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[.In ID (“spin chains”), we know well the ground states of models like the Heisenberg chain,
but basic facts about dynamics were only understood recently. Experiment on KCuFs;.

Why are there new kinds of hydrodynamics in | D electron and spin systems?
V.Bulchandani, R.Vasseur, C. Karrasch, JEM, PRL 2018

Does this lead to anything really new and observable about actual spin chains?
M. Dupont, JEM PRB RC 2020

A. Scheie, N. Sherman, M. Dupont, S.Nagler, G. Granroth, M. Stone, |EM,A.Tennant, Nat. Phys. 2021
M. Dupont, N. Sherman, |EM arXiv 2021
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Motivation

Conventional thermodynamics of large systems rests on the assumption that
initial states thermalize to a “Gibbs ensemble”, determined by the conserved
quantities (e.g., energy, particle number, maybe momentum).

Other possibilities include many-body localization = failure to thermalize
from disorder.

We start with extended quantum interacting systems in d=1.

|. What about “integrable” (Yang-Baxter) systems with infinitely many
................... C onservation..laws?...
2. (Real systems are not exactly integrable and there is no “KAM
theorem”. Does any of this survive in slightly perturbed d=1 systems?)
3. Does this all have anything to do with experiments on real materials?

(#1 has been a very active field: see recent review by Bulchandani, Gopalakrishnan, llievski,arXiv:2103.01976)




How thermalization relates to what we measure in solids:
Linear response theory

N : : : raals
Einstein’s theory of motion of Brownian particles: éh:z"‘g:’j-

the diffusion constant D that appears in Fick’s law
(which is the restoration to equilibrium from a density perturbation)

j=—-DVn
is given by the dynamical correlation function of velocity at equilibrium:
1 oo

D = 3 /. (v(0)-v(t))rdt =~ v*1

Philosophy: how a system returns to equilibrium is independent of whether it was driven away or
fluctuated away

Kubo formula for electrical conductivity in metals: dynamical correlation function of electrical current




Phenomenological description of most
spin chains at high temperatures

LThe diffusion equation] [Analogy with magnets)
o,n(x,t)— DVZin(x,t)=0 M: = Z" S2 = # of particles
# of particles Conserved [?Z’ /VF] = ()
Nconserved | 7¢.Ddx =NVt quantity: ’
\Y% local density

Emergent fluid-like
spin diffusion?

lim <S§(I) S(‘)f(,())>
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Dynamical exponent: z = 2




Standard hydrodynamics
(Oth order)

The *“zeroth-order” hydrodynamical equations in three dimensions, which
neglect dissipative behavior such as viscosity, are

on

0—f—+—V~ (nu) = 0 (1)
(_(l+u~ f)u—i—ivp = E (2)
ot P m
5 .
(,‘—+u.v> T+£(V°U)T = 0. (3)
ot 3

These come from the Boltzmann equation assuming local equilibrium.

Hydrodynamics: how does local equilibrium become global equilibrium?




Models to be studied

Let’s start with two examples of Yang-Baxter “integrable” systems:

the | D Bose gas with delta-function interaction (Lieb-Liniger model);

the | D “XXZ"” spin chain.

H=J, Z (SESE +8YSY ) + .Y SESHy+ Y hiS:
() 3

The latter has a more complicated Bethe ansatz formulation, but is easier to
compare to microscopic DMRG numerics and to experiments.

By adding a random field (last term), we could obtain a localized phase.

The “Heisenberg chain” we discuss in most detail is just Jz = Jxx.




An important consequence of integrability for dynamics and thermalization is that there exists an
infinite number of conserved quantities, although these become quite complicated for XXZ.
There the conserved charges and currents are (notation from T. Prosen), after spin and E,
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Note that these are local in real space; the momentum-space occupancies only work for the non-
interacting system.




Some history

The ground state of the Heisenberg chain was solved
by Bethe (1931) and the thermodynamics was
understood in the 1970s.

However, dynamical questions such as whether there
is a nonzero “Drude weight” remained perplexing

201 1: it turns out that half of the conserved
quantities had been missed, including those that
control the spin dynamics. This yields a nonzero
Drude weight, matching computations that became
available at that time.

One can use these conservation laws to get some
far-from-equilibrium results that pass tests against
DMRG-type numerical calculations.




Emergent hydrodynamics in Heisenberg
spin chain atinfinite temperature

10~ <s_;".(z) S(g(o)> = t72B fips (x/t27)
—~ kg T=+00
?,A 10
w” -
= , M. LJUBOTINA, ET AL. _ P
& v PRL 122, 210602 (2019) : I!(ard”ar Parisi Zhan_g
< k. . ; KPZ” hydrodynamics
= g

0 Dynamlcal z=23/2

exponent:

(’ Whatis KPZ? 0,h(x,t) — DV?h(x, 1) = A [ Vh(x, t)] ’ + on(x, tﬁ
Solution: ( Vh(x,t) - VR(0,0)) ~ 1728 fip, (x/t773)

Whereto findit? Profile of a growing interface, disordered

conductors, traffic flow, spin-1/2
\ Heisenberg chain... )
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EIMCIrgent nyaroaynatiics i riciscnocerg
spin chain atinfinite temperature

<

spatial spread of excitations x

>

[ Whatis KPZ?
Solution:

Whereto findit?

\_

d,h(x,t) — D Vah(x,t) = A [ V h(x, t)] . + on(x, t)\

(Vh(x,1) - VR0.0)) ~ 172 fp, (x/1723)

Profile of a growing interface, disordered
conductors, traffic flow, spin-1/2
Heisenberg chain... )
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U1Q: exact rar-rrom-equilprium energy expansion iIn AAL
(Vasseur, Karrasch, JEM 2015)
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Comparison is rate of increase of energy current
versus temperature integral of Drude weight
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Recent progress

We had some specialized tricks to get exact far-from
-equilibrium results for a few models. Can one
develop a more general approach for hydrodynamics
in integrable models?

Yes: started from work on (almost certainly)
asymptotically exact solutions for the two-reservoir
initial condition in

Castro-Alvaredo/Doyon/Yoshimura, PRX 2016 (Lieb-Liniger)
Bertini/Collura/De Nardis/Fagotti, PRL 2016 (XXZ)

|. Key steps of approach (in one language)
Physical picture of kinetic theory (Boltzmann equation):
same classical spirit as El and Kamchatnov, PRL 2005

2. Does it pass XXZ numerical comparisons that
previous similar ansatzes failed?




Our starting point: think of particles in an integrable model
as streaming (with self-consistent velocity) but not colliding

“Bethe-Boltzmann equation”
Oip(k, x,t) + 0z [v({p(K', z, 1) })p(k, z, t)] = 0

No collision term since quasiparticles retain their identity;
however, they modify each other’s velocities via phase shifts

This type of equation was written down in various older contexts:
| think the most relevant for the models here is

Kinetic Equation for a Dense Soliton Gas

G.A. EI'* and A. M. Kamchatnov™'

' Department of Mathematical Sciences, Loughborough University, Loughborough LE]] 3TU, United Kingdom
“Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow Region, 142190, Russia
(Received S July 2005; published 7 November 2005)

We propose a general method to derive kinetic equations for dense soliton gases in physical systems
described by integrable nonlinear wave equations. The kinetic equation describes evolution of the spectral
distribution function of solitoas due 1o soliton-soliton collisions. Owing to complete integrability of the
soliton equations, oaly pairwise soliton interactions contribute to the solution, and the evolution reduces to
a transport of the exgenvalues of the associated spectral problem with the corresponding soliton velocities
modified by the collisons. The proposed general procedure of the derivation of the Kinetic equation is
lustrated by the exampies of the Korteweg-de Vrles and nonlinear Schrodinger (NLS) equations, As a
smple physical example, we construct an explicit solution for the case of interaction of two colkd NLS
solfton gases.




Why Boltzmann equation gets modified in (classical or
quantum) integrable systems

Solitons/particles pass through each other even in dense system;
no randomization of momentum and no collision term.

However, there is an interaction:

Classical Quantum

Solitons delay each other

st

Phase shift from Bethe equations

but semiclassically an energy-dependent phase
shift is also just a time delay (Wigner)

- do
"Wo e @ 40 2 o 2 @ €0 o T = 2h—

dF

so velocity depends on other
solitons at spacetime point

Summary of when this is useful




Normal fluid:
Initial state = Local equilibrium — Hydrodynamics

Integrable fluid:
Initial state = Local GGE — Boltzmann/hydrodynamics

So, for non-local-GGE initial conditions, still need to solve
difficult “quench” problem, at least locally.

Two-reservoir problem already solved in 2016 papers: solution is
function of one variable (x/t).

Let’s look for full (x,t) solutions: are quantum dynamics really
describable by these classical particle equations?

Mathematical properties of solutions (“semi-Hamiltonian structure”): Bulchandani,
2017, as for NLS

Take XXZ in zero magnetic field. Make a spatial variation of initial temperature.




Watch the energy spread out in time.

Note: nonzero temperature is required for coarse-graining time to be finite,
according to basic principle that systems can’t relax faster than hbar/kT.
(Hence more physically generic than T=0 or Bethe-Bethe comparisons.)
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These are comparisons for interacting spinless fermions (XXZ) between backwards

Euler solution of Bethe-Boltzmann and microscopic DMRG simulations.
(figure from “Solvable quantum hydrodynamics”,V. Bulchandani, R.Vasseur, C. Karrasch, and JEM, arXiv April 2017)
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What else can happen?

The previous examples were for the gapless
regime, with ultimately ballistic scaling.
The gapped, easy-axis regime is diffusive.

What about the last gapless point, the Heisenberg point?

Another reason people care about spin chains and DMRG:

They are an example of a physical system that we can
understand “beyond the diagonalization limit”, and simulate
on quantum hardware

Hvdrodvnamics bevond diffusion




Examplc; % — jzn S',:S\';I_H + S}’S}’ +A§;—;§Z+l

- n+1
A>1
D>
D(T) >0 D(T) = 0
Ballistic Superdiffusion e
dynamics Kardar-Parisi-Zhang lefgs;)n
z=1 z=3/2 z=
Integrable Integrable + spin isotropy In;iigsr:rt\)ilseo*t-rg%s;/y-
M. DUPONT AND J.E. MOORE Or absence of
PRB101, 121106(R) (2020) Ta) tegrablhty

n

Are there experimental consequences of this




1.

“generalized hydrodynamics” structure’?

There are Lieb-Liniger atomic experiments (Bouchoule et al.).
Here: how neutron scattering on a model Heisenberg chain
compound shows Kardar-Parisi-Zhang superdiffusive
behavior as a consequence of extra conservation laws.

(The generic state of 1D metals is a “Luttinger liquid” but
with irrelevant, integrability-breaking perturbations. We can
realize this by adding integrability-breaking terms that retain
lattice translation invariance. Conclusion: there are at least
two different mechanisms for adjustable power-laws in LL
transport, and a surprising consequence for experiments.)

Experimentally looking for hydrodynamics
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Weakly coupled spin-1/2 chains
J=335meV>J =-16 meV

Well described by the 5, A
1D Heisenberg model =] Z,, Sn Snsl

o _

Superdiffusive Kardar-Parisi-Zhang
“KPZ” hydrodynamics expected

e ) SN Fourier transforms
Corresponds to the neutron
scattering intensity

Neutron scattering measurements




\

Where to look for hydrodynamics? It emerges inthe long time
)\ and wavelength limits
S(O—=0,0w~0) ~
(0 ) ~ O 00 00

L Dynamical exponent z

100

50t

hiw (MeV)

Kardar-Parisi-Zhana universalitv at high




temperatures in the Heisenberg spin chain

In XXZ, the Heisenberg point separates diffusion from ballistic behavior...

Numerical observation: (starting c. 2017;
most convincing is Ljubotina, Znidaric, Prosen, 2019)

At infinite temperature, the spin correlations in the quantum spin-half Heisenberg
chain are in a famous classical stochastic universality class.

(This is not true for the non-integrable classical Heisenberg model.)

Oh(xz,t) o A o
e vV=h + 2(Vh) + n(x,t)

Diffusion, another classical stochastic description, is thought to
emerge in purely quantum systems, so why not others?

Experiment: look for KPZ scaling in frequency integrations near g=0
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> spatial spread of excitations x

Figure 1: @ Crystal structure of KCuF3, showing the orbital order of the Cu z? — y* orbitals.
This order leads to strong magnetic exchange interactions along the ¢ (vertical) axis and weak
exchange interactions along a and b, such that the Cu®* ions effectively make 1D chains. b
Schematic illustration of spinon excitations in a 1D Heisenberg antiferromagnet (based on
Ref.”). © Schematic illustration of three possible length-time scaling behaviors |z| ~ t/7
observed at high temperature in 1D quantum magnets, classified by the dynamical exponent 2:
z = 2 corresponds to diffusion (green curve), 2 = 3/2 to superdiffusive (blue curve) and z = 1
to ballistic dynamics.

A. Scheie, N.Sherman, M. Dupont, S. Nagler, G. Granroth, M. Stone, |EM, A.Tennant, Nat. Phys. 2021

MPS comparison Power law fit
3 1a-21
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Figure 3: Power law behavior of KCuFy around @ = 0. The left column shows experimental
data integrated over 0.7 < hw < 2 meV (cut a in Fig. 2) symmetrized about Q = 0 compared
with the MPS simulations. The same multiplicative scaling factor is used for all temperatures,
and the agreement is quite good above @ = 0.2, below which finite-size effects are significant
for MPS (See the Supplementary Information). The right column shows the data fited to a
phenomenological power law. As a part of the fit, the Q = ¥ peak was also fitted to a power law
and subtracted off as background. The fitted power is very close 1o —3/2 at all temperatures.
Comparison to z = 2 and 2z = 1 exponents are given in panel |. (Note that Q is unitless 0 — 27
as in Fig. 2.)

A. Scheie, N.Sherman, M. Dupont, S. Nagler, G. Granroth, M. Stone, |EM, A. Tennant, arXiv:2009.13535

Dynamics of the quantum spin-1/2
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Conclusion: the data are strong evidence for z=1.5 rather than z=1 or z=2




(Can’t directly probe the full KPZ spectral function with neutrons, but can see it
in the MPS calculation)

Current work: details of finite-T crossover, B fields, ...

Status of related theory:

1. There is an understanding of which spin chains have the KPZ universality
class behavior, and which do not. Both integrability and “isotropy” are crucial.
(Dupont and JEM, PRB RC 2020; confirmed analytically in paper below)

2. It is possible to compute z=3/2 using integrability (llievski et al., arXiv 2020),
but not yet the full KPZ scaling function.

3. There are some ideas for how the KPZ universality class might emerge
(Bulchandani, PRB RC 2020, ...)
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emperatures in tne Aeisenperg spin cnain

In XXZ, the Heisenberg point separates diffusion from ballistic behavior...

Numerical observation: (starting c. 2017;
most convincing is Ljubotina, Znidaric, Prosen, 2019)

At infinite temperature, the spin correlations in the quantum spin-half Heisenberg
chain are in a famous classical stochastic universality class.

(This is not true for the non-integrable classical Heisenberg model.)

Oh(z,t) o A 5
pyan vV=h + 2(Vh) + n(x,t)

Diffusion, another classical stochastic description, is thought to
emerge in purely quantum systems, so why not others?

Experiment: look for KPZ scaling in frequency integrations near g=0




What observables are related to KPZ?
Derivatives of height are like spin
Why? Simple reason: boundary between easy-plane and easy-axis
More complicated reason: nonlinearity of the sigma-model on the sphere. But the role of integrability
doesn’t come out so clearly here—it gives the right “partial” noise in the noisy Burgers equation that |

wrote before

Later: systematics of Zaletel-Pollmann stuff




