General bounds on shot noise in the absence of currents: charge and heat transport

Janine Splettstößer

Applied Quantum Physics, MC2, Chalmers University of Technology

KITP conference on "Transport and Efficient Energy Conversion in Quantum Systems", 31st of August 2021

Short introduction: – Charge and heat currents and noise.

- Short introduction: Charge and heat currents and noise.
- Results: Charge and heat shot noise at zero currents in constant-transmission conductors.

- ► Short introduction: Charge and heat currents and noise.
- Results: Charge and heat shot noise at zero currents in constant-transmission conductors.
- General bounds on zero-current charge and heat shot noise.

- ► Short introduction: Charge and heat currents and noise.
- Results: Charge and heat shot noise at zero currents in constant-transmission conductors.
- General bounds on zero-current charge and heat shot noise.
- Example for a concrete conductor.

Introduction - Charge and heat currents and noise

Introduction: transport and noise

Heat current:

$$J_{\mathsf{L}} = \frac{2}{h} \int dE \, (E - \mu_{\mathsf{L}}) D(E) [f_{\mathsf{L}}(E) - f_{\mathsf{R}}(E)]$$

G. Benenti, G. Casati, K. Saito, R. S. Whitney: Phys. Rep. 694, 1 (2017)

Introduction: transport and noise

Noise

- Further spectroscopy
- Important for "non-macroscopic" thermodynamics
- TUR, FR,...

Shot noise = partition noise

Ya. M. Blanter, M. Büttiker: Phys. Rep. 336, 1 (2000)

Introduction: Shot noise (in the absence of currents)

Shot and thermal noise:

$$S_{\text{th}}^{X} = \int dE \frac{4x^{2}}{h} D(E) \sum_{\alpha = \mathsf{L},\mathsf{R}} f_{\alpha}(E) [1 - f_{\alpha}(E)] \implies \text{Persists at equilibrium}$$
$$S_{\text{sh}}^{X} = \int dE \frac{4x^{2}}{h} D(E) [1 - D(E)] [f_{\mathsf{L}}(E) - f_{\mathsf{R}}(E)]^{2} \implies \text{Nonequilibrium effect}$$

Introduction: Shot noise (in the absence of currents)

Shot and thermal noise:

$$S_{\text{th}}^{X} = \int dE \frac{4x^{2}}{h} D(E) \sum_{\alpha = L, \mathsf{R}} f_{\alpha}(E) [1 - f_{\alpha}(E)] \quad \Rightarrow \text{Persists at equilibrium}$$
$$S_{\text{sh}}^{X} = \int dE \frac{4x^{2}}{h} D(E) [1 - D(E)] [f_{\mathsf{L}}(E) - f_{\mathsf{R}}(E)]^{2} \Rightarrow \text{Nonequilibrium effect}$$

Nonequilibrium does not necessary imply an average current flow!!!

Introduction: Shot noise (in the absence of currents)

Shot and thermal noise:

$$S_{\text{th}}^{\chi} = \int dE \frac{4x^2}{h} D(E) \sum_{\alpha = \mathsf{L},\mathsf{R}} f_{\alpha}(E) [1 - f_{\alpha}(E)] \qquad \Rightarrow \text{Persists at equilibrium}$$
$$S_{\text{sh}}^{\chi} = \int dE \frac{4x^2}{h} D(E) [1 - D(E)] [f_{\mathsf{L}}(E) - f_{\mathsf{R}}(E)]^2 \Rightarrow \text{Nonequilibrium effect}$$

Nonequilibrium does not necessary imply an average current flow!!!

Delta-T-noise

E. V. Sukhorukov, D. Loss: Phys. Rev. B 59, 13054 (1999)

• Recently measured!!

O. S. Lumbroso, L. Simine, A. Nitzan, D. Segal, O. Tal: Nature 562, 240 (2018)

E. Sivre, H. Duprez, A. Anthore, A. Aassime, F. D. Parmentier, A. Cavanna, A. Ouerghi, U. Gennser, F. Pierre: Nat. Commun. 10, 1 (2019)

• Limit for $T_{\rm L} \gg T_{\rm R} \approx 0$

$$S_{\mathsf{sh}}^l/S_{\mathsf{th}}^l
ightarrow \left(1-D^0
ight)\left(2\ln 2-1
ight)$$

S. Larocque, E. Pinsolle, C. Lupien, B. Reulet: Phys. Rev. Lett. 125, 106801 (2020)

Challenge to address

- \Rightarrow Find general statements on shot noise at zero currents
- \Rightarrow Particularly interesting for thermoelectrics

Zero-current charge and heat shot noise in constant-transmission conductors

Zero-current charge and heat shot noise at constant transmission

Zero-current charge and heat shot noise at constant transmission

Limit of $T_L \gg T_R \approx 0$

$$\frac{S_{sh}^{I}}{S_{th}^{I}}\Big|_{I=0} = R_{I} \to R_{I}^{0}$$

= (1 - D) (2 ln 2 - 1) \approx 0.4
$$\frac{S_{sh}^{J}}{S_{th}^{J}}\Big|_{I=0} = R_{J} \to R_{J}^{0}$$

= 3(1 - D)A($\pi/\sqrt{3}$)/ $\pi^{2} \approx 0.45$

Zero-current charge and heat shot noise at constant transmission

Limit of $T_{\rm L} \gg T_{\rm R} \approx 0$

$$\frac{S_{sh}^{I}}{S_{th}^{I}}\Big|_{I=0} = R_{I} \to R_{I}^{0}$$

= (1-D) (2 ln 2 - 1) \approx 0.4
$$\frac{S_{sh}^{I}}{S_{th}^{I}}\Big|_{I=0} = R_{I} \to R_{J}^{0}$$

= 3(1-D)A($\pi/\sqrt{3}$)/ $\pi^{2} \approx 0.45$

Can not be exceeded at any temperature difference if D = const.

J. Eriksson, M. Acciai, L. Tesser, J. Splettstoesser: arXiv:2102.12988 (2021); accepted for publication in Phys. Rev. Lett.

General bounds on zero-current charge and heat shot noise

Charge transport Which D(E) maximizes S_{sh}^{l} ?

$$S_{sh}^{I} = \frac{4e^{2}}{h} \int dE D(E) [1 - D(E)] [f_{L}(E) - f_{R}(E)]^{2}$$

Maximal at constant transmission D = 1/2 — even if $I \equiv 0$ imposed!

Use variational principle as in: R. S. Whitney: Phys. Rev. B 91, 115425 (2015)

Charge transport Which D(E) maximizes S_{sh}^{l} ?

$$S_{sh}^{I} = \frac{4e^{2}}{h} \int dE D(E) [1 - D(E)] [f_{L}(E) - f_{R}(E)]^{2}$$

Maximal at constant transmission D = 1/2 — even if $I \equiv 0$ imposed!

Use variational principle as in: R. S. Whitney: Phys. Rev. B 91, 115425 (2015)

Maximum of S_{sh}^{l} compared to S_{th}^{l} at I = 0?

$$S_{\mathsf{sh}}^{l} \leq rac{4e^2}{h} \int dED(E) f_\mathsf{L}(E) [1 - f_\mathsf{R}(E)] \leq S_{\mathsf{th}}^{l}$$

 $\Rightarrow R_I \equiv \left[S_{\rm sh}^I/S_{\rm th}^I\right]_{I=0} \le 1$

- Relies only on $0 \le D(E) \le 1$ and $0 \le f_{\alpha}(E) \le 1$
- Valid also for multi-channel contacts

Charge transport Which D(E) maximizes S_{sh}^{l} ?

$$S_{sh}^{I} = \frac{4e^{2}}{h} \int dE D(E) [1 - D(E)] [f_{L}(E) - f_{R}(E)]^{2}$$

Maximal at constant transmission D = 1/2 — even if $I \equiv 0$ imposed!

Use variational principle as in: R. S. Whitney: Phys. Rev. B 91, 115425 (2015)

Maximum of S_{sh}^{l} compared to S_{th}^{l} at I = 0?

$$S_{\mathsf{sh}}^{\prime} \leq rac{4e^2}{h}\int dED(E)f_\mathsf{L}(E)[1-f_\mathsf{R}(E)] \leq S_{\mathsf{th}}^{\prime}$$

 $\Rightarrow R_{I} \equiv \left[S_{\mathsf{sh}}^{I}/S_{\mathsf{th}}^{I}\right]_{I=0} \leq 1$

 $\Rightarrow \mathsf{bound}(R_I) > (1-D)(2\ln 2 - 1) = R_I^0$

- Relies only on 0 ≤ D(E) ≤ 1 and 0 ≤ f_α(E) ≤ 1
- Valid also for multi-channel contacts

Charge transport Which D(E) maximizes S_{sh}^{l} ?

$$S_{sh}^{I} = \frac{4e^{2}}{h} \int dE D(E) [1 - D(E)] [f_{L}(E) - f_{R}(E)]^{2}$$

Maximal at constant transmission D = 1/2 — even if $I \equiv 0$ imposed!

Use variational principle as in: R. S. Whitney: Phys. Rev. B 91, 115425 (2015)

Maximum of S_{sh}^{l} compared to S_{th}^{l} at I = 0?

$$S_{\mathsf{sh}}^{l} \leq rac{4e^2}{h} \int dED(E) f_\mathsf{L}(E) [1 - f_\mathsf{R}(E)] \leq S_{\mathsf{th}}^{l}$$

$$\Rightarrow R_I \equiv \left[S_{\rm sh}^I/S_{\rm th}^I\right]_{I=0} \le 1$$

 $\Rightarrow \mathsf{bound}(R_I) > (1-D)(2\ln 2 - 1) = R_I^0$

- Relies only on $0 \le D(E) \le 1$ and $0 \le f_{\alpha}(E) \le 1$
- Valid also for multi-channel contacts

Which D(E) maximizes R_I ? Can the bound be reached?Any $D(E) \neq 0$ within an energy interval δ , with $R_I \lesssim 1$ $max(T_L, T_R) \gg \delta/k_B \gg min(T_L, T_R)$ and $D(E) \ll 1$.

Heat shot noise is not bounded with respect to heat thermal noise!

Counter example:

- Counter example with finite transmission in separate energy intervalls!
 - ⇒ Major contributions to shot and thermal noise can be separately tuned!
- Different transport channels ⇔ different energy!

Heat shot noise is not bounded with respect to heat thermal noise!

Counter example:

- Counter example with finite transmission in **separate** energy intervalls!
 - ⇒ Major contributions to shot and thermal noise can be separately tuned!
- Different transport channels ⇔ different energy!

 $R_J = \frac{S_{sh}^{\prime}}{S_{th}^{\prime}}\Big|_{J=0}$ can become arbitrarily large!

J. Eriksson, M. Acciai, L. Tesser, J. Splettstoesser: arXiv:2102.12988 (2021); accepted for publication in Phys. Rev. Lett.

Concrete example: Conductor with resonant (Lorentzian-shaped) transmission

Concrete example: Lorentzian transmission

Zero-current charge noise ratio:

Concrete example: Lorentzian transmission

Zero-current heat noise ratio:

J. Eriksson, M. Acciai, L. Tesser, J. Splettstoesser: arXiv:2102.12988 (2021); accepted for publication in Phys. Rev. Lett.

Concrete example: Lorentzian transmission

Zero-current heat noise ratio:

$R_J \leq 1$ for this specific transmission probability!

Test more complex transmissions to reach $R_J \ge 1!$ e.g. E. Hailloo, P. T. Alonso, N. Dashti, L. Arrachea,

e.g. F. Hajiloo, P. T. Alonso, N. Dashti, L. Arrachea, J. Splettstoesser: Phys. Rev. B **102**, 155434 (2020)

Conclusions

• Zero-current shot noise extended to heat transport!

Generic nonequilibrium conditions (beyond Delta-T noise), arbitrary transmission probabilities

- Simple expressions for limits of $R = S_{sh}/S_{th}$ at constant D
- General bounds on shot noise to thermal noise ratio at zero current Zero-current charge shot noise bounded by thermal noise; heat shot noise behaves fundamentally differently!!

Lorentzian transmission as example

Conclusions

Zero-current shot noise extended to heat transport!

Generic nonequilibrium conditions (beyond Delta-T noise), arbitrary transmission probabilities

- Simple expressions for limits of $R = S_{sh}/S_{th}$ at constant D
- General bounds on shot noise to thermal noise ratio at zero current Zero-current charge shot noise bounded by thermal noise; heat shot noise behaves fundamentally differently!!

Lorentzian transmission as example

J. Eriksson, M. Acciai, L. Tesser, J. Splettstoesser: arXiv:2102.12988 (2021); accepted for publication in Phys. Rev. Lett.

Outlook

• Many relevant cases in quantum thermoelectrics where I, J = 0 but $S_I, S_J \neq 0$

R. Sánchez, J. Splettstoesser, R. S. Whitney: Nonequilibrium System as a Demon. Phys. Rev. Lett. 123, 216801 (2019)

Fluctuation dissipation theorem out of equilibrium?

B. Altaner, M. Polettini, M. Esposito: Fluctuation-Dissipation Relations Far from Equilibrium. Phys. Rev. Lett. 117, 180601 (2016)

Heat shot noise is not bounded with respect to heat thermal noise!

Counter example:

Heat shot noise is not bounded with respect to heat thermal noise!

• Fulfill zero-current condition:

$$J = 0 \Rightarrow \Delta = \frac{hJ^+}{\epsilon}$$

Counter example:

Heat shot noise is not bounded with respect to heat thermal noise!

• Fulfill zero-current condition:

$$J=0 \Rightarrow \Delta = rac{hJ^+}{\epsilon}$$

 Shot noise contribution from upper part:

$$S_{\mathsf{sh}}^{J} = rac{1}{h} \int_{\epsilon - \Delta/2}^{\epsilon + \Delta/2} dE E^{2} [f_{L} - f_{R}]^{2} \ pprox rac{\epsilon^{2} \Delta}{h} = \epsilon J^{+}$$

Counter example:

Heat shot noise is not bounded with respect to heat thermal noise!

• Fulfill zero-current condition:

$$J = 0 \Rightarrow \Delta = \frac{hJ^+}{\epsilon}$$

 Shot noise contribution from upper part:

$$S_{
m sh}^J = rac{1}{h} \int_{\epsilon - \Delta/2}^{\epsilon + \Delta/2} dE E^2 [f_L - f_R]^2 \ pprox rac{\epsilon^2 \Delta}{h} = \epsilon J^+$$

Thermal noise contribution from lower part: Independent of *ϵ*!!

$$S_{\text{th}}^{\prime} pprox rac{4}{h} \int_{-\infty}^{0} dE E^2 f_L [1 - f_L]$$

J. Eriksson, M. Acciai, L. Tesser, J. Splettstoesser: arXiv:2102.12988 (2021); accepted for publication in Phys. Rev. Lett.

Counter example:

Heat shot noise is not bounded with respect to heat thermal noise!

• Fulfill zero-current condition:

$$J = 0 \Rightarrow \Delta = \frac{hJ^+}{\epsilon}$$

• Shot noise contribution from upper part:

$$S_{
m sh}^J = rac{1}{h} \int_{\epsilon - \Delta/2}^{\epsilon + \Delta/2} dE E^2 [f_L - f_R]^2 \ pprox rac{\epsilon^2 \Delta}{h} = \epsilon J^+$$

• Thermal noise contribution from lower part: Independent of *ϵ*!!

$$S_{\rm th}^J \approx \frac{4}{h} \int_{-\infty}^0 dE E^2 f_L [1 - f_L]$$

R_J can become arbitrarily large!

J. Eriksson, M. Acciai, L. Tesser, J. Splettstoesser: arXiv:2102.12988 (2021); accepted for publication in Phys. Rev. Lett.

Counter example:

