UV catastrophy 0000	Regularization 0000	Role of contact	Case of a BEC

Effet of losses in interacting quantum gases : ultra-violet divergence and its regularization

I. Bouchoule, Léa Dubois, Léo-Paul Barbier

KITP, 30th August 2021

UV catastrophy	Regularization	Role of contact	Case of a BEC				
Open quantum systems							

Quantum systems coupled to environements :

- Exchange of energy \Rightarrow heat transfer
- Exchange of particles
 - Transport phenomena
 - Case of loss process
 - Zeno effect → strongly correlated gases
 F. Verstraete et al., Nature Physics 5, 633 (2009)
 M. Roncaglia et al., Phys. Rev. Lett. 104, 096803 (2010)
 N. Syassen et al., Science 320, 1329 (2008)

Effect of losses : still a lot to discover

Losses in a correlated system : a field at its begining Here : one-body losses, gas with contact interactions

- UV catastrophy for Lindblad dynamics of a gas with contact interactions
- 2 Regularization for the 2-body problem
- 3 Many-body system : role of contact

4 Case of a BEC

UV catastrophy for Lindblad dynamics of a gas with contact interactions

2 Regularization for the 2-body problem

3 Many-body system : role of contact

4 Case of a BEC

|▲□▶▲□▶▲□▶▲□▶ = のへの

Reservoir of vanishing correlation time : Lindblad equation

• System : density matrix ρ

Lindblad equation : used in all previous works in cold atoms domain

Lindblad equation for uniform 1-body losses

• Reservoir of correlation time \ll system's dynamics time

$$rac{d
ho}{dt} = -i[H,
ho] + \Gamma \int d^d \mathbf{r} \left(-rac{1}{2} \{\psi^+_{\mathbf{r}}\psi_{\mathbf{r}},
ho\} + \psi_{\mathbf{r}}
ho\psi^+_{\mathbf{r}}
ight)$$

- Universal behavior : single parameter Γ
- Effect trivial if uncorrelated system $\rho = \prod_a \rho_a$: $dN_a/dt = -\Gamma N_a$
- If quantum correlations present between atoms ?
 ⇒ Difficult problem

Interactions between atoms \Rightarrow correlations

Interactions between atoms : contact interaction

$$\psi \simeq \text{solution of } \Delta \psi = 0$$

Potential \Rightarrow boundary condition for $r \rightarrow 0$ For $r_e \ll r \ll \sqrt{mE}/\hbar$ $\psi \propto 1/r - 1/a$ (3D) $\psi \propto \ln(r/a)$ (2D) $\psi \propto 1 - r/a$ (1D)

Single parameter : scattering length *a* Universal behavior Pseudo-potential : $V = \delta^d(\mathbf{r})U$

$1/p^4$ momentum tail tail \Rightarrow UV divergence of E_{kin}

For
$$p^2/m \gg E$$
, $|\psi_p|^2 = \frac{m}{L^d} (U\psi)_{r=0}^2 \frac{1}{p^4} = \frac{\alpha}{\mathbf{p}^4}$

 $E_{\rm kin} \propto \int d^d \mathbf{p} \frac{p^2}{2m} |\psi_p|^2 \Rightarrow E_{\rm kin} = \infty \text{ for } D > 1$

compensated by diverging interaction energy (E_{tot} finite)

UV catastrophy

Regularization

Role of contact

UV divergence of the energy deposited by a loss event

Lindblad : loss event instantaneous $\Rightarrow |\psi\rangle \rightarrow |\psi'\rangle = \psi_{\mathbf{r}_{locs}}|\psi\rangle \Rightarrow \psi'(\mathbf{r}_2, \mathbf{r}_3, \dots) \propto \psi(\mathbf{r}_1 = \mathbf{r}_{loss}, \mathbf{r}_2, \mathbf{r}_3, \dots)$

Singularity at loss event position :

 \Rightarrow momentum tails decreasing as $1/p^4$

$$\Rightarrow E_{\rm kin} = \infty$$

No compensation by interaction term

UV catastrophe for Lindblad dynamics with contact interactions

$$dE/dt = \infty$$

Regularisation

- Finite interaction range
- Finite correlation time of the reservoir \Rightarrow finite energy width

UV catastrophy for Lindblad dynamics of a gas with contact interactions

2 Regularization for the 2-body problem

3 Many-body system : role of contact

4 Case of a BEC

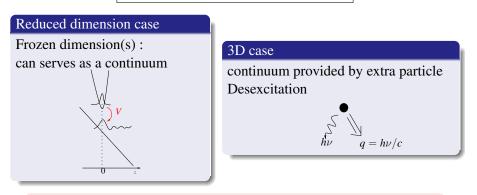
- * ロ * * @ * * 注 * 注 * うへぐ

Role of contact

Homogeneous 1-body losses

- 1-body loss mechanism : single-atom coupling to environement
- Homogeneous loss process : undependent on r

 \Rightarrow For each **r**, coupling to a continuum



No position-dependence \rightarrow conservation of momentum

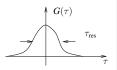
UV catastrophy	Regularization	Role of contact	Case of a BEC
Homogonool	1 hody losses		

Homogeneous 1-body losses

Invariance by galilean transformation \Rightarrow loss undependant on **p**

Model of losses

For each **p**, continuum (label *i*), $E_{\mathbf{p},i}^{(\text{res})} = p^2/(2m) + E_i$



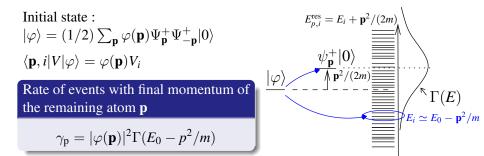
$$V = \sum_{\mathbf{p}} \sum_{i} V_i \Psi_{\mathbf{p}} B_{\mathbf{p},i}^+ + h.c.$$

- Correlation function : $G(\tau) = \sum_{i} |V_i|^2 e^{iE_i\tau/\hbar}$
- Spectral density : $\Gamma(E) = \frac{1}{\hbar^2} \int d\tau e^{-iE\tau/\hbar} G(\tau)$ $\Gamma(E) = \frac{2\pi}{\hbar} n(E) |V_i|^2$

 $\begin{array}{c} \text{Asumption made in Lindblad}: \begin{cases} \tau_{\text{res}} \to 0(E_{\text{res}} \to \infty) \\ \Gamma(E) = \Gamma_0 \text{ for all } E \end{cases}$ $\begin{array}{c} E_{\text{res}}: \text{ energy width of the reservoir} \end{cases}$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

2-atoms phycis (For simplicity, consider Bosons)



Energy increase rate

$$\frac{dE}{dt} = \sum_{\mathbf{p}} \gamma(\mathbf{p}) \frac{|\mathbf{p}|^2}{2m} \quad \text{Contact interaction} \Rightarrow |\varphi(p)|^2 \underset{p > p_0}{\simeq} \frac{\alpha}{p^4}$$
$$\frac{dE}{dt} \Big|_{p > p_0} = \alpha \Gamma_0 \mathcal{B} \quad \text{with} \quad \mathcal{B} \simeq \begin{cases} 1/p_0 & \text{in 1D} \\ \ln(\sqrt{mE_{\text{res}}/p_0}) & \text{in 2D} \\ \sqrt{mE_{\text{res}}} & \text{in 3D} \end{cases}$$

- UV catastrophy for Lindblad dynamics of a gas with contact interactions
- 2 Regularization for the 2-body problem
- 3 Many-body system : role of contact

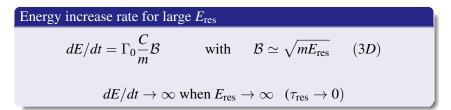
4 Case of a BEC

|▲□▶▲□▶▲□▶▲□▶ = つへぐ

Generalization to many-body systems

Role of the contact

- Contact C : quantifies the **number of pairs** in the system
- Amplitude of $1/p^4$ momentum tails : $C = \lim_{p \to \infty} p^4 n(p)$
- From 2-body to many-bodies : $\alpha \Rightarrow$ Contact parameter C



- UV catastrophy for Lindblad dynamics of a gas with contact interactions
- 2 Regularization for the 2-body problem
- 3 Many-body system : role of contact

Role of contact

Case of a Bose-Einstein condensate

Macroscopic occupation of the ground state $\mathbf{p} = 0$. Interactions between atoms \rightarrow Bogoliubov tranformation :

$$H_{BG} = e_0 L^d + \sum_{\mathbf{p}\neq\mathbf{0}} \epsilon_p a_{\mathbf{p}}^+ a_{\mathbf{p}} \text{, with } \begin{cases} \Psi_{\mathbf{p}} = u_p a_{\mathbf{p}} + v_p a_{-\mathbf{p}}^+ \\ \Psi_{-\mathbf{p}}^+ = v_p a_{\mathbf{p}} + u_p a_{-\mathbf{p}}^+ \end{cases}$$

Bogoliubov spectrum : $\epsilon_p=\sqrt{p^2/(2m)(p^2/(2m)+2gn)}$
 $u_p^2-v_p^2=1$

Quantum deplection : $1/p^4$ tails recovered

$$\langle \Psi_{\mathbf{p}}^{+}\Psi_{\mathbf{p}}\rangle = \sum_{\mathbf{p}} \{ (u_{p}^{2} + v_{p}^{2})\langle a_{p}^{+}a_{p}\rangle + v_{p}^{2} \} \qquad (\langle a_{p}a_{-p}\rangle = 0)$$

Large *p* behavior : $\langle a_p^+ a_p \rangle \simeq 0$ and $\left[v_p^2 \simeq (mgn)^2 / p^4 \right]$ Contact : $C = L^d (mgn)^2 / (2\pi\hbar)^d$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Master equation under effect of losses

Coupling to the reservoir : $V = \sum_{\mathbf{p},\mathbf{i}} V_i B_{\mathbf{p}}^+ (u_p a_{\mathbf{p}} + v_p a_{-\mathbf{p}}^+) + h.c.$

Master equation for Bogoliubov quasi-particles

- Second order in V
- Rotating wave approximation
- Born-Markov approximation

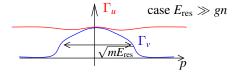
 $\frac{d\hat{\rho}}{dt} = -(i/\hbar)[H_0,\hat{\rho}] - \sum_{\mathbf{p}} \left\{ \frac{\Gamma_u(\mathbf{p})u_p^2}{2} \left(\frac{1}{2} \{a_{\mathbf{p}}^+ a_{\mathbf{p}}, \rho\} - a_{\mathbf{p}}\rho a_{\mathbf{p}}^+ \right) \right\}$

$$+\Gamma_{\mathbf{v}}(\mathbf{p})\mathbf{v}_{p}^{2}\left(\frac{1}{2}\{a_{\mathbf{p}}a_{\mathbf{p}}^{+},\rho\}-a_{\mathbf{p}}^{+}\rho a_{\mathbf{p}}\right)\}$$

$$\Gamma_{u}(p) = \Gamma(gn - (\frac{p^{2}}{2m} - \epsilon_{p}))$$

$$\Gamma_{v}(p) = \Gamma(gn - (\frac{p^{2}}{2m} + \epsilon_{p}))$$

$$\epsilon_{p} \underset{p \to \infty}{\simeq} p^{2}/(2m)$$



・ロト・日本・日本・日本・日本・日本

Evolution of Bogoliubov mode's population

$$\frac{d\langle a_{\mathbf{p}}^{+}a_{\mathbf{p}}\rangle}{dt} = -\Gamma_{u}(p)u_{p}^{2}\langle a_{\mathbf{p}}^{+}a_{\mathbf{p}}\rangle + \Gamma_{v}(p)v_{p}^{2}\left(1 + \langle a_{\mathbf{p}}^{+}a_{\mathbf{p}}\rangle\right)$$

• Non interacting atoms : $v_p = 0, u_p = 1, \Gamma_u = \Gamma_0$

 $\Rightarrow \boxed{d\langle a_{\mathbf{p}}^{+}a_{\mathbf{p}}\rangle/dt = -\Gamma_{0}\langle a_{\mathbf{p}}^{+}a_{\mathbf{p}}\rangle} \text{ as expected}$

• **Reservoir of infinite energy width :** $\Gamma_u = \Gamma_v = \Gamma_0 \ \forall p$

$$\Rightarrow \left| d\langle a_{\mathbf{p}}^{+}a_{\mathbf{p}}\rangle/dt = -\Gamma_{0}\langle a_{\mathbf{p}}^{+}a_{\mathbf{p}}\rangle + \Gamma_{0}v_{p}^{2} \right| \qquad (u_{v}^{2} - v_{p}^{2} = 1)$$

 \Rightarrow UV divergence of dE/dt ($\epsilon_p \simeq p^2/(2m)$ and $v_p \propto 1/p^4$)

Evolution of energy in the system

$$E = e_0 L^d + \sum_{\mathbf{p}\neq\mathbf{0}} \epsilon_p \langle a_{\mathbf{p}}^+ a_{\mathbf{p}} \rangle$$

$$\Rightarrow \frac{dE}{dt} = A \frac{dn}{dt} + \sum_{\mathbf{p}} \epsilon_p \frac{d\langle a_{\mathbf{p}}^+ a_{\mathbf{p}} \rangle}{dt} \quad \text{with} \quad \frac{dn}{dt} \simeq -\Gamma_0 n$$

90

Role of contact

Evolution of the gas temperature

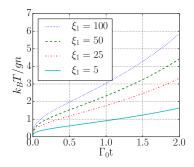
Relaxation towards thermal equilibrium

2D,3D Bose gases : cahotic systems

\Rightarrow Relaxation towards thermal equilibrium

slow losses \rightarrow at any time, thermal equilibrium at temperature T(t)

T(t) computed using thermal equation of state and dE/dt



$$\Gamma(E) = \Gamma_0 e^{-E^2/(2E_{\rm res})}$$
$$\xi_1 = \sqrt{E_{\rm res}/(gn_0)}$$

◆□▶◆□▶◆≧▶◆≧▶ = ● のへ⊙

Role of contact

Conclusion

This result (To appear in PRA)

- Two famous universal behaviors :
 - Lindblad losses (Γ₀)
 - contact interactions (a)
- UV divergence $\Rightarrow \Gamma_0$ and *a* not sufficient to describe the physics
- Regularization with finite energy width of the reservoir
- Analytical results for BEC : T(t) computed

Other results : 1D case

- No UV divergence : Lindblad and contact intercations OK
- Integrable system \Rightarrow not thermalisation
- Losses produce non thermal state

I. Bouchoule et al., Scipost Phys. **9**,44 (2020), I. Bouchoule and J. Dubail, Phys. Rev. Lett. **126**, 160603 (2021), M. Schemmer and I. Bouchoule, Phys. Rev. Lett. **121**, 200401 (2018), I. Bouchoule and M. Schemmer, SciPost Physics **8**, 060 (2020).