Probing topogical defect formation in a quantum annealer

Adolfo del Campo

Transport and Efficient Energy Conversion in Quantum Systems Coordinators: Jean-Phillipe Brantut, Giulio Casati, Jorge Kurchan, and Heiner Linke

Testing a black box

Probing the universality of topological defect formation in a quantum annealer: Kibble-Zurek mechanism and beyond

Yuki Bando, Yuki Susa, Hiroki Oshiyama, Naokazu Shibata, Masayuki Ohzeki, Fernando Javier Gómez-Ruiz, Daniel A. Lidar, Sei Suzuki, Adolfo del Campo, and Hidetoshi Nishimori Phys. Rev. Research **2**, 033369 – Published 8 September 2020

Phase Transitions Dynamics & Kink Formation

Tests in a Quantum Annealer

Dynamics of a phase transition

Spontaneous symmetry breaking leads to domain formation

Kibble-Zurek Mechanism

Domain size: universal power law scaling with quench time

$$\hat{\xi} = \xi(\hat{t}) = \xi_0 \left(\frac{\tau_Q}{\tau_0}\right)^{\frac{\nu}{1+z\nu}}$$

T. W. B. Kibble, JPA 9, 1387 (1976)
T. W. B. Kibble, Phys. Rep. 67, 183 (1980)
W. H. Zurek, Nature (London) 317, 505 (1985)
W. H. Zurek, Acta Phys. Pol. B. 1301 (1993)

KZM in quantum systems: Ising chain

Ising chain is equivalent to ensemble of two-level systems

λT

$$\mathcal{H} = -J\sum_{m=1}^{N} (\sigma_m^z \sigma_{m+1}^z + g\sigma_m^x) = \sum_k E_k (\gamma_k^\dagger \gamma_k - 1/2)$$

Kink number operator: number of kinks = number of excited two-level systems

$$\hat{\mathcal{N}} = \frac{1}{2} \sum_{m=1}^{N} (1 - \sigma_m^z \sigma_{m+1}^z) = \sum_k \gamma_k^{\dagger} \gamma_k$$

Sweep from paramagnet to ferromagnet: mean kink number

$$g(t) = -\frac{t}{\tau_Q} \qquad \langle n \rangle = Nd = N\frac{1}{2\pi}\sqrt{\frac{\hbar}{2J\tau_Q}}$$

2005 Polkovnikov Damski Dziarmaga Zurek, Dorner, Zoller

Universality of Kibble-Zurek Mechanism

The KZM is broadly applicable

Tested numerically in integrable and nonintegrable models

Many experiments consistent with KZM

AdC & Zurek, Int. J. Mod. Phys. A 29, 1430018 (2014)

Beyond the Kibble-Zurek mechanism

AdC, PRL 121, 200601 (2018) (theory)

J.M. Cui et al. Commun. Phys. 3, 44 (2020) (exp)

Ising chain is equivalent to ensemble of two-level systems

$$\mathcal{H} = -J\sum_{m=1}^{N} (\sigma_m^z \sigma_{m+1}^z + g\sigma_m^x) = \sum_k E_k (\gamma_k^\dagger \gamma_k - 1/2)$$

Kink number operator: number of kinks = number of excited two-level systems

$$\hat{\mathcal{N}} = \frac{1}{2} \sum_{m=1}^{N} (1 - \sigma_m^z \sigma_{m+1}^z) = \sum_k \gamma_k^\dagger \gamma_k$$

Probability to have "n" kinks

$$P(n) = \left\langle \delta[\hat{\mathcal{N}} - n] \right\rangle$$

L. Cincio, J. Dziarmaga, M. M. Rams, W. H. Zurek, PRA 75, 052321 (2007); AdC, PRL 121, 200601 (2018)

Kink number distribution and the characteristic function

$$P(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\theta \widetilde{P}(\theta) e^{-i\theta n}$$

Exact characteristic function

$$\widetilde{P}(\theta) = \left\langle e^{i\theta\hat{\mathcal{N}}} \right\rangle = \prod_{k} \left(1 - p_k + p_k e^{i\theta} \right)$$

Probabilities from Landau-Zener formula

$$p_k = \langle \gamma_k^{\dagger} \gamma_k \rangle = \exp\left(-\frac{1}{\hbar} 2\pi J \tau_Q k^2\right)$$

AdC, PRL **121**, 200601 (2018)

Kink number distribution = **Poisson binomial distribution**

- Ising chain = independent modes as two-level systems (TLS)
- Each TLS = discrete random variable yes/no=excited/ground
- Assign success probabilities from Landau-Zener formula

$$\widetilde{P}(\theta) = \left\langle e^{i\theta\hat{\mathcal{N}}} \right\rangle = \prod_{k} \left(1 - p_k + p_k e^{i\theta} \right) \qquad p_k = \exp\left(-\frac{1}{\hbar} 2\pi J \tau_Q k^2\right)$$

AdC, PRL 121, 200601 (2018)

AdC, PRL 121, 200601 (2018)

AdC, PRL 121, 200601 (2018)

Cumulant generating function

$$\log \widetilde{P}(\theta) = \sum_{q=1}^{\infty} \frac{(i\theta)^q}{q!} \kappa_q$$

Exact expression in the continuum limit

$$\log \widetilde{P}(\theta) = \frac{N}{2\pi} \int_0^{\pi} dk \log \left[1 + \left(e^{i\theta} - 1 \right) \exp \left(-\frac{1}{\hbar} 2\pi J \tau_Q k^2 \right) \right]$$

For slow quenches

$$\log \widetilde{P}(\theta) = -\langle n \rangle_{\text{KZM}} \operatorname{Li}_{3/2}(1 - e^{i\theta}) \qquad \operatorname{Li}_{3/2}(x) = \sum_{p=1}^{\infty} x^p / p^{3/2}$$

AdC, PRL **121**, 200601 (2018)

Beyond KZM: Universal scaling of cumulants

First cumulant (pdf for number of kink pairs)

$$\kappa_1 = \langle n \rangle = \langle n \rangle_{\rm KZM} = \frac{N}{4\pi} \sqrt{\frac{\hbar}{2J\tau_Q}}$$

Second

$$\kappa_2 = \langle n^2 \rangle - \langle n \rangle^2 = \frac{2 - \sqrt{2}}{2} \langle n \rangle_{\text{KZM}}$$

$$\kappa_3 = \langle (n - \langle n \rangle)^3 \rangle = \left(1 - \frac{3}{\sqrt{2}} + \frac{2}{\sqrt{3}}\right) \langle n \rangle_{\text{KZM}}$$

Non-normal/Gaussian distribution

AdC, PRL **121**, 200601 (2018)

Beyond KZM: Universal scaling of cumulants

Universality of defect number distribution

 AdC, PRL **121**, 200601 (2018); J-M. Cui, F. J. Gómez-Ruiz, Y.-F. Huang, C.F. Li, G. C. Guo, AdC, Commun. Phys. 3, 44 (2020) Exact P(n) in 1DTFIM and characterization

3. F. J. Gómez-Ruiz et al. PRL 124, 240602 (2020)
J. J. Mayo et al. PRR 3, 033150 (2021)
Continuous PTs in classical systems

$$V(\{\phi_i\}) = \sum_i \frac{1}{2} [\lambda(t)\phi_i^2 + \phi_i^4] + c \sum_i \phi_i \phi_{i+1}$$
$$\ddot{\phi}_i + \eta \phi_i + \partial_{\phi_i} V(\{\phi_i\}) + \zeta = 0$$

4. Y. Bando et al., PRR 2, 033369 (2020) Tests in D-Wave

5. AdC, FJ Gómez-Ruiz, ZH Li, CY Xia, HB Zeng, HQ Zhang, JHEP 06, 061 (2021) Numerical Tests in 2+1D holographic superconductor

Universality of defect formation

Test in a quantum annealer

Probing the universality of topological defect formation in a quantum annealer: Kibble-Zurek mechanism and beyond

Yuki Bando, Yuki Susa, Hiroki Oshiyama, Naokazu Shibata, Masayuki Ohzeki, Fernando Javier Gómez-Ruiz, Daniel A. Lidar, Sei Suzuki, Adolfo del Campo, and Hidetoshi Nishimori Phys. Rev. Research **2**, 033369 – Published 8 September 2020

Test in a quantum annealer

Probing the universality of topological defect formation in a quantum annealer: Kibble-Zurek mechanism and beyond

Yuki Bando, Yuki Susa, Hiroki Oshiyama, Naokazu Shibata, Masayuki Ohzeki, Fernando Javier Gómez-Ruiz, Daniel A. Lidar, Sei Suzuki, Adolfo del Campo, and Hidetoshi Nishimori Phys. Rev. Research **2**, 033369 – Published 8 September 2020

Previous D-Wave tests: 1D TFQIM

No quantitative agreement with KZM

DW2X (Los Alamos)

DW2X-SYS4 (Burnaby)

Unexplained fitted power-law exponents ~1 in LZ regime

Article | Open Access | Published: 14 March 2018

Defects in Quantum Computers

Bartłomiej Gardas, Jacek Dziarmaga ⊡, Wojciech H. Zurek & Michael Zwolak

Scientific Reports 8, Article number: 4539 (2018) | Cite this article

Previous D-Wave tests: 2D TFQIM

Power-law consistent with KZM

(2d quantum=3d classical)

$$d = 2, z = 1, \nu \approx 0.63$$
$$\beta_{\text{KZM}} = \frac{d\nu}{1 + z\nu} \approx 0.77$$
$$\beta_{\text{Dwave}} \approx 0.74 \pm 0.02$$

Scaling and Diabatic Effects in Quantum Annealing with a D-Wave Device

Phillip Weinberg, Marek Tylutki, Jami M. Rönkkö, Jan Westerholm, Jan A. Åström, Pekka Manninen, Päivi Törmä, and Anders W. Sandvik Phys. Rev. Lett. **124**, 090502 – Published 5 March 2020 D-Wave 2000Q_2_1 L x L square lattice

Previous D-Wave tests: KZM vs anti-KZM

Anti-KZM

heating induced by noise/dephasing dominates over KZM for slow quenches

Anti-Kibble-Zurek Behavior in Crossing the Quantum Critical Point of a Thermally Isolated System Driven by a Noisy Control Field

Anirban Dutta, Armin Rahmani, and Adolfo del Campo Phys. Rev. Lett. **117**, 080402 – Published 17 August 2016

AQC2016 Venice, CA

Test in a quantum annealer

Probing the universality of topological defect formation in a quantum annealer: Kibble-Zurek mechanism and beyond

Yuki Bando, Yuki Susa, Hiroki Oshiyama, Naokazu Shibata, Masayuki Ohzeki, Fernando Javier Gómez-Ruiz, Daniel A. Lidar, Sei Suzuki, Adolfo del Campo, and Hidetoshi Nishimori Phys. Rev. Research **2**, 033369 – Published 8 September 2020

D-Wave test

D-Wave 2000Q: Embedding the Transverse-field 1D Ising model

$$H = -A(t/t_0) \sum_{i=1}^{L} \sigma_i^x + B(t/t_0) \sum_{i=1}^{L} J_i \sigma_i^z \sigma_{i+1}^z$$

Low noise

Gauge averaging (avoid calibration errors)

Gauge-Averaged case

Sampling:

- 200 instances (chains)
- 1000 annealing runs per instance
- Gauge Transformation on randomly selected L/2 sites

Collected density of kinks @ NASA

Collected density of kinks @ NASA

NASA (antiferromagnetic)

Burnaby (antiferromagnetic)

Fitted Power-law exponents

L	NASA	Burnaby
50	0.347 ± 0.008	0.587 ± 0.016
200	0.216 ± 0.003	0.363 ± 0.003
500	0.201 ± 0.003	0.320 ± 0.005
800	0.204 ± 0.002	0.335 ± 0.003

• Power laws exponent differs from isolated quantum case

- Power laws exponent differs from isolated quantum case
- Also differs from classical SVMC

- Power laws exponent differs from isolated quantum case
- Also differs from classical SVMC
- QOS: iTEBD calculation for open Ising chain with harmonic bath

First test of KZM in a Many-body Open Quantum System (?)

Power-law exponents: QOS

• QOS: open Ising chain with harmonic bath

$$H_{\text{total}} = H(s) + \sum_{i,k} \left[C_k (a_{i,k}^{\dagger} + a_{i,k}) \sigma_i^z + \hbar \omega_{i,k} a_{i,k}^{\dagger} a_{i,k} \right]$$
$$J(\omega) = \frac{4\pi}{\hbar^2} \sum_i C_k^2 \delta(\omega - \omega_k) = 2\pi \eta \omega \quad (\omega < \omega_c)$$
$$QMC/RG: \quad \nu = 1 \rightarrow 0.64 \quad \& \quad z = 1 \rightarrow 1.99$$

Power-law exponents: QOS

• QOS: open Ising chain with harmonic bath

$$H_{\text{total}} = H(s) + \sum_{i,k} \left[C_k (a_{i,k}^{\dagger} + a_{i,k}) \sigma_i^z + \hbar \omega_{i,k} a_{i,k}^{\dagger} a_{i,k} \right]$$
$$J(\omega) = \frac{4\pi}{\hbar^2} \sum_i C_k^2 \delta(\omega - \omega_k) = 2\pi \eta \omega \quad (\omega < \omega_c)$$
$$QMC/RG: \quad \nu = 1 \to 0.64 \quad \& \quad z = 1 \to 1.99$$

Power-law exponents: QOS

• QOS: open Ising chain with harmonic bath

$$H_{\text{total}} = H(s) + \sum_{i,k} \left[C_k (a_{i,k}^{\dagger} + a_{i,k}) \sigma_i^z + \hbar \omega_{i,k} a_{i,k}^{\dagger} a_{i,k} \right]$$
$$J(\omega) = \frac{4\pi}{\hbar^2} \sum_i C_k^2 \delta(\omega - \omega_k) = 2\pi \eta \omega \quad (\omega < \omega_c)$$

QMC/RG: $\nu = 1 \to 0.64$ & $z = 1 \to 1.99$

Power-law exponents: Spin-Vector Monte Carlo

• SVMC: spins mapped to classical planar rotors, dynamics by MC updates

$$H = \frac{B(s_n)}{2} \sum_{i=1}^{L-1} \cos \theta_i \cos \theta_{i+1} - \frac{A(s_n)}{2} \sum_{i=1}^{L} \sin \theta_i$$
$$s_n = \frac{n}{t'_a N_0}$$

Power-law exponents: Spin-Vector Monte Carlo

• SVMC: spins mapped to classical planar rotors, dynamics by MC updates

$$H = \frac{B(s_n)}{2} \sum_{i=1}^{L-1} \cos \theta_i \cos \theta_{i+1} - \frac{A(s_n)}{2} \sum_{i=1}^{L} \sin \theta_i$$
$$s_n = \frac{n}{t'_a N_0}$$

Power-law exponents: Spin-Vector Monte Carlo

• SVMC: spins mapped to classical planar rotors, dynamics by MC updates

- Power laws exponent differs from isolated quantum case
- QOS: iTEBD calculation for open Ising chain with harmonic bath

First test of KZM in a Many-body Open Quantum System (?)

Normal/Gaussian approximation

$$P(n) \sim N(\kappa_1, \kappa_2)$$
$$\kappa_1 = \frac{N}{2\pi} \sqrt{\frac{\hbar}{2Jt_a}}$$
$$\kappa_2 = (2 - \sqrt{2})\kappa_2$$

Cincio et al., PRA 75, 052321 (2007) AdC, PRL 121, 200601 (2018) Cui et al. Commun. Phys. 3, 44 (2020)

Universal scaling of cumulants

Universal scaling of cumulants

Cumulant ratios

DWave
$$\frac{\kappa_2}{\kappa_1} = 0.61 - 0.63$$
 $\frac{\kappa_3}{\kappa_1} = 0.23 - 0.25$
Theory $\frac{\kappa_2}{\kappa_1} = 0.586$ $\frac{\kappa_3}{\kappa_1} = 0.134$

Same distribution than in Isolation

AdC, PRL 121, 200601 (2018)

Closest Boltzmann distribution

Kink number distribution from DWave

NASA
$$P_{\rm N}(n)$$
 Burnaby $P_{\rm B}(n)$

• Kink number distribution at thermal equilibrium (Boltzmann)

$$Q(n;\beta') = g(n)\frac{1}{Z}e^{-\beta'E(n)} \qquad g(n) = \binom{L-1}{n}$$
$$E(n) = 2n+1-L$$

Minimize KL & TN distance

$$D_{\mathrm{KL}}(t_a) = \sum_{n} P(n; t_a) \ln \frac{P(n; t_a)}{Q(n; \beta')}$$
$$D_{\mathrm{TN}}(t_a) = \frac{1}{2} \sum_{n} |P(n; t_a) - Q(n; \beta')|$$

Closest Boltzmann distribution

Non-thermal DWave distribution

Summary

♦ Kibble-Zurek mechanism and Beyond

◆ Tests in Quantum annealers:

◆ First test of KZM in an Open Quantum System

◆ First test of physics beyond KZM (FCS defects) in a many-body system

◆ Optimized Boltzmann and Nonthermal DWave distributions

Y. Bando et al. PRR 2, 033369 (2020);
F. J. Gómez-Ruiz et al PRL 124, 240602 (2020)
J. M. Cui et al. Commun. Phys. 3, 44 (2020)
AdC, PRL 121, 200601 (2018)

Beyond KZM: arbitrary systems

1D system

Gómez-Ruiz et al PRL 124, 240602 (2020) Mayo et al PRR 3, 033150 (2021)

Beyond KZM: arbitrary systems

Number of independent trials $\mathcal{N} = L/\hat{\xi}$

Gómez-Ruiz et al PRL 124, 240602 (2020) Mayo et al PRR 3, 033150 (2021)

Beyond KZM: arbitrary systems

Number of independent trials $\mathcal{N} = L/\hat{\xi}$

Probability to form a kink at each boundary $\, \mathcal{P} \,$

Binomial distribution, normal approx

$$P(n) \sim B(n, \mathcal{N}, p) \approx \frac{1}{\sqrt{2\pi(1-p)\langle n\rangle}} e^{-\frac{(n-\langle n\rangle)^2}{2(1-p)\langle n\rangle}}$$

Gómez-Ruiz et al PRL 124, 240602 (2020) Mayo et al PRR 3, 033150 (2021)