MP cells have not recently derived from a small cohort of cells that expand through
multiple continuous rounds of cell division. We propose that MP cells constitute a diverse cell population, containing a
subpopulation of slowly dividing authentic antigen-primed memory cells and a majority population of rapidly proliferating
cells that did not arise from naı̈ve cells through conventional antigen-driven clonal expansion.
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Introduction

Peripheral non-Treg CD4+ T cells are often divided into two
major subpopulations that can be designated naı̈ve-phenotype
(NP) and memory-phenotype (MP) cells, respectively [1]. In the
mouse, MP cells are characterized by the expression of high levels
of CD44 and low levels of CD45RB; they lack Foxp3 and high
levels of CD25. MP cells may be either CD62L dull or bright [2].
It is generally assumed that MP cells constitute the aggregate of all
antigen-specific memory cells; that is, of all cells that have
expanded in response to antigenic stimulation. However, there are
some reasons to question the concept that all MP cells are indeed
foreign antigen-experienced cells. MP cells proliferate rapidly;
estimates of their proliferative rates in lymph nodes range from 4%
to 10% per day [2,3]. By contrast, T-cell receptor (TCR)
transgenic [4,5] or polyclonal [5,6] CD4 T cells that had
responded to immunization with cognate antigens or infection
proliferate at ,1% to 2.5% per day when examined after the
initial expansion and contraction phases have been completed [7].
The proliferation of antigen-primed CD4 T cells is largely driven
by cytokines rather than through TCR stimulation [8–14]. What
drives the rapid, apparently spontaneous, proliferation of MP
under normal conditions is unknown, although when transferred
to lymphopenic recipients, their proliferation is burst-like (i.e., they

divide multiple times in a relatively short period) and appears to be
driven by TCR-mediated stimulation.
Understanding the proliferation of MP cells has also been of

considerable interest among those studying lymphocyte dynamics
in chronic infections, particularly with lentiviruses, where
proliferative rates of human or macaque MP cells in HIV- or
SIV-infected individuals are much greater than those of
comparable cells from noninfected individuals [15,16]. Indeed,
such rapid proliferation has been associated with the state of
excessive inflammation that, in turn, has been regarded as a
principal driver of the immunodeficiency of AIDS patients [17–
19]. It has been suggested, on the basis of BrdU labeling and of
measurement of Ki-67 expression in SIV-infected macaque CD4
T cells, that much of the proliferation of these MP cells represents
recent burst-like divisions, presumably in response to antigenic
stimulation, of cells that were undergoing the familiar pattern of
clonal expansion and transition from central or effector memory
populations to tissue-seeking effector cells [17,20]. Although this
mode of proliferation appears to be the case for SIV-infected
macaques and presumably HIV-infected humans, whether it
explains the proliferation of MP cells in normal individuals has not
been determined. Recognizing that MP CD4 T cells constitute a
large and heterogeneous population, we repeated previous
experiments establishing the differences in proliferative rates of
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Combining BrdU and Ki67: 
LCMV specific CD4+ T cells divide once every 50 days

 while other CD44+ memory cells divide every 2-3 weeks
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(CD44bright Foxp32) CD4 T cells having taken up BrdU in a 10-d
labeling period (Figure 1D), again arguing that the high
proliferative rate of MP cells is not a property of a small
subpopulation of these cells.
The presence and proliferation of MP cells in GF mice needs to

be considered in assessing the possible role of foreign antigens in
stimulating the in situ proliferation of MP cells in normal animals.
We reported that the proliferative rate of CD44bright CD252 cells
in SW GF mice was ,4% in 6 h and was no different from that of
such cells from conventional SW mice [3]. This implies that the

generation and proliferation of MP cells can be achieved in mice
with very limited antigenic load. To examine this in greater detail
and in the mouse strain that was being studied in our experiments,
we injected BrdU into conventional and GF C57BL/6 mice and
evaluated the frequency of BrdU+ cells 6 h later. BrdU+ cells
constituted 4.7% of the GF CD44brightFoxp32 lymph node CD4
T cells and 5% of the same cells from conventional donors. The
proportion of Ki-67+ MP lymph node cells was 38.7% in GF mice
and 38% in conventional mice (Figure 2A). The absolute numbers
of total lymph node CD4 T cells, of CD44bright CD4 T cells and of

Figure 1. Rapid proliferation of MP cells. (A) Mice received a single IP injection of BrdU (1 mg) and were humanely killed 24 h later or received
BrdU for 3 d in their drinking water (0.8 mg/ml) and were humanely killed at the end of the labeling period. Lymph node cells were collected and
stained with anti-Foxp3, anti-CD4, anti-CD44, anti-Ki-67, and anti-BrdU. Numbers inside the quadrants are the mean frequencies of BrdU+/Ki-67+ and
BrdU2/Ki-67+ cells (mean 6 standard deviation [SD] for three replicate animals). Numbers with arrows are the MFI of Ki-67 staining (mean 6 SD). (B)
B6 mice were infected IP with 2 6 105 plaque-forming unit (PFU) of LCMV Armstrong; 60 d later, spleen cells were stained with an I-Ab-GP66-77
(DIYKGVYQFKSV) tetramer, anti-CD44, anti-CD4, and anti-Ki-67. In the upper panel, the mean frequency of CD44bright cells among the tetramer+ and
tetramer2 cells from three replicates is shown (mean 6 SD). The proportion of Ki-67+ cells among the CD44bright tetramer2 and tetramer+ cells is
shown in the lower panel. (C) B6 mice infected with LCMV Armstrong 15 d earlier were analyzed for CD44 expression and tetramer binding. The lower
panels represent the proportion of Ki-67+ cells among CD44bright tetramer+ and tetramer2 cells. (D) Normal B6 mice were placed on BrdU (0.8 mg/ml)
in their drinking water for a period of 10 d. On days 1, 3, 5, and 10, mice were humanely killed and lymph nodes cells were collected and stained with
anti-Foxp3, anti-CD4, anti-CD44, and anti-BrdU.
doi:10.1371/journal.pbio.1001171.g001

Proliferation of Memory Phenotype CD4 T Cells Is Nonburst-Like
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labeling period (Figure 1D), again arguing that the high
proliferative rate of MP cells is not a property of a small
subpopulation of these cells.
The presence and proliferation of MP cells in GF mice needs to

be considered in assessing the possible role of foreign antigens in
stimulating the in situ proliferation of MP cells in normal animals.
We reported that the proliferative rate of CD44bright CD252 cells
in SW GF mice was ,4% in 6 h and was no different from that of
such cells from conventional SW mice [3]. This implies that the

generation and proliferation of MP cells can be achieved in mice
with very limited antigenic load. To examine this in greater detail
and in the mouse strain that was being studied in our experiments,
we injected BrdU into conventional and GF C57BL/6 mice and
evaluated the frequency of BrdU+ cells 6 h later. BrdU+ cells
constituted 4.7% of the GF CD44brightFoxp32 lymph node CD4
T cells and 5% of the same cells from conventional donors. The
proportion of Ki-67+ MP lymph node cells was 38.7% in GF mice
and 38% in conventional mice (Figure 2A). The absolute numbers
of total lymph node CD4 T cells, of CD44bright CD4 T cells and of

Figure 1. Rapid proliferation of MP cells. (A) Mice received a single IP injection of BrdU (1 mg) and were humanely killed 24 h later or received
BrdU for 3 d in their drinking water (0.8 mg/ml) and were humanely killed at the end of the labeling period. Lymph node cells were collected and
stained with anti-Foxp3, anti-CD4, anti-CD44, anti-Ki-67, and anti-BrdU. Numbers inside the quadrants are the mean frequencies of BrdU+/Ki-67+ and
BrdU2/Ki-67+ cells (mean 6 standard deviation [SD] for three replicate animals). Numbers with arrows are the MFI of Ki-67 staining (mean 6 SD). (B)
B6 mice were infected IP with 2 6 105 plaque-forming unit (PFU) of LCMV Armstrong; 60 d later, spleen cells were stained with an I-Ab-GP66-77
(DIYKGVYQFKSV) tetramer, anti-CD44, anti-CD4, and anti-Ki-67. In the upper panel, the mean frequency of CD44bright cells among the tetramer+ and
tetramer2 cells from three replicates is shown (mean 6 SD). The proportion of Ki-67+ cells among the CD44bright tetramer2 and tetramer+ cells is
shown in the lower panel. (C) B6 mice infected with LCMV Armstrong 15 d earlier were analyzed for CD44 expression and tetramer binding. The lower
panels represent the proportion of Ki-67+ cells among CD44bright tetramer+ and tetramer2 cells. (D) Normal B6 mice were placed on BrdU (0.8 mg/ml)
in their drinking water for a period of 10 d. On days 1, 3, 5, and 10, mice were humanely killed and lymph nodes cells were collected and stained with
anti-Foxp3, anti-CD4, anti-CD44, and anti-BrdU.
doi:10.1371/journal.pbio.1001171.g001
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Life span Range T cell type Method Model Ref. Remarks
mouse

68 d 65–71 d CI naive CD8+ BrdU Eq. (13) Parretta et al. [172] thymectomized mice
47 d 41–54 d CI naive CD4+ 2H2O Eq. (23) Den Braber et al. [56] young adult mice
80 d 67–92 d CI naive CD8+ 2H2O Eq. (23) Den Braber et al. [56] young adult mice
41 d 36–47 d CI naive CD4+ 2H2O Eq. (23) Den Braber et al. [56] old mice

116 d 94–139 d CI naive CD8+ 2H2O Eq. (23) Den Braber et al. [56] old mice
90 d 64-133 d CI memory CD8+ BrdU Eq. (18) Parretta et al. [172] no source: σ = 0, no de-labeling
50 d — memory CD8+ CFSE Eq. (15) Choo et al. [35] LCMV specific memory cells

14–22 d — memory CD4+ BrdU * Younes et al. [238] memory phenotype cells
50 d — memory CD4+ Ki67 — Younes et al. [238] LCMV specific memory cells
15 d 11–15 d CI memory CD4+ 2H2O Eq. (26) Westera et al. [226] 3 different labeling periods
20 d 12–22 d CI memory CD8+ 2H2O Eq. (26) Westera et al. [226] 3 different labeling periods

rhesus macaque
106 d — total CD4+ BrdU * Pitcher et al. [178] relationship p and Ki67
111 d 83–200 d n = 4 total CD4+ BrdU Eq. (32) De Boer et al. [45] data: Mohri et al. [159]
93 d 77–125 d n = 4 total CD4− BrdU Eq. (32) De Boer et al. [45] data: Mohri et al. [159]

167 d 83–200 d n = 4 naive CD4+ BrdU Eq. (32) De Boer et al. [45] p = 0, same data
93 d 77–125 d n = 4 naive CD4− BrdU Eq. (32) De Boer et al. [45] p = 0, same data
95 d 67–143 d n = 4 memory CD4+ BrdU Eq. (32) De Boer et al. [45] same data
87 d 71–100 d n = 4 memory CD4− BrdU Eq. (32) De Boer et al. [45] same data

154 d 111–200 d n = 4 memory CD4+ BrdU Eq. (37) Ganusov & De Boer [75] same data
125 d 100-143 d n = 4 memory CD4− BrdU Eq. (37) Ganusov & De Boer [75] same data

sooty mangabye
83 d 63-111 d CI total CD4+ BrdU Eq. (32) Kaur et al. [119] n = 5 animals

125 d 200–1000 d CI total CD8+ BrdU Eq. (32) Kaur et al. [119] n = 5 animals
100 d 56–500 d CI naive CD4+ BrdU Eq. (32) Kaur et al. [119] n = 4 animals
83 d 67–111 d CI memory CD4+ BrdU Eq. (32) Kaur et al. [119] CD45RA−; n = 5 animals
56 d 42–83 d CI memory CD4+ BrdU Eq. (32) Kaur et al. [119] CD45RA+; n = 5 animals

100 d 67–167 d CI memory CD8+ BrdU Eq. (32) Kaur et al. [119] CD45RA−; n = 5 animals

Table 3: Expected in vivo life span of T cells in other species. The ranges indicate the reported 95% confidence intervals (CI) or
the range over all animals in the study (n). *These studies report the percentage of BrdU+ T cells after several days, which can
be translated into a daily turnover rate using Eq. (32), i.e., L(t) = 1 − e−2pt (assuming σ = 0, α = 1 and p = d because this is
a self-renewing population [75]). From the 7.25% BrdU+ CD4+ T cells after 4 days of labeling in Pitcher et al. [178] one obtains
p = 0.0094 day−1, or an expected life span of 106 days. Younes et al. [238] find 35% and 60% BrdU+ memory CD4+ T cells after
3 and 10 days of labeling, respectively, translating into 0.046 ≤ p ≤ 0.071 day−1, and an expected life span between 14 ≤ 1/p ≤ 22
days. Interestingly, Pitcher et al. [178] report Ki67 measurements varying around 4.3%, suggesting that the average turnover rate
(p=0.0094) day−1 is 0.22 times the fraction of Ki67+ cells.
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fall of labeled DNA were obviously greater than those ob-
served in normal controls, even in P5 who was given
D-glucose for 4.3 d. Likewise, the peak labeling was con-
sistently higher in infected individuals, with some reaching
a labeled fraction of !0.20. Interestingly, the lowest deu-
terium incorporation in infected subjects was seen in P3,
the one with the lowest viral load (Table I). There was no
consistent relationship noted when comparing labeling
profiles in CD4! versus CD8! lymphocytes. Overall, the
findings in Fig. 3 provide a qualitative impression that
lymphocyte turnover is substantially more rapid in infected
patients than in normal persons.

Proliferation and Death Rates of CD4! and CD8! T Cells
Are Elevated Several-fold in HIV-1 Infection. To obtain
quantitative estimates of CD4! and CD8! T cell turnover
from the data, we developed a new mathematical model of
lymphocyte dynamics that tracks the number of deute-
rium-labeled and unlabeled strands of cellular DNA before,
during and after D-glucose administration (Fig. 1 and Ma-
terials and Methods). Then we used the model to fit the la-
beling results generated from CD4! and CD8! T cells
from each study subject as described in Materials and
Methods. As shown in Fig. 3, a good fit of the theory to
the data was obtained in every case. In so doing, rate esti-
mates of cellular proliferation (p) and death (d) were de-
rived for both lymphocyte populations in each subject (Ta-
ble I). By comparing the mean value of p for CD4! T cells
of normal individuals (0.004/d) to that of infected patients
(0.025/d), it was clear that proliferation rates were signifi-
cantly increased (!6.3-fold) in HIV-1 infection (P value
"0.01). A similar comparison of mean values of d (0.044/d

vs. 0.129/d) showed CD4! lymphocyte death rates to be
significantly elevated (approximately threefold) in infected
individuals (P value "0.04). Likewise, the mean value of p
for CD8! T cells was significantly higher (!7.7-fold) in
patients (0.023/d) than in normal controls (0.003/d) (P
value "0.01), although mean values of d for the two
groups were not significantly different (0.050/d vs. 0.043/
d). These quantitative estimates, therefore, validate the
qualitative impression above that HIV-1 infection results in
a faster turnover of both CD4! and CD8! T cells.

Source of CD4! T Cells May Increase in HIV-1 Infection.
Note that in Table I the data fitting also provided esti-
mates for , which is, to a good approximation, the frac-
tion of T cells in the proliferating compartment input
from a source per day (Fig. 1, references 18 and 19). The
mean value of   for CD4! lymphocytes in infected pa-
tients (0.123/d) was significantly higher (P value "0.05)
than in normal persons (0.033/d); however, the mean val-
ues of   for CD8! lymphocytes were not very different
(0.031/d vs. 0.040/d) between the two groups. There was
no evidence to suggest that HIV-1 infection results in a
decrease of CD4! T cells coming from a source. As we
have discussed previously (7, 18, 19), this source could be
the thymus or merely a population of resting or slowly di-
viding lymphocytes that upon activation would undergo
rapid clonal expansion and enter the pool of cells acquir-
ing label during the experiment. A model that includes
separate populations of resting and proliferating T cells can
also fit the data and supports the concept that the source
corresponds to activation of resting cells (unpublished
data).

ŝU

ŝU

ŝU

Figure 3. Sequential changes
in the fraction of labeled DNA in
blood T lymphocytes. The data
of healthy controls (C1–C4) ver-
sus HIV-1–infected patients (P1–
P7) are shown in each graph.
The period of D-glucose admin-
istration is indicated by a box
(top left corner). The data points
are represented by symbols, and
the lines show the best fit of the
data to a mathematical model.
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fall of labeled DNA were obviously greater than those ob-
served in normal controls, even in P5 who was given
D-glucose for 4.3 d. Likewise, the peak labeling was con-
sistently higher in infected individuals, with some reaching
a labeled fraction of !0.20. Interestingly, the lowest deu-
terium incorporation in infected subjects was seen in P3,
the one with the lowest viral load (Table I). There was no
consistent relationship noted when comparing labeling
profiles in CD4! versus CD8! lymphocytes. Overall, the
findings in Fig. 3 provide a qualitative impression that
lymphocyte turnover is substantially more rapid in infected
patients than in normal persons.

Proliferation and Death Rates of CD4! and CD8! T Cells
Are Elevated Several-fold in HIV-1 Infection. To obtain
quantitative estimates of CD4! and CD8! T cell turnover
from the data, we developed a new mathematical model of
lymphocyte dynamics that tracks the number of deute-
rium-labeled and unlabeled strands of cellular DNA before,
during and after D-glucose administration (Fig. 1 and Ma-
terials and Methods). Then we used the model to fit the la-
beling results generated from CD4! and CD8! T cells
from each study subject as described in Materials and
Methods. As shown in Fig. 3, a good fit of the theory to
the data was obtained in every case. In so doing, rate esti-
mates of cellular proliferation (p) and death (d) were de-
rived for both lymphocyte populations in each subject (Ta-
ble I). By comparing the mean value of p for CD4! T cells
of normal individuals (0.004/d) to that of infected patients
(0.025/d), it was clear that proliferation rates were signifi-
cantly increased (!6.3-fold) in HIV-1 infection (P value
"0.01). A similar comparison of mean values of d (0.044/d

vs. 0.129/d) showed CD4! lymphocyte death rates to be
significantly elevated (approximately threefold) in infected
individuals (P value "0.04). Likewise, the mean value of p
for CD8! T cells was significantly higher (!7.7-fold) in
patients (0.023/d) than in normal controls (0.003/d) (P
value "0.01), although mean values of d for the two
groups were not significantly different (0.050/d vs. 0.043/
d). These quantitative estimates, therefore, validate the
qualitative impression above that HIV-1 infection results in
a faster turnover of both CD4! and CD8! T cells.

Source of CD4! T Cells May Increase in HIV-1 Infection.
Note that in Table I the data fitting also provided esti-
mates for , which is, to a good approximation, the frac-
tion of T cells in the proliferating compartment input
from a source per day (Fig. 1, references 18 and 19). The
mean value of   for CD4! lymphocytes in infected pa-
tients (0.123/d) was significantly higher (P value "0.05)
than in normal persons (0.033/d); however, the mean val-
ues of   for CD8! lymphocytes were not very different
(0.031/d vs. 0.040/d) between the two groups. There was
no evidence to suggest that HIV-1 infection results in a
decrease of CD4! T cells coming from a source. As we
have discussed previously (7, 18, 19), this source could be
the thymus or merely a population of resting or slowly di-
viding lymphocytes that upon activation would undergo
rapid clonal expansion and enter the pool of cells acquir-
ing label during the experiment. A model that includes
separate populations of resting and proliferating T cells can
also fit the data and supports the concept that the source
corresponds to activation of resting cells (unpublished
data).
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Figure 3. Sequential changes
in the fraction of labeled DNA in
blood T lymphocytes. The data
of healthy controls (C1–C4) ver-
sus HIV-1–infected patients (P1–
P7) are shown in each graph.
The period of D-glucose admin-
istration is indicated by a box
(top left corner). The data points
are represented by symbols, and
the lines show the best fit of the
data to a mathematical model.

Fig. 1. Enrichment curves for lymphocyte subsets. Enrichment of deuterium in deoxyadenosine (mean±SD of triplicate measure-
ments) in lymphocyte populations following 24-h infusion of 6,6-D2-glucose. Values are expressed as proportion of labeled cells
relative to total cells in each subpopulation (equivalent to A*/(Ab) in the model in Fig. 2); lines represent best-fit curves.

from the pool and includes both death within and exit
from the pool, the latter either by trafficking or by pheno-
typic transformation.

During the labeling period, if a cell divides, then each of
the two new cells produced will contain one strand of

original DNA and one newly synthesized strand [16]. The
newly synthesized strands, equivalent to the number of
new cells, will contain labeled deoxyadenosine, the
quantity of which will depend upon the proportion of
deoxyadenosine triphosphate molecules that are
labeled. As the deoxyribose moiety of deoxyadenosine is

2318 D.C. Macallan et al. Eur. J. Immunol. 2003. 33: 2316–2326
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fall of labeled DNA were obviously greater than those ob-
served in normal controls, even in P5 who was given
D-glucose for 4.3 d. Likewise, the peak labeling was con-
sistently higher in infected individuals, with some reaching
a labeled fraction of !0.20. Interestingly, the lowest deu-
terium incorporation in infected subjects was seen in P3,
the one with the lowest viral load (Table I). There was no
consistent relationship noted when comparing labeling
profiles in CD4! versus CD8! lymphocytes. Overall, the
findings in Fig. 3 provide a qualitative impression that
lymphocyte turnover is substantially more rapid in infected
patients than in normal persons.

Proliferation and Death Rates of CD4! and CD8! T Cells
Are Elevated Several-fold in HIV-1 Infection. To obtain
quantitative estimates of CD4! and CD8! T cell turnover
from the data, we developed a new mathematical model of
lymphocyte dynamics that tracks the number of deute-
rium-labeled and unlabeled strands of cellular DNA before,
during and after D-glucose administration (Fig. 1 and Ma-
terials and Methods). Then we used the model to fit the la-
beling results generated from CD4! and CD8! T cells
from each study subject as described in Materials and
Methods. As shown in Fig. 3, a good fit of the theory to
the data was obtained in every case. In so doing, rate esti-
mates of cellular proliferation (p) and death (d) were de-
rived for both lymphocyte populations in each subject (Ta-
ble I). By comparing the mean value of p for CD4! T cells
of normal individuals (0.004/d) to that of infected patients
(0.025/d), it was clear that proliferation rates were signifi-
cantly increased (!6.3-fold) in HIV-1 infection (P value
"0.01). A similar comparison of mean values of d (0.044/d

vs. 0.129/d) showed CD4! lymphocyte death rates to be
significantly elevated (approximately threefold) in infected
individuals (P value "0.04). Likewise, the mean value of p
for CD8! T cells was significantly higher (!7.7-fold) in
patients (0.023/d) than in normal controls (0.003/d) (P
value "0.01), although mean values of d for the two
groups were not significantly different (0.050/d vs. 0.043/
d). These quantitative estimates, therefore, validate the
qualitative impression above that HIV-1 infection results in
a faster turnover of both CD4! and CD8! T cells.

Source of CD4! T Cells May Increase in HIV-1 Infection.
Note that in Table I the data fitting also provided esti-
mates for , which is, to a good approximation, the frac-
tion of T cells in the proliferating compartment input
from a source per day (Fig. 1, references 18 and 19). The
mean value of   for CD4! lymphocytes in infected pa-
tients (0.123/d) was significantly higher (P value "0.05)
than in normal persons (0.033/d); however, the mean val-
ues of   for CD8! lymphocytes were not very different
(0.031/d vs. 0.040/d) between the two groups. There was
no evidence to suggest that HIV-1 infection results in a
decrease of CD4! T cells coming from a source. As we
have discussed previously (7, 18, 19), this source could be
the thymus or merely a population of resting or slowly di-
viding lymphocytes that upon activation would undergo
rapid clonal expansion and enter the pool of cells acquir-
ing label during the experiment. A model that includes
separate populations of resting and proliferating T cells can
also fit the data and supports the concept that the source
corresponds to activation of resting cells (unpublished
data).
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Figure 3. Sequential changes
in the fraction of labeled DNA in
blood T lymphocytes. The data
of healthy controls (C1–C4) ver-
sus HIV-1–infected patients (P1–
P7) are shown in each graph.
The period of D-glucose admin-
istration is indicated by a box
(top left corner). The data points
are represented by symbols, and
the lines show the best fit of the
data to a mathematical model.
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average turnover rate of the T cell population is not necessarily
equal to the loss rate of labeled cells (28).

The median turnover rates of naı̈ve CD4 and CD8 T cells were
found to be as low as p ! 0.0005 and 0.0003 per day, corre-
sponding to median half-lives of 1,517 and 2,374 days for naı̈ve
CD4 and CD8 T cells, respectively (Fig. 2 and Tables 1 and 2).
The turnover rates of memory CD4 and CD8 T cells were found
to be "10-fold higher, i.e., p ! 0.0045 and 0.0028 per day,
corresponding to half-lives of 155 and 244 days for memory CD4
and CD8 T cells, respectively. Using the individual naı̈ve CD4
and CD8 T cell counts revealed a median naı̈ve CD4 T cell
production of 8.2 # 107 cells per day and a median naı̈ve CD8
T cell production of 2.4 # 107 per day (Table 3). Because this
daily production of new naı̈ve T cells is the sum of thymic output
and homeostatic proliferation within the naı̈ve T cell pool, our
data provide an upper estimate of daily thymic production of
1.7 # 108 T cells per day (see Table 3).

The median rates at which labeled memory CD4 and CD8 T cells
were lost from the memory population were found to be 0.0145 and
0.0098 per day, respectively. Interestingly, in none of the individuals
did we find a significant loss of labeled naı̈ve CD4 or CD8 T cells
during the 16 weeks after cessation of label (Fig. 2 and Table 1),
indicating that newly produced naı̈ve T cells—whether produced by
the thymus or by peripheral T cell proliferation—had a longer
expected life span than the average naı̈ve T cell. Our data are
therefore not compatible with the presence of a substantial short-
lived RTE pool in adult healthy humans.

Discussion
By in vivo labeling of T cell subsets using 2H2O and mathematical
analysis of label enrichment, our data provide reliable estimates for
the average turnover rates of naı̈ve and memory CD4 and CD8 T
cells in healthy adults. Although isotope labeling studies in humans

are typically restricted to blood, it has been reported that labeling
kinetics in human T cells derived from blood and lymphoid tissues
are comparable (29). Label incorporation in T cells derived from
mouse peripheral lymph nodes and spleen was also similar (un-
published data). Seemingly, there is little difference in labeling of
the analyzed T cell subsets derived from the different lymphoid
compartments.

The very low accumulation of label in naı̈ve T cells ($5%) that
we observed after 9 weeks of up-labeling is compatible with the
data reported by Hellerstein et al. (20). Our median estimated
half-lives between 1,517 and 2,374 days for naı̈ve T cells and
between 155 and 244 days for memory T cells are, however, much
longer than previous estimates based on stable-isotope labeling,
which varied from 112 to 361 days for naı̈ve T cells and from 14
to 235 days for memory T cells (25). The use of T cell death rates,
which overestimate T cell turnover because of the bias toward
cells that have recently divided (30), and the lack of data points
during the up-labeling phase in previous short-term labeling
experiments might explain these discrepancies. Michie et al. (6)
used the presence of T cells with dicentric chromosomes after
radiation to measure the half-life of naı̈ve and memory T cells.
They estimated a half-life of 182 days for CD45RO% and 630
days for CD45RA% T cells. Because CD45RA% T cells can
contain a substantial fraction of effector (CD45RA%CD27&)
cells, we additionally used CD27 expression on CD45RA% T
cells to identify naı̈ve T cells. This difference in definition of the
naı̈ve subset may explain the difference in the estimated life
spans between these studies. Furthermore, it is conceivable that
the half-lives of T cells were affected by radiation.

The origin of variation in the calculated half-lives of the adult
humans is unknown: No relation was found between this parameter
and T cell counts, Ki67 expression, or age. The relative differences
in calculated half-lives were, however, in the same range as the
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Very short term labeling with glucose also problematic

One day of labeling: but “peak” observed only at day three. 
Assume true peak at day one and extrapolate down-slope 

backwards to back-calculate true peak at day 1. 
Short term labeling suffers from unknown exit rates from 

lymphoid tissue to blood and poorly estimates initial up-slope.

Fig. 1. Enrichment curves for lymphocyte subsets. Enrichment of deuterium in deoxyadenosine (mean±SD of triplicate measure-
ments) in lymphocyte populations following 24-h infusion of 6,6-D2-glucose. Values are expressed as proportion of labeled cells
relative to total cells in each subpopulation (equivalent to A*/(Ab) in the model in Fig. 2); lines represent best-fit curves.

from the pool and includes both death within and exit
from the pool, the latter either by trafficking or by pheno-
typic transformation.

During the labeling period, if a cell divides, then each of
the two new cells produced will contain one strand of

original DNA and one newly synthesized strand [16]. The
newly synthesized strands, equivalent to the number of
new cells, will contain labeled deoxyadenosine, the
quantity of which will depend upon the proportion of
deoxyadenosine triphosphate molecules that are
labeled. As the deoxyribose moiety of deoxyadenosine is

2318 D.C. Macallan et al. Eur. J. Immunol. 2003. 33: 2316–2326
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fall of labeled DNA were obviously greater than those ob-
served in normal controls, even in P5 who was given
D-glucose for 4.3 d. Likewise, the peak labeling was con-
sistently higher in infected individuals, with some reaching
a labeled fraction of !0.20. Interestingly, the lowest deu-
terium incorporation in infected subjects was seen in P3,
the one with the lowest viral load (Table I). There was no
consistent relationship noted when comparing labeling
profiles in CD4! versus CD8! lymphocytes. Overall, the
findings in Fig. 3 provide a qualitative impression that
lymphocyte turnover is substantially more rapid in infected
patients than in normal persons.

Proliferation and Death Rates of CD4! and CD8! T Cells
Are Elevated Several-fold in HIV-1 Infection. To obtain
quantitative estimates of CD4! and CD8! T cell turnover
from the data, we developed a new mathematical model of
lymphocyte dynamics that tracks the number of deute-
rium-labeled and unlabeled strands of cellular DNA before,
during and after D-glucose administration (Fig. 1 and Ma-
terials and Methods). Then we used the model to fit the la-
beling results generated from CD4! and CD8! T cells
from each study subject as described in Materials and
Methods. As shown in Fig. 3, a good fit of the theory to
the data was obtained in every case. In so doing, rate esti-
mates of cellular proliferation (p) and death (d) were de-
rived for both lymphocyte populations in each subject (Ta-
ble I). By comparing the mean value of p for CD4! T cells
of normal individuals (0.004/d) to that of infected patients
(0.025/d), it was clear that proliferation rates were signifi-
cantly increased (!6.3-fold) in HIV-1 infection (P value
"0.01). A similar comparison of mean values of d (0.044/d

vs. 0.129/d) showed CD4! lymphocyte death rates to be
significantly elevated (approximately threefold) in infected
individuals (P value "0.04). Likewise, the mean value of p
for CD8! T cells was significantly higher (!7.7-fold) in
patients (0.023/d) than in normal controls (0.003/d) (P
value "0.01), although mean values of d for the two
groups were not significantly different (0.050/d vs. 0.043/
d). These quantitative estimates, therefore, validate the
qualitative impression above that HIV-1 infection results in
a faster turnover of both CD4! and CD8! T cells.

Source of CD4! T Cells May Increase in HIV-1 Infection.
Note that in Table I the data fitting also provided esti-
mates for , which is, to a good approximation, the frac-
tion of T cells in the proliferating compartment input
from a source per day (Fig. 1, references 18 and 19). The
mean value of   for CD4! lymphocytes in infected pa-
tients (0.123/d) was significantly higher (P value "0.05)
than in normal persons (0.033/d); however, the mean val-
ues of   for CD8! lymphocytes were not very different
(0.031/d vs. 0.040/d) between the two groups. There was
no evidence to suggest that HIV-1 infection results in a
decrease of CD4! T cells coming from a source. As we
have discussed previously (7, 18, 19), this source could be
the thymus or merely a population of resting or slowly di-
viding lymphocytes that upon activation would undergo
rapid clonal expansion and enter the pool of cells acquir-
ing label during the experiment. A model that includes
separate populations of resting and proliferating T cells can
also fit the data and supports the concept that the source
corresponds to activation of resting cells (unpublished
data).
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fall of labeled DNA were obviously greater than those ob-
served in normal controls, even in P5 who was given
D-glucose for 4.3 d. Likewise, the peak labeling was con-
sistently higher in infected individuals, with some reaching
a labeled fraction of !0.20. Interestingly, the lowest deu-
terium incorporation in infected subjects was seen in P3,
the one with the lowest viral load (Table I). There was no
consistent relationship noted when comparing labeling
profiles in CD4! versus CD8! lymphocytes. Overall, the
findings in Fig. 3 provide a qualitative impression that
lymphocyte turnover is substantially more rapid in infected
patients than in normal persons.

Proliferation and Death Rates of CD4! and CD8! T Cells
Are Elevated Several-fold in HIV-1 Infection. To obtain
quantitative estimates of CD4! and CD8! T cell turnover
from the data, we developed a new mathematical model of
lymphocyte dynamics that tracks the number of deute-
rium-labeled and unlabeled strands of cellular DNA before,
during and after D-glucose administration (Fig. 1 and Ma-
terials and Methods). Then we used the model to fit the la-
beling results generated from CD4! and CD8! T cells
from each study subject as described in Materials and
Methods. As shown in Fig. 3, a good fit of the theory to
the data was obtained in every case. In so doing, rate esti-
mates of cellular proliferation (p) and death (d) were de-
rived for both lymphocyte populations in each subject (Ta-
ble I). By comparing the mean value of p for CD4! T cells
of normal individuals (0.004/d) to that of infected patients
(0.025/d), it was clear that proliferation rates were signifi-
cantly increased (!6.3-fold) in HIV-1 infection (P value
"0.01). A similar comparison of mean values of d (0.044/d

vs. 0.129/d) showed CD4! lymphocyte death rates to be
significantly elevated (approximately threefold) in infected
individuals (P value "0.04). Likewise, the mean value of p
for CD8! T cells was significantly higher (!7.7-fold) in
patients (0.023/d) than in normal controls (0.003/d) (P
value "0.01), although mean values of d for the two
groups were not significantly different (0.050/d vs. 0.043/
d). These quantitative estimates, therefore, validate the
qualitative impression above that HIV-1 infection results in
a faster turnover of both CD4! and CD8! T cells.

Source of CD4! T Cells May Increase in HIV-1 Infection.
Note that in Table I the data fitting also provided esti-
mates for , which is, to a good approximation, the frac-
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mean value of   for CD4! lymphocytes in infected pa-
tients (0.123/d) was significantly higher (P value "0.05)
than in normal persons (0.033/d); however, the mean val-
ues of   for CD8! lymphocytes were not very different
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decrease of CD4! T cells coming from a source. As we
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the thymus or merely a population of resting or slowly di-
viding lymphocytes that upon activation would undergo
rapid clonal expansion and enter the pool of cells acquir-
ing label during the experiment. A model that includes
separate populations of resting and proliferating T cells can
also fit the data and supports the concept that the source
corresponds to activation of resting cells (unpublished
data).
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from each study subject as described in Materials and
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the data was obtained in every case. In so doing, rate esti-
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patients (0.023/d) than in normal controls (0.003/d) (P
value "0.01), although mean values of d for the two
groups were not significantly different (0.050/d vs. 0.043/
d). These quantitative estimates, therefore, validate the
qualitative impression above that HIV-1 infection results in
a faster turnover of both CD4! and CD8! T cells.

Source of CD4! T Cells May Increase in HIV-1 Infection.
Note that in Table I the data fitting also provided esti-
mates for , which is, to a good approximation, the frac-
tion of T cells in the proliferating compartment input
from a source per day (Fig. 1, references 18 and 19). The
mean value of   for CD4! lymphocytes in infected pa-
tients (0.123/d) was significantly higher (P value "0.05)
than in normal persons (0.033/d); however, the mean val-
ues of   for CD8! lymphocytes were not very different
(0.031/d vs. 0.040/d) between the two groups. There was
no evidence to suggest that HIV-1 infection results in a
decrease of CD4! T cells coming from a source. As we
have discussed previously (7, 18, 19), this source could be
the thymus or merely a population of resting or slowly di-
viding lymphocytes that upon activation would undergo
rapid clonal expansion and enter the pool of cells acquir-
ing label during the experiment. A model that includes
separate populations of resting and proliferating T cells can
also fit the data and supports the concept that the source
corresponds to activation of resting cells (unpublished
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average turnover rate of the T cell population is not necessarily
equal to the loss rate of labeled cells (28).

The median turnover rates of naı̈ve CD4 and CD8 T cells were
found to be as low as p ! 0.0005 and 0.0003 per day, corre-
sponding to median half-lives of 1,517 and 2,374 days for naı̈ve
CD4 and CD8 T cells, respectively (Fig. 2 and Tables 1 and 2).
The turnover rates of memory CD4 and CD8 T cells were found
to be "10-fold higher, i.e., p ! 0.0045 and 0.0028 per day,
corresponding to half-lives of 155 and 244 days for memory CD4
and CD8 T cells, respectively. Using the individual naı̈ve CD4
and CD8 T cell counts revealed a median naı̈ve CD4 T cell
production of 8.2 # 107 cells per day and a median naı̈ve CD8
T cell production of 2.4 # 107 per day (Table 3). Because this
daily production of new naı̈ve T cells is the sum of thymic output
and homeostatic proliferation within the naı̈ve T cell pool, our
data provide an upper estimate of daily thymic production of
1.7 # 108 T cells per day (see Table 3).

The median rates at which labeled memory CD4 and CD8 T cells
were lost from the memory population were found to be 0.0145 and
0.0098 per day, respectively. Interestingly, in none of the individuals
did we find a significant loss of labeled naı̈ve CD4 or CD8 T cells
during the 16 weeks after cessation of label (Fig. 2 and Table 1),
indicating that newly produced naı̈ve T cells—whether produced by
the thymus or by peripheral T cell proliferation—had a longer
expected life span than the average naı̈ve T cell. Our data are
therefore not compatible with the presence of a substantial short-
lived RTE pool in adult healthy humans.

Discussion
By in vivo labeling of T cell subsets using 2H2O and mathematical
analysis of label enrichment, our data provide reliable estimates for
the average turnover rates of naı̈ve and memory CD4 and CD8 T
cells in healthy adults. Although isotope labeling studies in humans

are typically restricted to blood, it has been reported that labeling
kinetics in human T cells derived from blood and lymphoid tissues
are comparable (29). Label incorporation in T cells derived from
mouse peripheral lymph nodes and spleen was also similar (un-
published data). Seemingly, there is little difference in labeling of
the analyzed T cell subsets derived from the different lymphoid
compartments.

The very low accumulation of label in naı̈ve T cells ($5%) that
we observed after 9 weeks of up-labeling is compatible with the
data reported by Hellerstein et al. (20). Our median estimated
half-lives between 1,517 and 2,374 days for naı̈ve T cells and
between 155 and 244 days for memory T cells are, however, much
longer than previous estimates based on stable-isotope labeling,
which varied from 112 to 361 days for naı̈ve T cells and from 14
to 235 days for memory T cells (25). The use of T cell death rates,
which overestimate T cell turnover because of the bias toward
cells that have recently divided (30), and the lack of data points
during the up-labeling phase in previous short-term labeling
experiments might explain these discrepancies. Michie et al. (6)
used the presence of T cells with dicentric chromosomes after
radiation to measure the half-life of naı̈ve and memory T cells.
They estimated a half-life of 182 days for CD45RO% and 630
days for CD45RA% T cells. Because CD45RA% T cells can
contain a substantial fraction of effector (CD45RA%CD27&)
cells, we additionally used CD27 expression on CD45RA% T
cells to identify naı̈ve T cells. This difference in definition of the
naı̈ve subset may explain the difference in the estimated life
spans between these studies. Furthermore, it is conceivable that
the half-lives of T cells were affected by radiation.

The origin of variation in the calculated half-lives of the adult
humans is unknown: No relation was found between this parameter
and T cell counts, Ki67 expression, or age. The relative differences
in calculated half-lives were, however, in the same range as the

50 100 150 2000 50 100 150 2000 50 100 150 2000 50 100 150 2000

Time after start of labeling (in days)

P
er

ce
nt

ag
e 

la
be

le
d

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

A

B

C

D

E

Naïve CD4 Naïve CD8 Memory CD4 Memory CD8

Fig. 2. Best fits of the naı̈ve and memory CD4 and CD8 T cell enrichment curves. Label enrichment was scaled between 0 and 100% by normalizing for the
percentage label obtained in granulocytes (see SI Text). In the graph, the end of the labeling period is marked by a vertical line.

Vrisekoop et al. PNAS ! April 22, 2008 ! vol. 105 ! no. 16 ! 6117

IM
M

U
N

O
LO

G
Y

En
ri

ch
m

en
t 

(%
)

Naive CD4 Memory CD4Naive CD8 Memory CD8

days

9 weeks D-water

Total (naive + memory)



500 1000 1500
Peripheral T cell count

0

500

1000

E
x
p
ec

te
d
 l

if
e 

sp
an

CD4 Vrisekoop

CD4 Mohri
CD8 Mohri

(a)

0 0.05 0.1 0.15 0.2 0.25
Fraction Ki67+

0

0.01

0.02

0.03

0.04

0.05

A
v

er
ag

e 
tu

rn
o

v
er

 p
er

 d
ay

CD4
CD8
Y=0.2X

(b)

Figure 6: T cell turnover rates estimated by deuterium labeling. Panel (a): Expected life spans
of total T cells estimated by one week of deuterated glucose labeling in Mohri et al. [160] versus
9 weeks of deuterated water labeling in Vrisekoop et al. [218]. Each symbol represents a healthy
human volunteer and is plotted at the CD4 or CD8 T cell count (per µl blood) of that subject.
The horizontal lines depict the average expected life spans, i.e., 250 and 484 days for CD4+ T
cells, and 400 days for CD8+ cells. The vertical lines depict the 95% confidence intervals; since the
Vrisekoop et al. [218] data was recalculated from the naive and memory T cell enrichment, we have
no confidence intervals for those data points. Note that the CD4+ T cells of one volunteer in the
Vrisekoop et al. [218] data have an expected life span that is about 2-fold larger than the mean,
which is largely due to an approximately 2-fold lower deuterium enrichment in this subject’s CD4+

memory T cell compartment (and not to a poor fitting of the data). Judging the CD4 data on
either the mean, or the median to exclude the outlier, the difference between the two techniques is
at about 2-fold. Panel (b): Mohri et al. [160] also measured the fraction of dividing cells by staining
with the Ki67 antibody, and we plot for each individual the estimated average turnover rates, i.e.,
the p values in their Table 1, as a function of the Ki67 measurements in CD4+ and CD8+ T cells.
The line in Panel (b) results from fitting the linear regression line y = ax to the data, and suggest
that the daily turnover is approximately one fifth of the fraction of Ki67+ cells.

in good agreement with the similar flat de-labeling curves of naive T cells labeled with BrdU
in monkeys [45, 159] (see below).

Vrisekoop et al. [218] applied Eq. (23) to fit their data. For fitting label accrual in naive T
cells this deserves some further discussion because (1) that model was originally derived for
proliferating cells, and (2) the model requires that the asymptote p/d ≤ 1 [8]. Above we
derived the model writing dL/dt = p(U + L)− dL = p − dL, giving L(t) = (p/d)(1− e−dt)
for the uplabeling phase (see Eq. (23)). Since most of the de novo production of naive
T cells probably occurs in the thymus, one could instead write dL/dt = σ − dL for the
labeled fraction in the uplabeling phase. Switching σ with p this remains mathematically
the same equation, however. This illustrates that when Eq. (23) is used for naive T cells,
the p parameter obtains the interpretation of a total production rate rather than a per
capita proliferation rate [218]. However, the other constraint, i.e., p ≤ d required because
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Conclusions from 5 human volunteers labeled with D-water

Expected life spans (medians)
Naive CD4+ T cells: 2000 days (5.5 years)
Naive CD8+ T cells: 3300 days (9.1 years)

Effector/memory CD4+ T cells: 160 days (0.45 years)
Effector/memory CD8+ T cells: 160 days (0.45 years)

Compartments:
Naive T cell data typically requires only one exponent

Memory data do require 2 compartments: heterogeneity

Immunological memory is maintained by short-lived cells
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Vrisekoop et al PNAS 2008
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some problems remain ...

Is the difference between 
D-glucose and D-water 

really solved?

Also differences between the 2 day and the 1 week glucose data 
(to be worked on here with Becca Asquith)

Biology of the n-compartment model should not be 
taken too seriously
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To study the kinetics of lymphocytes, models have divided the cell population into subpopu-
lations with different turnover rates. These have been called ‘kinetic heterogeneity models’ so
as to distinguish them from ‘temporal heterogeneity models’, in which a cell population may
have different turnover rates at different times, e.g. when resting versus when activated. We
model labelling curves for temporally heterogeneous populations, and predict that they exhi-
bit equal biphasic up- and downslopes. We show when cells divide only once upon activation,
these slopes are dominated by the slowest exponent, yielding underestimates of the average
turnover rate. When cells undergo more than one division, the labelling curves allow fitting
of the two exponential slopes in the temporal heterogeneity model. The same data can also be
described with a two-compartment kinetic heterogeneity model. In both instances, the aver-
age turnover rate is correctly estimated. Because both models assume a different cell biology
but describe the data equally well, the parameters of either model have no simple biological
interpretation, as each parameter could reflect a combination of parameters of another bio-
logical process. Thus, even if there are sufficient data to reliably estimate all exponentials,
one can only accurately estimate an average turnover rate. We illustrate these issues by
re-fitting labelling data from healthy and HIV-infected individuals.

Keywords: lymphocyte; turnover; lifespan; modelling

1. INTRODUCTION

Despite great advances in immunological research
during the last decades, estimating the kinetics of lym-
phocyte populations has proved quite difficult. There
are widely divergent estimates of the production rates,
division rates and lifespans of mouse and human lym-
phocyte populations [1]. As a consequence, it is poorly
understood how memory is maintained, how the naive
lymphocyte repertoire remains diverse and how homeo-
stasis is brought about. Additionally, it remains poorly
understood how viruses such as HIV, and diseases such
as rheumatoid arthritis, disturb the normal population
dynamics and deteriorate the functioning of the
immune system.

Several in vivo labelling techniques have been devel-
oped that have enabled the generation of quantitative
data on lymphocyte dynamics. Examples of labels are
the fluorescent dye carboxy-fluorescein diacetate
succinimidyl ester (CFSE), the base analogue 5-bromo-
20-deoxyuridine (BrdU) and the stable isotype deuterium.
Majoradvantages of deuterium labelling are that it is unli-
kely to change the cellular dynamics, and that, unlike
CFSE and BrdU, it can safely be used in humans, and
hence provide insights into human lymphocyte turnover

in health and disease. Animals and humans have been
labelled with deuterated glucose (2H2-glucose) or heavy
water (2H2O) for 1 or 2 days [2–6], 5 days [7] to one
week [8] or several months [9–11], and have subsequently
been followed to study the loss of label during a washout
phase. After deuterium labelling, one sorts the cell popu-
lation of interest, isolates theDNA from the cells, and uses
mass spectrometry to determine the enrichment of
deuterium in the DNA [12–15]. During the labelling
period, some fraction of the hydrogen atoms in the body
will be replaced by deuterium, and dividing cells will
incorporate both deuterium and hydrogen in newly
synthesized DNA molecules. Ultimately, the data cor-
respond to a normalized fraction of labelled DNA, 0!
L(t), 1, which increases during the labelling phase,
and which decreases after deuterium has been with-
drawn. We will refer to these two phases of L(t) as
the upslope and the downslope, respectively. Adding
deuterium should not change the number of T cells, and
thus one typically assumes steady state for the total
cell population during the labelling experiment.

Although deuterium labelling is increasingly being
used, the interpretation of the data in terms of the
underlying kinetics of the cells has turned out to be
notoriously difficult [1,8,10,16–18]. One major problem
is that the estimated turnover rates differ markedly*Author for correspondence (r.j.deboer@uu.nl).
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correct because it captures the underlying biology. Here
we present this model, study its properties and generalize
it to other situations with temporal heterogeneity.

2. MODEL

Consider a population of resting cells that are recruited
into division at an activation rate a. Cell division yields
c daughter cells, where c ¼ 2 corresponds to the single
divisions that account for the renewal of an otherwise
quiescent population of memory T cells [26], and c. 2
corresponds to a burst of divisions that characterize
clonal expansion. Small non-overlapping bursts of
clonal expansion may also occur during chronic infec-
tion [23], and may play a role in the normal
maintenance of part of the CD4þ T cells expressing a
memory phenotype [27]. It would obviously be best to
model a burst of cell expansion by a cascade indexed
by the number of divisions the cells have completed
[23,28], but such a model typically has too many par-
ameters to fit to limited experimental data. To keep
the analyses tractable, we model clonal expansion as
an instantaneous process, but we do not expect that
our main results will change if clonal expansion were
incorporated as a cascade. Moreover, because we
assume steady state in our model, we will limit ourselves
to small bursts (c ¼ 32, corresponding to 5 divisions).

The activated daughter cells revert to a resting state
at rate r, and resting and activated cells have death
rates dR and dA, respectively. Whenever dA . dR, the
model accounts for temporal heterogeneity. Without
loss of generality, one can scale the total population
size to one, so that A þ R ¼ 1, and write for the
fractions of resting, R, and activated, A, cells

dR
dt

¼ rA# ða þ dRÞR

and
dA
dt

¼ caR# ðr þ dAÞA:

9
>>=

>>;
ð2:1Þ

Since we expect that the system is at steady state and
that deuterium labelling does not change the dynamics,
we consider dR/dt ¼ dA/dt ¼ 0. Using A þ R ¼ 1, the
steady state dA/dt ¼ 0 gives that the fraction of divid-
ing cells !A ¼ ca=ðca þ r þ dAÞ, and the steady state of
dR/dt ¼ 0 can be used to eliminate one parameter, e.g.

r ¼ dA
a þ dR

ðc # 1Þa # dR
: ð2:2Þ

Substituting the latter into !A gives the fraction of
activated cells f ¼ !A=ð!Aþ !RÞ ¼ !A, or

f ¼ ðc # 1Þa # dR
ðc # 1Þa # dR þ dA

: ð2:3Þ

The average turnover of the population is defined as
!d ¼ fdA þ ð1# f ÞdR. This model is identical to that of
Ribeiro et al. [18], who were modelling two subpopulations
with different turnover rates. Equation (2.2) requires that
(c2 1)a2 dR . 0, which implies that forc¼ 2 we require
dR , a. For biological reasons, we only considerc. 1 and
dR , dA. Below we compare populations with different
values of c, but with the same average turnover rate !d,

which can be achieved by keeping (c2 1)a the same
when c is changed, thus keeping f constant. Note that the
average turnover rate, or the average death rate, !d, is not
related to the average residence times in the two subpopu-
lations, i.e. 1/(a þ dR) and 1/(r þ dA), respectively.

To model deuterium labelling, it is most convenient
to write equations for the unlabelled fractions of resting
and activated cells, UR and UA, respectively, during the
labelling phase [18], i.e.

dUR

dt
¼ rUA # ða þ dRÞUR

and
dUA

dt
¼ aUR # ðr þ dAÞUA

9
>>=

>>;
; ð2:4Þ

where UR þ LR ¼ R and UA þ LA ¼ A and the total
labelled fraction is defined as L ¼ LR þ LA ¼ 12 UR 2
UA. To obtain the downslope, it is preferable to write
equations for the loss of the labelled fractions, and—
conveniently—these are identical to those used to obtain
the upslope [18] when U and L are interchanged, i.e.

dLR

dt
¼ rLA # ða þ dRÞLR

and
dLA

dt
¼ aLR # ðr þ dAÞLA:

9
>>=

>>;
ð2:5Þ

2.1. Upslope

Because the model is linear, Ribeiro et al. [18] were
able obtain the analytical solutions. For the labelling
phase with the initial condition UA(0) ¼ f and
UR(0) ¼ 1 2 f, one obtains

LðtÞ ¼ 1# ae#e1t # ð1# aÞe#e2t ; ð2:6Þ

which, after some algebra, is identical to the upslope of
the two-compartment variant of the kinetic heterogen-
eity model of equation (1.1). Here

a ¼ 1
2
þ b=2#!d

g
; e1 ¼

b# g

2
; e2 ¼

bþ g

2
ð2:7Þ

and

b ¼ ða þ dRÞ þ ðr þ dAÞ . 0; g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 # 4u

q
. 0;

u ¼ adA þ rdR þ dAdR . 0;

ð2:8Þ

and r is defined by equation (2.2). The upslope is a com-
bination of e1 and e2, where e1 , e2. The initial upslope
of equation (2.6), i.e. dL(t)/dt for t! 0, is the average
turnover rate !d. Thus, although the structure of this sol-
ution is identical to that of equation (1.1) with n ¼ 2, the
parameters have completely different interpretations
because the exponents e1 and e2 are complicated
expressions that do not reflect the turnover rates, dR
and dA, of the subpopulations R and A, and the
parameter a is not the fraction of activated cells f.

2.2. Downslope

The general expression for the downslope is given by
Ribeiro et al. [18], and is complicated because it involves
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c=2 models the 
Choo et al LCMV CFSE data.

Typically dA>dR

Model with resting and recently divided cells:



One can find a solution:

correct because it captures the underlying biology. Here
we present this model, study its properties and generalize
it to other situations with temporal heterogeneity.

2. MODEL

Consider a population of resting cells that are recruited
into division at an activation rate a. Cell division yields
c daughter cells, where c ¼ 2 corresponds to the single
divisions that account for the renewal of an otherwise
quiescent population of memory T cells [26], and c. 2
corresponds to a burst of divisions that characterize
clonal expansion. Small non-overlapping bursts of
clonal expansion may also occur during chronic infec-
tion [23], and may play a role in the normal
maintenance of part of the CD4þ T cells expressing a
memory phenotype [27]. It would obviously be best to
model a burst of cell expansion by a cascade indexed
by the number of divisions the cells have completed
[23,28], but such a model typically has too many par-
ameters to fit to limited experimental data. To keep
the analyses tractable, we model clonal expansion as
an instantaneous process, but we do not expect that
our main results will change if clonal expansion were
incorporated as a cascade. Moreover, because we
assume steady state in our model, we will limit ourselves
to small bursts (c ¼ 32, corresponding to 5 divisions).

The activated daughter cells revert to a resting state
at rate r, and resting and activated cells have death
rates dR and dA, respectively. Whenever dA . dR, the
model accounts for temporal heterogeneity. Without
loss of generality, one can scale the total population
size to one, so that A þ R ¼ 1, and write for the
fractions of resting, R, and activated, A, cells

dR
dt

¼ rA# ða þ dRÞR

and
dA
dt

¼ caR# ðr þ dAÞA:

9
>>=

>>;
ð2:1Þ

Since we expect that the system is at steady state and
that deuterium labelling does not change the dynamics,
we consider dR/dt ¼ dA/dt ¼ 0. Using A þ R ¼ 1, the
steady state dA/dt ¼ 0 gives that the fraction of divid-
ing cells !A ¼ ca=ðca þ r þ dAÞ, and the steady state of
dR/dt ¼ 0 can be used to eliminate one parameter, e.g.

r ¼ dA
a þ dR

ðc # 1Þa # dR
: ð2:2Þ

Substituting the latter into !A gives the fraction of
activated cells f ¼ !A=ð!Aþ !RÞ ¼ !A, or

f ¼ ðc # 1Þa # dR
ðc # 1Þa # dR þ dA

: ð2:3Þ

The average turnover of the population is defined as
!d ¼ fdA þ ð1# f ÞdR. This model is identical to that of
Ribeiro et al. [18], who were modelling two subpopulations
with different turnover rates. Equation (2.2) requires that
(c2 1)a2 dR . 0, which implies that forc¼ 2 we require
dR , a. For biological reasons, we only considerc. 1 and
dR , dA. Below we compare populations with different
values of c, but with the same average turnover rate !d,

which can be achieved by keeping (c2 1)a the same
when c is changed, thus keeping f constant. Note that the
average turnover rate, or the average death rate, !d, is not
related to the average residence times in the two subpopu-
lations, i.e. 1/(a þ dR) and 1/(r þ dA), respectively.

To model deuterium labelling, it is most convenient
to write equations for the unlabelled fractions of resting
and activated cells, UR and UA, respectively, during the
labelling phase [18], i.e.

dUR

dt
¼ rUA # ða þ dRÞUR

and
dUA

dt
¼ aUR # ðr þ dAÞUA

9
>>=

>>;
; ð2:4Þ

where UR þ LR ¼ R and UA þ LA ¼ A and the total
labelled fraction is defined as L ¼ LR þ LA ¼ 12 UR 2
UA. To obtain the downslope, it is preferable to write
equations for the loss of the labelled fractions, and—
conveniently—these are identical to those used to obtain
the upslope [18] when U and L are interchanged, i.e.

dLR

dt
¼ rLA # ða þ dRÞLR

and
dLA

dt
¼ aLR # ðr þ dAÞLA:

9
>>=

>>;
ð2:5Þ

2.1. Upslope

Because the model is linear, Ribeiro et al. [18] were
able obtain the analytical solutions. For the labelling
phase with the initial condition UA(0) ¼ f and
UR(0) ¼ 1 2 f, one obtains

LðtÞ ¼ 1# ae#e1t # ð1# aÞe#e2t ; ð2:6Þ

which, after some algebra, is identical to the upslope of
the two-compartment variant of the kinetic heterogen-
eity model of equation (1.1). Here

a ¼ 1
2
þ b=2#!d

g
; e1 ¼

b# g

2
; e2 ¼

bþ g

2
ð2:7Þ

and

b ¼ ða þ dRÞ þ ðr þ dAÞ . 0; g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 # 4u

q
. 0;

u ¼ adA þ rdR þ dAdR . 0;

ð2:8Þ

and r is defined by equation (2.2). The upslope is a com-
bination of e1 and e2, where e1 , e2. The initial upslope
of equation (2.6), i.e. dL(t)/dt for t! 0, is the average
turnover rate !d. Thus, although the structure of this sol-
ution is identical to that of equation (1.1) with n ¼ 2, the
parameters have completely different interpretations
because the exponents e1 and e2 are complicated
expressions that do not reflect the turnover rates, dR
and dA, of the subpopulations R and A, and the
parameter a is not the fraction of activated cells f.

2.2. Downslope

The general expression for the downslope is given by
Ribeiro et al. [18], and is complicated because it involves
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the fraction of labelled resting cells, LR(tend), and the
fraction of labelled activated cells, LA(tend). We therefore
first consider the case where all cells are labelled at the
end of labelling, i.e. L(tend) ¼ LR(tend) þ LA(tend) ¼ 1,
because the solution can then be written as

LðtÞ ¼ ae%e1ðt%tendÞ þ ð1% aÞe%e2ðt%tendÞ; ð2:9Þ

where the parameters are defined as in equation (2.7).
The initial downslope reflects !d (because we consider
the case where all cells are labelled at time tend). For
finite labelling periods tend, it can numerically be shown
that the general expression for the downslope [18] rapidly
approaches the approximate solution

LðtÞ ≃ að1% e%e1tendÞe%e1ðt%tendÞ

þ ð1% aÞð1% e%e2tendÞe%e2ðt%tendÞ; ð2:10Þ

which is indeed equal to equation (2.9) when all cells are
labelled at tend, i.e. when e%e1tend ¼ e%e2tend ¼ 0. Thus, the
downslope of this temporal heterogeneity model strongly
resembles the downslope of equation (1.1) for n ¼ 2,
albeit with different parameter interpretation, and for
all practical purposes it will be difficult to distinguish
between the models.

2.3. No death of quiescent cells

The death rate of resting cells, dR, is the slowest time-
scale of this model, and for c ¼ 2, we indeed require
that dR , a. Thus, it is enlightening to simplify the
exponents by assuming dR ¼ 0. This yields

e1;2 ¼
a þ c0dA +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða þ c 0dAÞ2 % 4adAc 0=c

q

2
; ð2:11Þ

where c0 ¼ c/(c 2 1). For c ¼ 2, this simplifies further
into

e1;2 ¼
a þ 2dA +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4d2A

q

2
; ð2:12Þ

which for low activation rates, a, approaches e1 ≃ a/2
and e2 ≃ a/2 þ 2dA. Using the Choo et al. [26] estimate
of a ¼ 0.02 d21, and giving recently divided cells a short
lifespan, i.e. choosing dA ¼ 1 d21, the exponents would
be e1 ≃ 0.01 d21 and e2 ≃ 2.01 d21.

3. RESULTS AND DISCUSSION

Let us first study what one would expect for a deuter-
ium labelling experiment of LCMV-specific CD8þ

memory T cells, as described by Choo et al. [26]. The
cells on average divide every 50 days and then do one
division, i.e. we set a ¼ 0.02 d21 and c ¼ 2. Considering
long-lived resting cells, e.g. dR ¼ 0.001 d21, and short-
lived activated cells, e.g. dA ¼ 1 d21, one calculates a
reversion rate of r ¼ 1.105 d21, and a steady-state frac-
tion of activated cells of f ¼ 0.01865, from equations
(2.2) and (2.3), respectively. The average turnover
rate of the cells is then !d ¼ 0:0196 d21 (which is close
to fdA because we assume that resting cells are long-
lived). We study deuterium labelling experiments in
this system by numerically solving equations (2.4) and
(2.5) for labelling periods of 10, 50 and 100 days
(figure 2a). Although the analytical solutions of this
model involve two exponentials, see equations (2.6)
and (2.9), the up and downslopes shown in figure 2a
are hardly biphasic. For the present case, the par-
ameters of the solution of equation (2.6) are a ¼
0.995, e1 ¼ 0.01 d21 and e2 ¼ 2.12 d21, from which
one sees that the fast exponential describes only a
minor fraction of the population (i.e. 12 a ≃ 0.005).
This explains why the system is hardly biphasic, and
the slow exponential, e1, largely determines the
‘observed’ upslope and downslopes. The downslope
barely depends on the labelling period, and even after
all cells have been labelled, the ‘observed’ downslope,
e1 ¼ 0.01 d21, is about half of the average turnover
rate, as !d ¼ 0:0196 d21.

As shown by equations (2.7) and (2.8), the slowest
exponential is determined by several parameters of the
model, and is complicated to understand in biological
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Figure 2. Simulating a labelling experiment for the parameters estimated by Choo et al. [26] for 10, 50 and 100 days of labelling.
The total labelled fraction is defined as L ¼ LR þ LA ¼ 12 UR 2 LR. (a) c ¼ 2, a ¼ 0.02 d21 and hence f ¼ 0.01865, r ¼ 1.105
d21 and !d ¼ 0:01963 d21 (which is close to fdA). (b) c ¼ 32,a ¼ 0.02/31 ¼ 0.0006452 d21 and hence r ¼ 0.08658 d21. The fraction
of activated cells, f, and the average turnover rate, !d, are the same in both panels. Other parameters: dR ¼ 0.001 d21 and dA ¼ 1
d21. Although the up- and downslopes are technically biphasic [18], this is hardly visible when c ¼ 2 (a).
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dP

dt
= aM + pP − caM(t− τ) , (22)

where f = m/(dA + m) < 1 and c = epτ . This begins to resemble Eq. (20), but note that
c > 1, that the temporal heterogeneity of a short-lived stage after clonal expansion has
been taken away by the QSSA, and the death rate in Eq. (20) has been replaced with the
fraction, f , of cells surviving clonal expansion in Eq. (22). Unfortunately, Eqs. (21–22) still
contain too many parameters to estimate from the available data. From the steady condition
0 = fcaM − dM − aM = aM + pP − caM one can again obtain the fraction of proliferating
cells, and eliminate one parameter, but the number of parameters still remains too large.
A more trivial way of deriving Eq. (20) from the general model is to assign a slow time
scale to the resting cells, and let R be a constant, which simplifies dA/dt in Eq. (20) to Eq.
(1) with σ = aR [66]. Since Mohri et al. [7] were comparing deuterated glucose labeling of
healthy human volunteers with that in HIV-1 infected patients, it could however be that the
latter derivation would be valid for healthy volunteers, and that Eqs. (21–22) would be more
realistic for the chronically infected patients.

The generalized precursor product-relationship of Eq. (16) (and similarly Eq. (19)) can be
further generalized to explicitly model kinetic heterogeneity by assigning different turnover
rates for subpopulations i = 1, . . . , n, i.e.,

L(t) =

{ ∑
αi(1− e−dit) , if t ≤ Tend ,∑
αi(1− e−diTend)e−di(t−Tend), otherwise ,

(23)

where αi is the fraction of cells with turnover rate di [65]. This model is valid for popula-
tions maintaining themselves by a source and/or division because for all subpopulations one
can model the labeling phase by considering the loss of unlabeled strands (at rate di) and
the de-labeling phase by the loss of labeled strands (at rate di); see Eq. (16). The major
advantage of this model is that for n > 1 the up-slope can be slower than the down-slope
because the initial up-slope reflects the average turnover rate, d̄ =

∑
αidi, whereas the ini-

tial down-slope is dominated by the fastest subpopulation [65]. Hence, a straightforward
procedure of estimating an average turnover rate from deuterium labeling data would be to
fit Eq. (23) to the data for i = 1, 2, . . . , n compartments, until one finds that increasing the
number of compartments no longer increases the quality of the fit. Probably the estimates
of the individual compartment sizes, αi, and turnover rates, di, will be noisy and have large
confidence levels, but the mean turnover rate, d̄, tends to be more robust [11, 12].

To illustrate this procedure we fitted the CD4+ and CD8+ T cell data from a healthy vol-
unteer who was labeled with deuterated glucose for one week [7], with the model of Eq. (23)
for n = 1 and n = 2 compartments. The quality of the n = 1 fits were poor (not shown),
whereas those with n = 2 compartments explain the data reasonably well with an up-slope
that is slower than the initial down-slope (Fig. 2). The estimated average turnover rates of
the CD4+ and CD8+ T cells, were d̄ = 0.006 d−1 and d̄ = 0.0044 d−1, respectively (corre-
sponding to expected life spans, 1/d̄, of 167 and 227 days). Similar expected life spans were

16

However, since this solution is very close to what we had above:

both models fit the data equally well. Thus, one can 
longer interpret their parameters biologically.

where α, e1 and e2 are combinations of r, a, c, dR and dA. 

correct because it captures the underlying biology. Here
we present this model, study its properties and generalize
it to other situations with temporal heterogeneity.

2. MODEL

Consider a population of resting cells that are recruited
into division at an activation rate a. Cell division yields
c daughter cells, where c ¼ 2 corresponds to the single
divisions that account for the renewal of an otherwise
quiescent population of memory T cells [26], and c. 2
corresponds to a burst of divisions that characterize
clonal expansion. Small non-overlapping bursts of
clonal expansion may also occur during chronic infec-
tion [23], and may play a role in the normal
maintenance of part of the CD4þ T cells expressing a
memory phenotype [27]. It would obviously be best to
model a burst of cell expansion by a cascade indexed
by the number of divisions the cells have completed
[23,28], but such a model typically has too many par-
ameters to fit to limited experimental data. To keep
the analyses tractable, we model clonal expansion as
an instantaneous process, but we do not expect that
our main results will change if clonal expansion were
incorporated as a cascade. Moreover, because we
assume steady state in our model, we will limit ourselves
to small bursts (c ¼ 32, corresponding to 5 divisions).

The activated daughter cells revert to a resting state
at rate r, and resting and activated cells have death
rates dR and dA, respectively. Whenever dA . dR, the
model accounts for temporal heterogeneity. Without
loss of generality, one can scale the total population
size to one, so that A þ R ¼ 1, and write for the
fractions of resting, R, and activated, A, cells

dR
dt

¼ rA# ða þ dRÞR

and
dA
dt

¼ caR# ðr þ dAÞA:

9
>>=

>>;
ð2:1Þ

Since we expect that the system is at steady state and
that deuterium labelling does not change the dynamics,
we consider dR/dt ¼ dA/dt ¼ 0. Using A þ R ¼ 1, the
steady state dA/dt ¼ 0 gives that the fraction of divid-
ing cells !A ¼ ca=ðca þ r þ dAÞ, and the steady state of
dR/dt ¼ 0 can be used to eliminate one parameter, e.g.

r ¼ dA
a þ dR

ðc # 1Þa # dR
: ð2:2Þ

Substituting the latter into !A gives the fraction of
activated cells f ¼ !A=ð!Aþ !RÞ ¼ !A, or

f ¼ ðc # 1Þa # dR
ðc # 1Þa # dR þ dA

: ð2:3Þ

The average turnover of the population is defined as
!d ¼ fdA þ ð1# f ÞdR. This model is identical to that of
Ribeiro et al. [18], who were modelling two subpopulations
with different turnover rates. Equation (2.2) requires that
(c2 1)a2 dR . 0, which implies that forc¼ 2 we require
dR , a. For biological reasons, we only considerc. 1 and
dR , dA. Below we compare populations with different
values of c, but with the same average turnover rate !d,

which can be achieved by keeping (c2 1)a the same
when c is changed, thus keeping f constant. Note that the
average turnover rate, or the average death rate, !d, is not
related to the average residence times in the two subpopu-
lations, i.e. 1/(a þ dR) and 1/(r þ dA), respectively.

To model deuterium labelling, it is most convenient
to write equations for the unlabelled fractions of resting
and activated cells, UR and UA, respectively, during the
labelling phase [18], i.e.

dUR

dt
¼ rUA # ða þ dRÞUR

and
dUA

dt
¼ aUR # ðr þ dAÞUA

9
>>=

>>;
; ð2:4Þ

where UR þ LR ¼ R and UA þ LA ¼ A and the total
labelled fraction is defined as L ¼ LR þ LA ¼ 12 UR 2
UA. To obtain the downslope, it is preferable to write
equations for the loss of the labelled fractions, and—
conveniently—these are identical to those used to obtain
the upslope [18] when U and L are interchanged, i.e.

dLR

dt
¼ rLA # ða þ dRÞLR

and
dLA

dt
¼ aLR # ðr þ dAÞLA:

9
>>=

>>;
ð2:5Þ

2.1. Upslope

Because the model is linear, Ribeiro et al. [18] were
able obtain the analytical solutions. For the labelling
phase with the initial condition UA(0) ¼ f and
UR(0) ¼ 1 2 f, one obtains

LðtÞ ¼ 1# ae#e1t # ð1# aÞe#e2t ; ð2:6Þ

which, after some algebra, is identical to the upslope of
the two-compartment variant of the kinetic heterogen-
eity model of equation (1.1). Here

a ¼ 1
2
þ b=2#!d

g
; e1 ¼

b# g

2
; e2 ¼

bþ g

2
ð2:7Þ

and

b ¼ ða þ dRÞ þ ðr þ dAÞ . 0; g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 # 4u

q
. 0;

u ¼ adA þ rdR þ dAdR . 0;

ð2:8Þ

and r is defined by equation (2.2). The upslope is a com-
bination of e1 and e2, where e1 , e2. The initial upslope
of equation (2.6), i.e. dL(t)/dt for t! 0, is the average
turnover rate !d. Thus, although the structure of this sol-
ution is identical to that of equation (1.1) with n ¼ 2, the
parameters have completely different interpretations
because the exponents e1 and e2 are complicated
expressions that do not reflect the turnover rates, dR
and dA, of the subpopulations R and A, and the
parameter a is not the fraction of activated cells f.

2.2. Downslope

The general expression for the downslope is given by
Ribeiro et al. [18], and is complicated because it involves
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labeling phase

de-labeling phase:     



If this data is fitted with either of the two models, 
the fit is perfect but the estimated turnover rate is 2-fold off.

This gets better when the average turnover rate is higher.

the fraction of labelled resting cells, LR(tend), and the
fraction of labelled activated cells, LA(tend). We therefore
first consider the case where all cells are labelled at the
end of labelling, i.e. L(tend) ¼ LR(tend) þ LA(tend) ¼ 1,
because the solution can then be written as

LðtÞ ¼ ae%e1ðt%tendÞ þ ð1% aÞe%e2ðt%tendÞ; ð2:9Þ

where the parameters are defined as in equation (2.7).
The initial downslope reflects !d (because we consider
the case where all cells are labelled at time tend). For
finite labelling periods tend, it can numerically be shown
that the general expression for the downslope [18] rapidly
approaches the approximate solution

LðtÞ ≃ að1% e%e1tendÞe%e1ðt%tendÞ

þ ð1% aÞð1% e%e2tendÞe%e2ðt%tendÞ; ð2:10Þ

which is indeed equal to equation (2.9) when all cells are
labelled at tend, i.e. when e%e1tend ¼ e%e2tend ¼ 0. Thus, the
downslope of this temporal heterogeneity model strongly
resembles the downslope of equation (1.1) for n ¼ 2,
albeit with different parameter interpretation, and for
all practical purposes it will be difficult to distinguish
between the models.

2.3. No death of quiescent cells

The death rate of resting cells, dR, is the slowest time-
scale of this model, and for c ¼ 2, we indeed require
that dR , a. Thus, it is enlightening to simplify the
exponents by assuming dR ¼ 0. This yields

e1;2 ¼
a þ c0dA +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða þ c 0dAÞ2 % 4adAc 0=c

q

2
; ð2:11Þ

where c0 ¼ c/(c 2 1). For c ¼ 2, this simplifies further
into

e1;2 ¼
a þ 2dA +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4d2A

q

2
; ð2:12Þ

which for low activation rates, a, approaches e1 ≃ a/2
and e2 ≃ a/2 þ 2dA. Using the Choo et al. [26] estimate
of a ¼ 0.02 d21, and giving recently divided cells a short
lifespan, i.e. choosing dA ¼ 1 d21, the exponents would
be e1 ≃ 0.01 d21 and e2 ≃ 2.01 d21.

3. RESULTS AND DISCUSSION

Let us first study what one would expect for a deuter-
ium labelling experiment of LCMV-specific CD8þ

memory T cells, as described by Choo et al. [26]. The
cells on average divide every 50 days and then do one
division, i.e. we set a ¼ 0.02 d21 and c ¼ 2. Considering
long-lived resting cells, e.g. dR ¼ 0.001 d21, and short-
lived activated cells, e.g. dA ¼ 1 d21, one calculates a
reversion rate of r ¼ 1.105 d21, and a steady-state frac-
tion of activated cells of f ¼ 0.01865, from equations
(2.2) and (2.3), respectively. The average turnover
rate of the cells is then !d ¼ 0:0196 d21 (which is close
to fdA because we assume that resting cells are long-
lived). We study deuterium labelling experiments in
this system by numerically solving equations (2.4) and
(2.5) for labelling periods of 10, 50 and 100 days
(figure 2a). Although the analytical solutions of this
model involve two exponentials, see equations (2.6)
and (2.9), the up and downslopes shown in figure 2a
are hardly biphasic. For the present case, the par-
ameters of the solution of equation (2.6) are a ¼
0.995, e1 ¼ 0.01 d21 and e2 ¼ 2.12 d21, from which
one sees that the fast exponential describes only a
minor fraction of the population (i.e. 12 a ≃ 0.005).
This explains why the system is hardly biphasic, and
the slow exponential, e1, largely determines the
‘observed’ upslope and downslopes. The downslope
barely depends on the labelling period, and even after
all cells have been labelled, the ‘observed’ downslope,
e1 ¼ 0.01 d21, is about half of the average turnover
rate, as !d ¼ 0:0196 d21.

As shown by equations (2.7) and (2.8), the slowest
exponential is determined by several parameters of the
model, and is complicated to understand in biological
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Figure 2. Simulating a labelling experiment for the parameters estimated by Choo et al. [26] for 10, 50 and 100 days of labelling.
The total labelled fraction is defined as L ¼ LR þ LA ¼ 12 UR 2 LR. (a) c ¼ 2, a ¼ 0.02 d21 and hence f ¼ 0.01865, r ¼ 1.105
d21 and !d ¼ 0:01963 d21 (which is close to fdA). (b) c ¼ 32,a ¼ 0.02/31 ¼ 0.0006452 d21 and hence r ¼ 0.08658 d21. The fraction
of activated cells, f, and the average turnover rate, !d, are the same in both panels. Other parameters: dR ¼ 0.001 d21 and dA ¼ 1
d21. Although the up- and downslopes are technically biphasic [18], this is hardly visible when c ¼ 2 (a).
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Create D-water data using the LCMV parameters

a = 0.02d-1

dR = 0.001d-1

dA = 1d-1

Piluygin et al., JTB 2003; De Boer et al., JRSI 2012

correct because it captures the underlying biology. Here
we present this model, study its properties and generalize
it to other situations with temporal heterogeneity.

2. MODEL

Consider a population of resting cells that are recruited
into division at an activation rate a. Cell division yields
c daughter cells, where c ¼ 2 corresponds to the single
divisions that account for the renewal of an otherwise
quiescent population of memory T cells [26], and c. 2
corresponds to a burst of divisions that characterize
clonal expansion. Small non-overlapping bursts of
clonal expansion may also occur during chronic infec-
tion [23], and may play a role in the normal
maintenance of part of the CD4þ T cells expressing a
memory phenotype [27]. It would obviously be best to
model a burst of cell expansion by a cascade indexed
by the number of divisions the cells have completed
[23,28], but such a model typically has too many par-
ameters to fit to limited experimental data. To keep
the analyses tractable, we model clonal expansion as
an instantaneous process, but we do not expect that
our main results will change if clonal expansion were
incorporated as a cascade. Moreover, because we
assume steady state in our model, we will limit ourselves
to small bursts (c ¼ 32, corresponding to 5 divisions).

The activated daughter cells revert to a resting state
at rate r, and resting and activated cells have death
rates dR and dA, respectively. Whenever dA . dR, the
model accounts for temporal heterogeneity. Without
loss of generality, one can scale the total population
size to one, so that A þ R ¼ 1, and write for the
fractions of resting, R, and activated, A, cells

dR
dt

¼ rA# ða þ dRÞR

and
dA
dt

¼ caR# ðr þ dAÞA:

9
>>=

>>;
ð2:1Þ

Since we expect that the system is at steady state and
that deuterium labelling does not change the dynamics,
we consider dR/dt ¼ dA/dt ¼ 0. Using A þ R ¼ 1, the
steady state dA/dt ¼ 0 gives that the fraction of divid-
ing cells !A ¼ ca=ðca þ r þ dAÞ, and the steady state of
dR/dt ¼ 0 can be used to eliminate one parameter, e.g.

r ¼ dA
a þ dR

ðc # 1Þa # dR
: ð2:2Þ

Substituting the latter into !A gives the fraction of
activated cells f ¼ !A=ð!Aþ !RÞ ¼ !A, or

f ¼ ðc # 1Þa # dR
ðc # 1Þa # dR þ dA

: ð2:3Þ

The average turnover of the population is defined as
!d ¼ fdA þ ð1# f ÞdR. This model is identical to that of
Ribeiro et al. [18], who were modelling two subpopulations
with different turnover rates. Equation (2.2) requires that
(c2 1)a2 dR . 0, which implies that forc¼ 2 we require
dR , a. For biological reasons, we only considerc. 1 and
dR , dA. Below we compare populations with different
values of c, but with the same average turnover rate !d,

which can be achieved by keeping (c2 1)a the same
when c is changed, thus keeping f constant. Note that the
average turnover rate, or the average death rate, !d, is not
related to the average residence times in the two subpopu-
lations, i.e. 1/(a þ dR) and 1/(r þ dA), respectively.

To model deuterium labelling, it is most convenient
to write equations for the unlabelled fractions of resting
and activated cells, UR and UA, respectively, during the
labelling phase [18], i.e.

dUR

dt
¼ rUA # ða þ dRÞUR

and
dUA

dt
¼ aUR # ðr þ dAÞUA

9
>>=

>>;
; ð2:4Þ

where UR þ LR ¼ R and UA þ LA ¼ A and the total
labelled fraction is defined as L ¼ LR þ LA ¼ 12 UR 2
UA. To obtain the downslope, it is preferable to write
equations for the loss of the labelled fractions, and—
conveniently—these are identical to those used to obtain
the upslope [18] when U and L are interchanged, i.e.

dLR

dt
¼ rLA # ða þ dRÞLR

and
dLA

dt
¼ aLR # ðr þ dAÞLA:

9
>>=

>>;
ð2:5Þ

2.1. Upslope

Because the model is linear, Ribeiro et al. [18] were
able obtain the analytical solutions. For the labelling
phase with the initial condition UA(0) ¼ f and
UR(0) ¼ 1 2 f, one obtains

LðtÞ ¼ 1# ae#e1t # ð1# aÞe#e2t ; ð2:6Þ

which, after some algebra, is identical to the upslope of
the two-compartment variant of the kinetic heterogen-
eity model of equation (1.1). Here

a ¼ 1
2
þ b=2#!d

g
; e1 ¼

b# g

2
; e2 ¼

bþ g

2
ð2:7Þ

and

b ¼ ða þ dRÞ þ ðr þ dAÞ . 0; g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 # 4u

q
. 0;

u ¼ adA þ rdR þ dAdR . 0;

ð2:8Þ

and r is defined by equation (2.2). The upslope is a com-
bination of e1 and e2, where e1 , e2. The initial upslope
of equation (2.6), i.e. dL(t)/dt for t! 0, is the average
turnover rate !d. Thus, although the structure of this sol-
ution is identical to that of equation (1.1) with n ¼ 2, the
parameters have completely different interpretations
because the exponents e1 and e2 are complicated
expressions that do not reflect the turnover rates, dR
and dA, of the subpopulations R and A, and the
parameter a is not the fraction of activated cells f.

2.2. Downslope

The general expression for the downslope is given by
Ribeiro et al. [18], and is complicated because it involves
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BrdU is a nucleoside analog incorporates into new DNA strands
Can be detected in cells by staining cells with an antibody.  
Brightness reflects fraction of BrdU labeled DNA strands

Above some “threshold brightness” cells are coined BrdU+

BrdU+ cells counted as a percentage

labeling delabeling

After BrdU withdrawal, BrdU+ cells divide into BrdU+ daugh-
ter cells, until cells are so dim that they are counted as BrdU−

1

up-labeling down-labeling

a considerable number of CD4!CD8! double-positive T cells in some of
the monkeys. These CD4!CD8! double-positive T cells are considered as
part of the CD4! T cell subset. To avoid double counting of those double-
positive T cells, we used CD3!CD4" as a marker of CD8! T cells due to
the instrumental limitation (four-color). Furthermore, anti-CD45RA was
used to distinguish between naive (CD45RA!) and memory (CD45RA")
phenotypes (Fig. 1c). As shown in Fig. 1, d and e, memory phenotype had
higher incorporation of BrdU than that of naive phenotype in both CD4!

and CD8! T lymphocytes.
For defining B cells, an anti-CD20 Ab was used, giving a bright signal

as shown in Fig. 1f. For NK cells, we used the CD3"CD8!CD16! phe-
notype as an NK marker. Because CD16 Ag is also expressed on some
monocytes, which are highly labeled with BrdU, it is necessary to gate the
CD8!CD16! population very tightly as shown in Fig. 1h. NK cells without
CD16 expression were, therefore, not included in our study.
We use a simple population dynamical model developed by Mohri et al.

(4) and report its parameters by converting them into average turnover rates
(30). Briefly, the model considers activated cells, A, that have a source of
s cells per day from elsewhere, and which proliferate and die at per cell
rates ! and ", respectively,

dA/dt # s $ #! % "$A. (1)

The source could represent 1) the production of cells in the thymus (4),
and/or 2) an inflow of activated cells from a compartment of resting cells
(29), and/or 3) the large number of progeny of clonally expanded resting or
activated cells (30). We will assume that the source yields labeled cells
during the labeling period and unlabeled cells thereafter. The latter is re-
quired to explain the observed rapid loss of labeled cells after BrdU with-

drawal (4, 29, 30). These two assumptions on the presence of labeled cells
in the source are consistent with each of the three biological interpretations
of the source listed above (Ref. 30; see also Discussion). We also allow for
a subpopulation of “resting” cells R that hardly pick up BrdU on the time
scale of these experiments.
Giving BrdU does not substantially perturb the lymphocyte dynamics,

we assume that the various lymphocyte populations remain at steady state
throughout the labeling study. Thus, without loss of generality, one can
scale the steady state total number of cells to one, i.e., R ! A % 1. Because
at steady state the total number of activated cells remains constant, i.e.,
dA/dt % 0, one obtains for the source s % (" " !)A.
Let L be the fraction of cells labeled with BrdU (L (0) % 0), and U the

fraction of unlabeled cells. During the labeling period, unlabeled cells are
lost by death and by proliferation. Assuming that during the labeling period
the source yields labeled cells (30), and that labeling is 100% efficient so
that upon division each progeny acquires label, one obtains from equation
1 (4, 29, 30),

dL/dt # s $ 2!U $ #! % "$L, (2)

where the two appears once because an unlabeled cell divides into two
daughter cells, and division of a labeled cell yields one new labeled cell.
Using s % (" " !)(1 " R) and U % 1 " L " R, this has the solution

L#t$ # &#1% e"#"!!$t $, (3)

where & % 1 " R is the maximum that the fraction of labeled cells would
approach if BrdU were given indefinitely. If labeling is&100% efficient we
are overestimating ! during the labeling period (4, 29). However, the bone
marrow aspirations suggested an adequate uptake of BrdU in proliferating
cells (Fig. 1).
In the period shortly after BrdU administration has ended, division of

labeled cells yields labeled daughter cells (4), because chromosomes with
incorporated BrdU are segregated to both daughter cells. However, rapid
clonal expansion represented by the source will yield unlabeled cells (30),
due to dilution of BrdU to levels that are undetectable (32). Thus, one
obtains from equation 1 that

dL/dt # #! % "$L, (4)

with the solution

L#t$ # L#te$e"#""!$#t"te$, (5)

where L(te) is the fraction of labeled cells at the time, te, that BrdU
administration ends.
From the model one can easily extract the quantities, ! ! ", character-

izing the initial slope, or up slope, of the labeling curve, " " ! character-
izing the rate of decay of labeled cells after labeling has ended, or down
slope, and & the asymptote of the labeling curve. Thus, by fitting the model
to the data, one can generally estimate the parameters !, ", and &. However,
different data sets have particular features which may require variants of
this approach. For example, when the up and down slopes " ! ! and " "
! are sufficiently similar, one can fit the data with a two parameter model
fixing ! % 0. Similarly, whenever the data fail to suggest that a fraction of
the cells remains unlabeled one can fit the data with a two parameter model
fixing & % 1. When both can be fixed one can fit the data with a one
parameter model having only " as a free parameter. Thus, we will fit the
data with four models, i.e., the full three parameter “&!"” model, two
different two-parameter models, i.e., the “&"” and the “!"” model, and the
one-parameter “"” variant. For each variant we use the main result of the
companion paper (30) and define the average turnover rate as "̂ % &",
where & % 1 " R represents the fraction of activated cells, and " is their
rate of turnover. The resting cells are assumed to have a negligible
turnover.
In adult monkeys, one expects that naive T cells are largely produced by

the thymus and that they have little peripheral proliferation. Thus, for naive
T cells the source s would be expected to reflect thymic output, and addi-
tionally one expects ! ! 0. Because T cell maturation in the thymus fol-
lows a “conveyor belt”-type program (33), one expects labeled cells to
continue appearing from the thymus after BrdU administration has been
stopped. Thus the source of labeled cells is expected to be nonzero for a
period of time after BrdU withdrawal. We decided to account for this by
making the time at which BrdU administration ends, te, a free parameter.
This is a correct procedure only in the case ! % 0. Otherwise extending te
would allow additional labeled cells to be created by proliferation. Thus
our “naive T cell model” (see Table III) maximally has three parameters
(i.e., &, ", and te).
The main result of the companion paper is that the estimated average

turnover rate "̂ remains very similar if a data set is fitted with any of the

FIGURE 1. Analysis of flow cytometry data. The results from H1316 at

week 3 are shown. Staining bone marrow myeloid cells with anti-BrdU Ab

or control IgG indicates that most of these rapidly proliferating cells are

labeled with BrdU (a). To analyze T cell subsets, isolated PBMC were

stained with anti-CD3 and anti-CD4 Abs (b), together with anti-CD45RA

Ab (c). CD45RA! or CD45RA populations in CD3!CD4! (CD4! T cells)

or CD3!CD4" (CD8! T cells) were gated and analyzed for BrdU posi-

tivity (d and e). For B cells, the CD3"CD20! population was analyzed (f

and g). For NK cells, the CD8!CD16! population was gated (h), and its

CD3" population was analyzed (i).
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but could not estimate a half-life because the enrichment continued to increase during the
eight week de-labeling phase of healthy volunteers (note that having a de-labeling phase of 16
weeks, Vrisekoop et al. [56] found very slow down-slopes for naive CD8+ T cells corresponding
a half-live of more than 6 years).

3.2.3 BrdU labeling

BrdU is a nucleoside analogue that is incorporated instead of thymidine in the DNA of
cells that divide. BrdU has been used for decades in mice [74, 75], and more recently in
monkeys [1]. Because of potential problems with toxicity it has been used infrequently
in humans [54, 67, 76, 77], and only over short-term periods. The mathematical model
for BrdU labeling differs from that for deuterium labeling because one measures the BrdU
intensity of individual cells, rather than the enrichment in DNA extracted from a population
of cells. In the presence of BrdU, any unlabeled cell that divides will give rise to two labeled
daughter cells, and a labeled cell that divides increases the number of BrdU+ cells by one,
i.e., U → 2L and L → 2L. During the first part of the de-labeling phase a BrdU+ positive
cell that divides will give rise to two BrdU+ cells, each expressing half of the parent’s BrdU
intensity [1]. Employing the same general models as used above for deuterium labeling, one
would write for the labeling phase that dU/dt = −(p + d)U , i.e., unlabeled cells disappear
by proliferation and death (assuming that the source gives rise to labeled cells). During
the de-labeling phase one would write dL/dt = (p − d)L because labeled cells divide into
labeled daughter cells (and assuming that the source yields unlabeled cells after the label is
removed), i.e.,

L(t) =

{
α(1− e−(p+d)t) , if t ≤ Tend ,
L(Tend)e(p−d)(t−Tend), otherwise ,

(28)

where α ≤ 1 can be used to define a possible asymptote in the labeling phase [12].

Estimating average life spans from BrdU data is more difficult than from deuterium data
because the initial up-slope of Eq. (28), α(p + d), contains not only the death rate but also
the proliferation rate. If one is labeling naive T cells, that are probably largely produced
in the thymus and have very little peripheral proliferation, the unlabeled fraction would
disappear according to dU/dt = −dU . While labeling memory T cells, that are probably
largely maintained by renewal, the unlabeled fraction would disappear according to dU/dt =
−(p + d)U . Thus, even if naive and memory T cells were to have the same life span, 1/d,
label accrual would be faster in memory T cells. Hitherto, this difference has typically been
neglected, and faster up-labeling was taken as evidence for shorter life spans. BrdU data
resemble deuterium data in the sense that the fraction of labeled cells increases during the
labeling phase and tends to decrease during the de-labeling phase. According to Eq. (28),
the negative down-slope, p − d, that is typically observed in BrdU labeling suggests that
there is a source to compensate for the fact that the average death rate exceeds the average
proliferation rate [1].
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The zero down-slope is a problem

creases of 2.3- to 5.8-fold (Table 1). Fur-
thermore, a lower baseline CD4 T cell
count was correlated with a faster death rate
in T lymphocytes (Fig. 1C).

That the lymphocyte turnover is in-
creased by SIV infection is consistent with
numerous observations reported in HIV-1
infection, including higher lymphocyte ex-
pression of activation markers (20), cell-
cycling antigens (24), and markers of apo-
ptosis (25). However, our results here di-
rectly contradict the conclusion drawn by
Wolthers et al. (6). Given the definitive
demonstration of a higher lymphocyte turn-
over by our study, the lack of telomere
shortening in CD4 T cells found in some
studies (6, 26) could be reinterpreted to
suggest a selective elimination of rapidly
proliferating cells by HIV-1.

These results raise a number of ques-
tions. Is the generalized activation of T and
B lymphocytes and NK cells driven by an-
tigens produced by the persistently active
infection, or, as has been described for other
viral infections (27), is it mediated by cy-
tokines induced by the replicating virus?
Our findings here demonstrate that CD4
and CD8 lymphocytes are turning over in
parallel, with similar rates. Why then is
CD4 T cell depletion observed and not
CD8 T cell depletion, at least not until the
preterminal stage of HIV-1 infection? Is the
reserve for CD8 lymphocytes actually larg-
er? Moreover, what mechanism of cell kill-
ing could be envisioned to account for the
comparable death rates of CD4 and CD8
lymphocytes in an infection caused by a
virus that is only infectious and cytopathic

for CD4! cells? Could the apoptosis that
follows generalized activation be the prin-
cipal contributor to cell killing? Finally,
what makes up for the large difference be-
tween death and proliferation rates for each
of the lymphocyte populations in our ma-
caques (Table 1)? How likely is it that the
thymus serves as this large source given that
adult thymic capacity is generally quite low
(28)? Could there be an extrathymic source
elsewhere which could continuously supply
new cells to maintain the dynamic equilib-
rium (11)? Answers to these questions
could shed light not only on the pathogen-
esis of immunodeficiency viruses but also on
normal T cell homeostasis.
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Fig. 1. Sequential changes in percentage of cells that are BrdU! in CD3!CD4! and CD3!CD4–

lymphocytes (A) and other lymphocyte subpopulations (B). The data points in the top panels of (A)
and all panels of (B) are represented by: ‚, Rh1372 (uninfected); F, Rh1324 (infected); !, Rh1316
(infected), and in the bottom panels of (A): ‚, Rh1426 (uninfected); F, Rh1294 (infected); !, Rh1284
(infected). In (A), the curves fitting Eq. 3 to the data of each animal are shown. (C) Inverse correlation
of the death rates of CD3!CD4! and CD3!CD4– lymphocytes versus baseline CD4 cell counts of
rhesus macaques.

Fig. 2. Schematic representa-
tion of the mathematical model.
All terms are defined in the text,
except for T, the total cell popu-
lation, which is at all times equal
to U ! L. The source represents
input of cells from a number of
possibilities (11).
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Solution is to allow for BrdU dilution

simple model proposed previously for the de-labeling phase: Bonhoeffer et al. [23] argued that the
total BrdU intensity is not changed by cell division, which yields two cells with approximately
half the intensity each. The total fluorescence intensity, IT , can only decrease by cell death, i.e.,
dIT/dt = −dIT . If total cell numbers obey dN/dt = (p − d)N , the average BrdU intensity,
IM = IT/N obeys dIM/dt = −pIM , suggesting that the MBC decreases exponentially at rate p
during the de-labeling phase [23]. Using the Poisson distributions, we generalize this result by
also considering the MBC of only labeled (BrdU+) cells, because in experiments one typically
reports BrdU MFI of the labeled fraction. We find moderate changes in the MBC of BrdU+

cells in situations where the fraction of labeled cells, L, is changing markedly. This reconciles the
observation of a declining fraction of BrdU+ cells in situations where the BrdU intensity profiles
are hardly changing [13].

2 Results

2.1 Homogeneous population

We start with a simple ODE model for cell division and death (random-division-death model,
[3, 31]), and first consider a homogeneous cell population. At time t = 0 BrdU is administered and
dividing cells start incorporating BrdU. Changes in the number of cells Nn(t), having undergone
n divisions by time t, is given by the conventional system of ODEs:

dN0(t)

dt
= −(p+ d)N0(t) ,

dNn(t)

dt
= 2pNn−1(t)− (p+ d)Nn(t) , n = 1, 2, . . .∞ (3)

where p and d are the rates of cell proliferation and death, respectively. Since we start tracing cell
division at the time BrdU administration begins, the initial condition N0(0) = N0 and Nn(0) = 0
for n = 1, 2, . . . ,∞. The general solution of this model is

Nn(t) = N(t)× (2pt)n

n!
e−2pt = N(t)× fn(t, p) , (4)

where the total cell number is changing over time as N(t) = N0e(p−d)t, and where fn(t, p) is the
Poisson distribution for cells dividing at rate p. For the de-labeling phase Eq. (4) is generalized
into Nn,m(t) for the number of cells having completed n divisions during labeling and m divisions
during de-labeling,

Nn,m(t) = N(t)× fn(T, p)× fm(t− T, p) , (5)

where the fn(T, p) term gives the Poisson distribution at the end of the labeling phase, and the
latter fm(t−T, p) term is the Poisson distribution after labeling (t > T ), respectively. Both Poisson
distributions depend on the division rate p of cells in the population.

The efficiency at which cellular DNA will become labeled during BrdU administration will likely
depend on the BrdU concentration in the environment and the cell type. In the following analyses
we assume that labeling is 100% efficient. Since DNA is replicated during the cell cycle, cells

4

simple model proposed previously for the de-labeling phase: Bonhoeffer et al. [23] argued that the
total BrdU intensity is not changed by cell division, which yields two cells with approximately
half the intensity each. The total fluorescence intensity, IT , can only decrease by cell death, i.e.,
dIT/dt = −dIT . If total cell numbers obey dN/dt = (p − d)N , the average BrdU intensity,
IM = IT/N obeys dIM/dt = −pIM , suggesting that the MBC decreases exponentially at rate p
during the de-labeling phase [23]. Using the Poisson distributions, we generalize this result by
also considering the MBC of only labeled (BrdU+) cells, because in experiments one typically
reports BrdU MFI of the labeled fraction. We find moderate changes in the MBC of BrdU+

cells in situations where the fraction of labeled cells, L, is changing markedly. This reconciles the
observation of a declining fraction of BrdU+ cells in situations where the BrdU intensity profiles
are hardly changing [13].

2 Results

2.1 Homogeneous population

We start with a simple ODE model for cell division and death (random-division-death model,
[3, 31]), and first consider a homogeneous cell population. At time t = 0 BrdU is administered and
dividing cells start incorporating BrdU. Changes in the number of cells Nn(t), having undergone
n divisions by time t, is given by the conventional system of ODEs:

dN0(t)

dt
= −(p+ d)N0(t) ,

dNn(t)

dt
= 2pNn−1(t)− (p+ d)Nn(t) , n = 1, 2, . . .∞ (3)

where p and d are the rates of cell proliferation and death, respectively. Since we start tracing cell
division at the time BrdU administration begins, the initial condition N0(0) = N0 and Nn(0) = 0
for n = 1, 2, . . . ,∞. The general solution of this model is

Nn(t) = N(t)× (2pt)n

n!
e−2pt = N(t)× fn(t, p) , (4)

where the total cell number is changing over time as N(t) = N0e(p−d)t, and where fn(t, p) is the
Poisson distribution for cells dividing at rate p. For the de-labeling phase Eq. (4) is generalized
into Nn,m(t) for the number of cells having completed n divisions during labeling and m divisions
during de-labeling,

Nn,m(t) = N(t)× fn(T, p)× fm(t− T, p) , (5)

where the fn(T, p) term gives the Poisson distribution at the end of the labeling phase, and the
latter fm(t−T, p) term is the Poisson distribution after labeling (t > T ), respectively. Both Poisson
distributions depend on the division rate p of cells in the population.

The efficiency at which cellular DNA will become labeled during BrdU administration will likely
depend on the BrdU concentration in the environment and the cell type. In the following analyses
we assume that labeling is 100% efficient. Since DNA is replicated during the cell cycle, cells

4

simple model proposed previously for the de-labeling phase: Bonhoeffer et al. [23] argued that the
total BrdU intensity is not changed by cell division, which yields two cells with approximately
half the intensity each. The total fluorescence intensity, IT , can only decrease by cell death, i.e.,
dIT/dt = −dIT . If total cell numbers obey dN/dt = (p − d)N , the average BrdU intensity,
IM = IT/N obeys dIM/dt = −pIM , suggesting that the MBC decreases exponentially at rate p
during the de-labeling phase [23]. Using the Poisson distributions, we generalize this result by
also considering the MBC of only labeled (BrdU+) cells, because in experiments one typically
reports BrdU MFI of the labeled fraction. We find moderate changes in the MBC of BrdU+

cells in situations where the fraction of labeled cells, L, is changing markedly. This reconciles the
observation of a declining fraction of BrdU+ cells in situations where the BrdU intensity profiles
are hardly changing [13].
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distributions depend on the division rate p of cells in the population.

The efficiency at which cellular DNA will become labeled during BrdU administration will likely
depend on the BrdU concentration in the environment and the cell type. In the following analyses
we assume that labeling is 100% efficient. Since DNA is replicated during the cell cycle, cells
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Thus, we mechanistically derived a simple two-parameter
model for self-renewing populations that—at no extra
assumptions—includes the effects of BrdU dilution

m = 0 m = 1
l•,1 = 1/2 l•,2 = 1/4l•,0 = 1

m = 2 m
ln,m = (1 – 2–n)/2m

n = 0
l0 = 0

n = 1
l1 = 1/2

n = 2
l2 = 3/4

n
ln = 1 – 2–n

(a) (b)

Figure 1. Distribution of labelled DNA strands in cells (a) during BrdU labelling and (b) during de-labelling phases. Under the assumption of 100% labelling
efficacy, after one division in the labelling phase, cells will have half of their DNA strands labelled, l1 ¼ 1/2 (in cartoon, labelled strands are shown in red and
unlabelled strands are shown in black). After two divisions, this is an average of l2 ¼ 3/4 strands, and so on. Let ln,m denote the fraction of labelled strands in a cell
having completed n divisions during the labelling phase, and m divisions during the de-labelling phase. During the de-labelling phase, a cell having all DNA strands
labelled, for example l1;0 ¼ 1, divides into daughter cells having l1;1 ¼ 1=2 labelled strands, and so on. The BrdU fluorescence of a cell is an increasing function
of l and cells will be classified as BrdU2 when l , lu. For lu ' 0:5; the division of unlabelled cells during labelling results in two BrdU-labelled cells. If at the end
of the labelling phase a cell has a BrdU content 0:5 ' ln , 1, two divisions are required to make progeny of this cell to become BrdU2 during de-labelling for the
level of detection lu ¼ 0:25. If the detection limit were set at lu ¼ 0:125, this would take three divisions.
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having completed one division, N1, have exactly half of their DNA strands labeled (assuming 100%
efficiency of labeling, see Fig. 1). Due to the random segregation of chromosomes, on average 3/4
of the DNA strands are labeled after two divisions2, and so on (Fig. 1). On average, the fraction
of DNA strands labeled after n divisions is ln = 1 − 2−n. Knowing the fraction of labeled DNA
strands after n divisions, and assuming that the measured fluorescence intensity increases with the
fraction of chromosomes labeled, one can use Eq. (4) to define the fraction of labeled cells in the
labeling phase as L(t) =

∑∞
n=1 H(ln−lθ)Nn(t)/N(t), where lθ is the threshold BrdU intensity below

which a cell is measured as BrdU−. H(x) is a Heaviside function, i.e., H(x) = 0 whenever x < 0
and H(x) = 1 otherwise, counting cells with ln = lθ and up as BrdU+. During the de-labeling
phase each cell on average looses half of its labeled DNA strands per division. Their fluorescence
intensity is naturally defined as ln,m = (1− 2−n)/2m (Fig. 1), and we can use Eq. (5) to obtain the
fraction of labeled cells in the de-labeling phase. For the fraction of BrdU+ cells this adds up to:

L(t) =

{ ∑∞
n=1 H(ln − lθ)× fn(t, p) , if t ≤ T ,∑∞
n=1

∑∞
m=1 H(ln,m − lθ)× fn(T, p)× fm(t− T, p) , otherwise .

(6)

Thus we mechanistically derived a simple two parameter model for self-renewing populations that
–at no extra assumptions– includes the effects of BrdU dilution during the de-labeling phase,
provided one knows the threshold BrdU intensity above which a cell is measured as BrdU+ in the
experiment. Because Eq. (6) is defined as a fraction it is independent of the death rate d, which
is a property shared with the solution of Eq. (14) in the Introduction.

The properties of this model are illustrated in Fig. 2A where we depict the fraction of BrdU+

cells for a population at steady state with p = d = 0.1/day for three reasonable values of the
detection limit, i.e., lθ = 0.125, 0.25 and 0.5, respectively. The three labeling curves increase in the
same manner because for all three detection limits the first division already provides two BrdU+

daughter cells. By Eq. (6) the initial upslope of the curves is 2p because the mean of the Poisson
distribution

∑∞
n=1 fn(t, p) = 2pt and H(ln) = 1 for all values of n ≥ 1. Thus, if the first division is

sufficient to breach the detection limit, the up-slope Eq. (6) is identical to that of Eq. (14) in the
Introduction (which is an expected result). The de-labeling phase starts at T = 10 days and we
see that the down-slope depends on the detection limit, and hence does not reflect p, d, or p− d,
as was derived in previous models [13, 23–25]. Importantly, the new model allows for a decline in
the fraction of BrdU+ cells in self renewing populations, in the absence of additional assumptions
like a source of unlabeled cells [13, 23–25] or a faster death rate of recently divided cells [27].

Mean BrdU content (MBC). In addition to tracking the fraction of BrdU+ cells, the complete
BrdU intensity profiles, or their mean fluorescence intensity (MFI), have also been measured. As
the fluorescence intensity is typically represented on a log scale, there is ambiguity on the meaning
of the term MFI as one could take the arithmetic mean, the geometric mean, or the median. In
our model we only have a measure for the BrdU content, i.e., ln or ln,m, of a cell, and we therefore
define the mean BrdU content (MBC) as a measure for the MFI. The MFI should be an increasing
function of the MBC, with an MBC of zero defining the mean autofluorescence, and an MBC of
one corresponding to the maximum MFI. Because our model of Eqs. (4 & 5) tracks the relative
BrdU content per cell, it is natural to define the total, IT , and the mean, IM , BrdU content as

IT (t) =
∞∑

n=1

lnNn(t) = (1− e−pt)N(t) and IM(t) = IT (t)/N(t) = 1− e−pt , (7)

2Note that Kiel et al. [22] wrote a similar model for BrdU accumulation, but while considering random segregation
they incorrectly assumed that after the second division all DNA strands were labeled.
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Solution with Poisson distribution

Fraction of labeled cells:

Ganusov & De Boer, JRSI 2012
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Now we obtain a down-slope when p=d
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Figure 2: Properties of the one compartment model. Considering a population at steady state,
with p = d = 0.1/day, we depict the fraction of labeled cells (Eq. 6 in panel A), the mean BrdU
content (MBC) of the whole population (Eqs. 7 & 8 in panel B), the MBC of BrdU+ cells (Eq. 9 in
panel C), and the MBC of BrdU− cells for three reasonable detection limits, i.e., lθ = 0.125, 0.25
and 0.5. These detection limits corresponds to 3, 2, and 1 divisions to become BrdU−, respectively,
for a cell with high BrdU content (l ≥ 0.5).
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Fraction BrdU+ cells 
for 3 detection thresholds

Model also allows one to define a 
“mean fluorescence intensity” (MFI).

MFI need not decline much when 
fraction of BrdU+ cells is decreasing

Ganusov & De Boer, JRSI 2012
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Adding on heterogeneity to the model

BrdU data from uninfected and SIV-infected monkeys.
We no longer need a large source.

Average turnover rate depends on the detection limit.
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Figure 3: Fits of the novel mathematical model to experimental data on BrdU labeling of
CD3+CD45RA−CD4+ and CD4− memory T cell data in monkeys [13]. We fit the mathemati-
cal model given in Eq. (10) with k = 2 kinetic compartments and a detection limit lθ = 0.25. The
symbols denote the data and the lines depict the fit. Parameters for each fit can be found in Tables
1 and 2. We show a representative example of an uninfected monkey (U1458), of a SIV infected
monkey with a low viral load (L1394), and an infected monkey with a high SIV load (H1284).

de-labeling phase one similarly obtains

IT (t) =
k∑

i=1

Ni(t)
∞∑

n=1

∞∑

m=1

ln,m × fn(T, pi)× fm(t− T, pi) , IM(t) = IT (t)/N(t) . (12)

To model the MBC of just the BrdU+ population one can again extend the last two equations
with the Heaviside functions H(ln − lθ) and H(ln,m − lθ), respectively. For a system at steady
state, N(t) = N , pi = di, αi is the fixed fraction of cells with turnover rate pi, and one substitutes
Ni(t) = αi into the equations.

Since the model is explicit in the number of divisions that the cells have completed, the parameters
estimated for the 6 monkeys in Fig. 3 directly allow us to predict the MBC in these monkeys. Using
Eqs. (11 & 12), and their extensions computing the MBC of BrdU+ cells only, we obtain the curves
depicted in Fig. 4. Interestingly, the changes in the MBC of BrdU+ cells remain relatively moderate,
varying around a relative MBC of 0.5 within a range between 0.4 to 0.7. Thus, the reduction of
the BrdU MFI during the de-labeling phase may be very hard to detect in BrdU experiments even
though the fraction of BrdU+ cells is declining considerably, and our model seems consistent with
the observation that the BrdU MFI hardly declines during the de-labeling phase [13].

2.3 Estimated turnover rates

Now that we have a simple and mechanistic model for BrdU accumulation and dilution that is able
to describe BrdU data at least as well as previous models, the most relevant biological question is
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2.2 Kinetic heterogeneity

Extending the work of Ganusov et al. [32] we define a kinetically heterogeneous population consist-
ing of k independent subpopulations, each described by dNi/dt = (pi − di)Ni, for i = 1, 2, . . . , k.
The total number of cells is simply N(t) =

∑k
i=1 Ni(0)e(pi−di)t. Since during a BrdU experiment

the fraction of labeled cells in each of the subpopulations should obey Eq. (6), one can similarly
define Li(t) as the fraction of BrdU+ cells in the Ni(t) subpopulation. The fraction of labeled
cells in the total population would be L(t) =

∑k
i=1 Li(t). Summarizing, in theory one can extend

Eq. (6) into k populations, having k pi and di parameters, and a k-dimensional initial condition
Ni(0) vector, and fit this to BrdU data from any kinetically heterogeneous population.

This heterogeneity model becomes much simpler for populations at steady state because pi = di
for all i, and one can define a vector αi for the fixed fraction of cells with turnover rate pi = di.
Therefore, we write

L(t) =

{ ∑k
i=1 αi

∑∞
n=1 H(ln − lθ)× fn(t, pi) , if t ≤ T ,∑k

i=1 αi
∑∞

n=1

∑∞
m=1 H(ln,m − lθ)× fn(T, pi)× fm(t− T, pi), otherwise ,

(10)

where αi is the fraction of cells with turnover rate pi = di, and fn(t, pi) and fm(t, pi) are the
Poisson distributions defined above. Due to kinetic heterogeneity the labeled cells will be enriched
in cell sub-populations with fast turnover rates, and the initial down-slope of labeling curves
will be faster than the up-slope. Again, the decline of the BrdU+ cells need not be a single
exponential and can account for data that appear to have an at least biphasic down-slope. A
Mathematica notebook implementing this model for fitting BrdU labeling data is provided online
(http://theory.bio.uu.nl/vitaly/mathematica or http://web.bio.utk.edu/ganusov).

To test whether our novel model can properly describe BrdU data, we have fitted the model (Eq. 10
with k = 2) to the BrdU data of Mohri et al. [13] for which rhesus macaques were labeled with BrdU
in the drinking water for a period of 3 weeks, and were followed during a subsequent de-labeling
period of 7 weeks. Total cell numbers are indeed not supposed to change during the experiment.
Animals were classified into 3 groups: uninfected (U) and SIV-infected monkeys with either a low
(L) or high (H) viral load. Representative fits of our novel model to the data on BrdU labeling of
CD3+CD45RA−CD4+ and CD4− memory T cells in one monkey from each group are depicted in
Fig. 3. The new model describes these data at least as good as previous models did [13, 24, 25].
Thanks to the kinetic heterogeneity the model readily accounts for the biphasic down-slopes in the
monkey H1284 with a high viral load. Summarizing, we can account for the decline in the fraction
of BrdU+ cells during de-labeling without having to invoke an external source of unlabeled cells
[13, 24, 25] or a faster death rate of recently divided cells [27].

Mean BrdU content. The MBC of this kinetically heterogeneous cell population model can be
defined very similarly as above. For instance, the MBC during the labeling phase is described by

IT (t) =
k∑

i=1

Ni(t)
∞∑

n=1

lnfn(t, pi) , IM(t) = IT (t)/N(t) , (11)

where Ni(t) = Ni(0)e(pi−di)t, fn(t, pi) is a Poisson distribution, and N(t) =
∑k

i=1 Ni(t). For the
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k times
pi = di
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Figure 5: The effect of the detection limit lθ on the estimate of the average turnover rate, d̄ = p̄ =
α1p1 + (1 − α1)p2, when fitting the BrdU labeling data of memory T cells in uninfected and SIV
rhesus macaques [13]. We consider 3 threshold levels, lθ = 0.0625, 0.125, or 0.25, corresponding to
the 4, 3, or 2 divisions, respectively, that a BrdU+ cell must undergo to result in BrdU− progeny.
Blue diamonds denote uninfected monkeys, red squares SIV infected monkeys with a low viral
load, and black bullets monkeys with a high viral load in the study of Mohri et al. [13]. This
analysis illustrates that the estimate of the average turnover rate depends on lθ but not strongly.
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Figure 6: Comparing the average turnover rates as estimated by the dilution model of Eq. (10) for
lθ = 0.25 with those from of the source model [25]. Panel A is for CD4+ memory T cells and panel
B is for CD4- memory T cells. The source model has higher estimates for the average turnover
rates but the differences tend to remain fairly small. Blue diamonds denote uninfected monkeys
(U), red squares SIV infected monkeys with a low viral load (L), and black bullets monkeys with
a high viral load (H) in the study of Mohri et al. [13]. Monkey H1292 was not fitted by De Boer
et al. [25] and is absent from this Figure but present in all others.

wide confidence intervals, and that when these get combined into an average turnover d̄ = p̄ =
α1p1 + (1−α1)p2 this average has much more narrow confidence limits. Apparently the p1, p2 and
α parameter estimates are not independent, e.g., a high pi can be compensated for by a small
αi. This confirms earlier conclusions that one can only robustly estimate an average turnover rate
from the labeling data of heterogeneous populations [24, 25, 34].

2.4 Cells produced by a source

This paper is about explaining the loss of the fraction of BrdU+ cells during de-labeling in self-
renewing populations. Still, we would like to compare with models for cell types that are partly, or
largely, maintained by an external source. Examples would be naive T cells originating from the
thymus, B cells from the bone marrow, and one could argue that even memory T cell populations
are partly maintained by a source of clonally expanded naive T cells after antigenic stimulation.

Thus, we extend Eq. (14) in the Introduction and go back to the original model proposed by Mohri
et al. [13]:

dNU/dt = −(p+ d)NU , dNL/dt = s+ 2pNU + (p− d)NL during labeling ,
dNU/dt = s+ (p− d)NU , dNL/dt = (p− d)NL during de-labeling ,

(13)

where we here for simplicity assume that the source of s cells/day consists of labeled versus
unlabeled cells during the two phases of the experiment, respectively. Using the same methodology
as in Introdution we find that dL/dt = [2p + s/N(t)](1 − L) during the labeling phase, and that
dL/dt = −[s/N(t)]L during the de-labeling phase. The s/N(t) term can be interpreted as the
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in vivo pulse of BrdU, using a semi-empirical model for describing the dynamics of BrdU+

cells in the peripheral blood. Like in most other studies involving HIV-infected patients they
find higher peak values for labeled CD4+ T cells than for CD8+ T cells, and higher peak
values for memory than for naive T cells. Having a few samples of BrdU labeling in lymph
nodes they observed that initially the fraction of labeled cells is higher in the lymphoid tissue
than that in the blood, but that this difference vanished in about a day. Despite the short
pulse of BrdU labeling, BrdU+ cells continued to accumulate in the blood for several days,
and after the peak the wash-out seemed at least biphasic. The height and the timing of
the peak was fitted from the data, and the de-labeling curve was modeled independently as
the sum of two decaying exponentials [131] . Disturbingly, each exponential was interpreted
to reflect the death rate within one subpopulation, whereas we have seen above that with
BrdU labeling the de-labeling curve is determined by the difference between the proliferation
and death rate (Eq. (32)), in combination with the effect of dilution (Eq. (37)). This could
explain why the authors found a correlation between the peak values and the viral load, and
not between the estimated decay rate and the viral load [131, 201], as in more mechanistic
models the peak value at the end of a short labeling phase should be proportional to the
average turnover rate of the population [45, 54, 76, 161]. Another surprising finding was
the biphasic decline of BrdU+ naive T cells, with an early phase of short-lived cells having
an average life span of approximately five days [201]. Even if these cells were RTE this
is unexpectedly short-lived, and it seems likely that BrdU dilution, preferential homing to
lymphoid tissue, or death of HIV infected naive T cells, was playing a role.

Finally, biphasic BrdU data can also be explained with temporal heterogeneity, because
BrdU data can successfully be described with models like Eq. (29) [45].

4.3 Differences between BrdU and 2H2O labeling

Above we have pointed out that the interpretation of BrdU labeling experiments is much
more difficult than that of 2H2O labeling data because the equations for the fraction of
BrdU+ cells contain more parameters than those describing the 2H2O enrichment. This
argument was made for the situation where total cell numbers are not changing over time,
allowing us to remove one parameter by scaling the total cell numbers, and hence the total
number of DNA strands, to one. Ganusov & De Boer [76] develop a similar argument in
terms of the total cell numbers. Starting with Eq. (18) they follow Mohri et al. [161] to write
for a BrdU labeling experiment that the number of unlabeled and labeled cells, TU and TL,
respectively, should obey

dTU/dt = −(p + d)TU , dTL/dt = σ + 2pTU + (p− d)TL during labeling, and
dTU/dt = σ + (p− d)TU , dTL/dt = (p− d)TL during de-labeling .

(41)

where TU + TL = T . For simplicity, assume that the source of σ cells per day consists of
BrdU+ cells during the labeling phase, and of BrdU− cells during the de-labeling phase.
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Defining the fraction of labeled cells as L = TL/T one obtains dL/dt = T ′
L/T − (T ′/T )L, or

dL

dt
= [2p + s(t)](1− L) and

dL

dt
= −s(t)L where s(t) =

σ

T (t)
, (42)

during the labeling and de-labeling phases, respectively. The s(t) term can be interpreted
as the daily fractional replacement by the source. In the absence of a source, e.g., for
self-renewing memory T cells, the initial up-slope therefore corresponds to 2p, and in the
absence of proliferation the initial up-slope represents the daily fractional replacement by
the source. If BrdU dilution were to play no role, the rate at which labeled cells are lost,
s(t), would reflect the daily fractional replacement by the unlabeled source. If the total
cell number T (t) is changing during the experiment, one would have to know, or estimate,
T (t) to be able to estimate the two parameters of Eq. (42). Reconsidering Eq. (42) for the
case where the total cell number is not changing over the experiment, one can substitute
T̄ = σ/(d − p) to “rediscover” that dL/dt = (p + d)(1 − L) during the labeling phase, and
that dL/dt = (p − d)L during the de-labeling phase. In the absence of a source the initial
up-slope would be p + d = 2p = 2d, i.e., twice the average turnover rate, and in the absence
of proliferation the initial up-slope would be p + d = d, i.e., the average turnover rate [76].
This reconfirms that, if naive and memory T cells were to have the same turnover rate d, one
expects a 2-fold higher initial up-slope for self-renewing memory T cells than for the non-
dividing naive T cells. Similarly, Hellerstein [103] pointed out that BrdU labeling curves
depend on the distribution of cell division over the population, i.e., curves will be different
when a few cells are expanding as a clone, or when the same number of cell divisions is
distributed diffusively. Comparing n cell divisions under clonal expansion, i.e., U → 2L
followed by (n− 1)× (L→ 2L) gives 2+ (n− 1) = n+1 novel labeled cells, with n divisions
under diffuse cell division, i.e., n×(U → 2L) gives 2n new labeled cells, leading to a maximal
difference of a factor two between the expected up-slopes for large n.

Under deuterium labeling Eq. (18) can be taken to represent the total number of DNA
strands in the population, and because unlabeled DNA-strands are now conserved, i.e.,
during labeling U → U + L and L→ 2L, the corresponding equations for the total numbers
become

dTU/dt = −dTU , dTL/dt = σ + p[TU + TL]− dTL during labeling, and
dTU/dt = σ + p[TU + TL]− dTU , dTL/dt = −dTL during de-labeling ,

(43)
where TU +TL = T are the number of un-labeled and labeled DNA strands in the population
[162]. For simplicity, again assume that the source is completely labeled or un-labeled during
the two phases of the experiment. Defining L = TL/T as the fraction of labeled strands one
readily arrives at the

dL

dt
= [p + s(t)](1− L) and

dL

dt
= −[p + s(t)]L where s(t) =

σ

T (t)
, (44)

during labeling and de-labeling, respectively [76]. Here s(t) is the same daily fractional
replacement by the source, and in situations where the total cell number is not at a steady
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Renewing (s=0): L’ = 2p(1-L) but Source (p=0): L’ = d(1-L)
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σ

T (t)
, (44)

during labeling and de-labeling, respectively [76]. Here s(t) is the same daily fractional
replacement by the source, and in situations where the total cell number is not at a steady
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Defining the fraction of labeled cells as L = TL/T one obtains dL/dt = T ′
L/T − (T ′/T )L, or

dL

dt
= [2p + s(t)](1− L) and

dL

dt
= −s(t)L where s(t) =

σ

T (t)
, (42)
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state one would have to know the total cell numbers, T (t), to be able to fit the two parameters
of Eq. (44). When total cell numbers are changing the models for the fraction of labeled cells,
Eq. (42), and of labeled DNA-strands, Eq. (44), differ by the p terms in the labeling and
de-labeling phases, but they contain the same number of parameters, i.e., p and σ, because
d disappears when total cell numbers T (t) are known.

Importantly, assuming steady state the expressions for the fraction of labeled DNA-strands,
Eq. (44), become the simple dL/dt = d(1 − L) and dL/dt = −dL that were also derived
above when we generalized the precursor-product relationship in Eq. (21). This expression
only contains d. Under steady state conditions, it apparently does not matter whether cells
are produced by a source or cell divisions, as the up-slope and the loss rate of the deuterium
enrichment can correctly be interpreted as the average turnover rate, d, of the population.
Thus, even if we ignore the problems with BrdU dilution [76], and with the distribution of
the cell division events over the population [103], 2H2O labeling experiments under steady
state conditions are still easier to interpret than the corresponding BrdU labeling curves.
Interestingly, combining BrdU and deuterium labeling would allow one to estimate the con-
tributions of cell division and the source. Since the increase in the fraction of BrdU+ cells
occurs at the initial slope of 2p + σ/T̄ , while the deuterium enrichment during labeling will
increase at an initial slope p + σ/T̄ , the difference between the slopes provides the division
rate p [76]. Once p is known the fractional source rate can be computed from either slope.

5 CFSE

Carboxyfluorescin succinimidyl ester (CFSE) is an intracellular fluorescent dye that dilutes
2-fold when a cell divides [144]. Cells are typically labeled with CFSE in vitro, and labeled
cells can be followed thereafter in vitro or in vivo. Harvesting the cells and sorting them
by the CFSE intensity generates profiles with maximally 7 or 8 peaks, each reflecting the
number of divisions the cells have undergone (see Fig. 8). The limit of 7 or 8 divisions is
caused by the dilution of the dye: after 8 divisions the CFSE intensity is 28 fold lower
than the original intensity. CFSE labeling is currently the most informative technique for
characterizing the kinetics of cells in the immune system. A number of reviews address
the experimental procedures [93, 174, 182] and protocols for the interpretation of CFSE
data [93]. The interpretation of CFSE data is far from trivial however, which has resulted
in many different mathematical approaches to this problem. Here we attempt to give a
balanced overview of these.

Wells et al. [226] pioneered the field of analyzing CFSE data, counting the number of cells
in each peak of the CFSE profile, and normalizing these by the 2-fold population expansion
that is associated with each division. This normalization gives the distribution of the number
of “precursor cells” having completed n divisions, which has the immediate advantage of
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in many different mathematical approaches to this problem. Here we attempt to give a
balanced overview of these.
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Conclusions on using labeling to infer T cell 
population dynamics

Interpretation of deuterium data seemed so simple: 
no toxic effects, no dilution, loss by death only.

Nevertheless very contradictory estimates.

Important to gather dense data having several 
points during early up and down-slope

and fit these with an appropriate model 

Naive T cells have life spans of 
several years in humans and several weeks in mice.

Memory T cells live shorter than naive T cells.
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Adding on heterogeneity: MFI
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Figure 3: Fits of the novel mathematical model to experimental data on BrdU labeling of
CD3+CD45RA−CD4+ and CD4− memory T cell data in monkeys [13]. We fit the mathemati-
cal model given in Eq. (10) with k = 2 kinetic compartments and a detection limit lθ = 0.25. The
symbols denote the data and the lines depict the fit. Parameters for each fit can be found in Tables
1 and 2. We show a representative example of an uninfected monkey (U1458), of a SIV infected
monkey with a low viral load (L1394), and an infected monkey with a high SIV load (H1284).

de-labeling phase one similarly obtains

IT (t) =
k∑

i=1

Ni(t)
∞∑

n=1

∞∑

m=1

ln,m × fn(T, pi)× fm(t− T, pi) , IM(t) = IT (t)/N(t) . (12)

To model the MBC of just the BrdU+ population one can again extend the last two equations
with the Heaviside functions H(ln − lθ) and H(ln,m − lθ), respectively. For a system at steady
state, N(t) = N , pi = di, αi is the fixed fraction of cells with turnover rate pi, and one substitutes
Ni(t) = αi into the equations.

Since the model is explicit in the number of divisions that the cells have completed, the parameters
estimated for the 6 monkeys in Fig. 3 directly allow us to predict the MBC in these monkeys. Using
Eqs. (11 & 12), and their extensions computing the MBC of BrdU+ cells only, we obtain the curves
depicted in Fig. 4. Interestingly, the changes in the MBC of BrdU+ cells remain relatively moderate,
varying around a relative MBC of 0.5 within a range between 0.4 to 0.7. Thus, the reduction of
the BrdU MFI during the de-labeling phase may be very hard to detect in BrdU experiments even
though the fraction of BrdU+ cells is declining considerably, and our model seems consistent with
the observation that the BrdU MFI hardly declines during the de-labeling phase [13].

2.3 Estimated turnover rates

Now that we have a simple and mechanistic model for BrdU accumulation and dilution that is able
to describe BrdU data at least as well as previous models, the most relevant biological question is
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We therefore depict the estimated turnover rates for CD4þ

and CD42 memory T cells in figure 5 for the two reasonable
values of lu, and observe that the turnover rates do not
strongly depend on the choice between these detection limits.

To test whether the estimated turnover rates differ between
the models, we have refitted all memory T cell data from the
Mohri et al. [13], and in figure 6 we depict our best estimates
together with those obtained in De Boer et al. [27].

The turnover rates estimated by the source model are
somewhat higher than those in the dilution model, but the
estimates made by both models correlate very well. One
reason for the higher average turnover rates estimated by
the source model could be due to the fact that this model

has a single exponential to describe the sometimes biphasic
up- and down-slopes, whereas the kinetic heterogeneity in
the dilution model readily accounts for biphasic curves.
Fortunately, the difference between the two sets of estimates
is not large, and would have been even smaller if we had
fitted the data with the—slightly suboptimal—lu ¼ 0:125
because that tends to give higher turnover rates for these
data (figure 5).

The individual estimates in tables 1 and 2 show that the
parameters p1, p2 and a have quite wide confidence intervals,
and that when these get combined into an average turnover
!d ¼ !p ¼ a1p1 þ ð1$ a1Þp2, this average has much more
narrow confidence limits.
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Figure 4. Predicted changes in the mean BrdU content (MBC) of the heterogeneous model. Using the parameters estimated for three monkeys in figure 3 we
compute the MBC of all cells (dashed line) and of BrdUþ cells (solid line). The experimentally observed BrdU MFI in these monkeys should correlate with the
predicted MBC. The MBC of labelled cells hardly declines during the de-labelling phase, which is in agreement with data [13].

Table 2. Parameters and their 95% CIs estimated by fitting equation (2.8) to the CD42 memory T cells data of Mohri et al. [13]. The detection limit was set
to lu ¼ 0:25. Monkey H1314 was only labelled for two weeks and was fitted with T ¼ 14 days, all other monkeys with T ¼ 21 days.

monkey p1 (day
21) p2 (day

21) a1 a1p1 þ ð1$ a1Þp2 (day21)

H1316 0.0042 (0–0.0075) 0.076 (0.058–0.107) 0.50 (0.39–0.59) 0.040 (0.033–0.05)

H1284 0.0019 (0–0.0063) 0.049 (0.038–0.072) 0.47 (0.37–0.63) 0.027 (0.022–0.034)

H1292 0.0007 (0–0.0037) 0.023 (0.003–0.429) 0.80 (0.31–0.97) 0.005 (0.003–0.031)

H1296 0.0017 (0.0007–0.0026) 0.087 (0.057–0.134) 0.82 (0.77–0.86) 0.017 (0.013–0.023)

H1314 0.0035 (0–0.0059) 0.052 (0.019–0.22) 0.82 (0.53–0.92) 0.012 (0.008–0.028)

H1348 0.0028 (0–0.0046) 0.049 (0.037–0.065) 0.64 (0.51–0.71) 0.019 (0.017–0.023)

H1442 0.0020 (0–0.0056) 0.048 (0.029–0.183) 0.68 (0.55–0.85) 0.017 (0.01–0.037)

L1294 0.0023 (0–0.0038) 0.065 (0.03–0.15) 0.83 (0.69–0.9) 0.013 (0.009–0.021)

L1324 0.0035 (0.0027–0.0043) 0.073 (0.058–0.09) 0.75 (0.71–0.79) 0.021 (0.018–0.024)

L1380 0.0030 (0.0005–0.0041) 0.089 (0.045–0.263) 0.82 (0.71–0.88) 0.018 (0.012–0.041)

L1394 0.0016 (0–0.0029) 0.060 (0.033–0.187) 0.84 (0.74–0.91) 0.011 (0.007–0.022)

L1436 0.0025 (0–0.0057) 0.053 (0.033–0.123) 0.67 (0.52–0.81) 0.019 (0.013–0.032)

U1372 0.0028 (0–0.0038) 0.047 (0.021–0.1) 0.87 (0.67–0.92) 0.008 (0.006–0.013)

U1426 0.0024 (0–0.0032) 0.037 (0.018–0.082) 0.88 (0.69–0.94) 0.007 (0.005–0.009)

U1458 0.0037 (0–0.0064) 0.014 (0.008–0.126) 0.68 (0.24–0.98) 0.007 (0.007–0.01)

U1466 0.0010 (0–0.0028) 0.044 (0.032–0.07) 0.79 (0.72–0.88) 0.010 (0.008–0.013)
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Problem: is BrdU intensity reflecting #divisions?

In vivo CFSE labeled cells after 14d BrdU up-labeling 
Intensity not linear in number of divisions

(we expect b, b+1/2, b+3/4, b+7/8, ...; scale is log)
Could help to explain absence of variation in BrdU 

intensity profiles and/or MFI
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Also, some cytokines produced by immune cells in response 
to viral or bacterial infection can activate quiescent HSC  
(Essers et al., 2009; Sato et al., 2009; Baldridge et al., 2010). 
However, it is thus far unclear if these naturally occurring 
stimulants trigger only di!erentiation or also accelerated HSC 
self-renewal. To address the questions of how often HSCs  
divide and, thus, possibly contribute simultaneously, sequen-
tially, or repetitively to steady-state hematopoiesis, of whether 
there is a relationship between divisional history and blood 
forming or repopulating ability, and if HSC self-renewal is 
increased in hematopoietic stress upon severe infectious chal-
lenge, we set up an in vivo HSC divisional tracking system using 
CFSE labeling.

RESULTS
In vivo CFSE dilution reveals steady-state divisional 
heterogeneity of Lin c-kit+Sca-1+ (LKS) cells
Because 1% of HSCs are estimated to circulate in steady-
state blood, and some of them physiologically rehome into 
the 1% unoccupied BM HSC niches (Wright et al., 2001; 
Bhattacharya et al., 2006, 2009), we reasoned that i.v. transfer 
of HSC into nonirradiated mice resembles this process 
competitively and thus allows evaluation of steady-state HSC 
divisional dynamics. To track HSC division with high reso-
lution, we labeled cells with CFSE, a "uorescent dye which is 

HSCs would not contribute to relevant amounts of mature 
blood cells and could be a dormant reserve, only recruited 
upon hematopoietic challenge (Wilson et al., 2008; Foudi  
et al., 2009). However, the faster cycling HSCs repopulated 
lethally irradiated animals only in the short term, whereas the 
dormant HSCs showed long-term repopulation (Wilson et al., 
2008; Foudi et al., 2009). Therefore, these #ndings face di$-
culty in explaining how high-throughput hematopoiesis is 
maintained by only a small HSC fraction with long-term po-
tential but a very slow division rate. An alternative explana-
tion would be that a single steady-state HSC pool exists that 
contains stochastically changing slow and fast dividing HSCs, 
with most HSCs within the pool dividing longitudinally at 
similar rates.

Although in steady-state adult mice more than two-thirds 
of HSCs are in a resting, i.e., G0/G1 phase of cell cycle 
(Cheshier et al., 1999), HSC division can be induced in situa-
tions of hematopoietic challenge, for example, chemother-
apeutic treatment, irradiation, and BM transplantation (Trumpp  
et al., 2010). Recently, it was demonstrated that HSC- 
enriched populations express Toll-like receptors (TLRs), which 
recognize bacterial or viral molecules, and that TLR ligation 
causes proliferation and enhances production of innate im-
mune cells such as macrophages and dendritic cells for respec-
tive host defense (Nagai et al., 2006; Massberg et al., 2007).  

Figure 1. Steady-state divisional heterogeneity of LKS cells revealed by in vivo CFSE dilution. (A) Representative dot plots of BM gated on  
donor CD45+Lin  (top) and spleen gated on donor CD45+ CD4+CD62L+ (bottom) cells at the indicated time points after transplantation of CFSE-labeled 
LKS cells and CD4+CD62L+ cells into nonirradiated mice, respectively. Dashed lines represent CFSE intensity of CD4+CD62L+ cells indicating zero division.  
(B) Comparison of in vivo CFSE dilution and BrdU labeling. Dot plots and histograms show representative CFSE-labeled donor LKS cells 3 wk after trans-
plantation and after 2 wk of in vivo BrdU labeling and control, respectively. Dashed lines illustrate single divisions. (C) Mathematical model of three LKS 
subpopulations !tting the CFSE labeling data. See also Materials and methods.  o
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