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Dynamical quantum Cherenkov transition of  fast 
impurities in quantum liquids



Mobile impurity in a BEC
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finite mass, slow

Polaron
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Cherenkov

infinite mass, fast

+ 
strong interactions

finite mass 
+ 

fast?



Settings

Finite momentum ground state (FMGS)

Far-from-equilibrium quench protocol
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Cherenkov transition
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Dynamical transition  
happens at same place

Transition happens at 

2

the BEC’s speed of sound.
Below Pcrit, the polaron state overlaps with the free

impurity and the impurity travels at an average velocity
slower than the BEC’s speed of sound, with this velocity
depending on the momentum of the system. Above Pcrit,
the polaron state is orthogonal to the free impurity and
the impurity travels at the speed of sound with the rest
of the system’s momentum carried by long wavelength
Bogoliubov excitations. In the injection experiment in-
volving such a fast impurity, we find a shock wave and
wake in the density of the host liquid, with this modu-
lation traveling along with the impurity. In comparison
to previously studied shock waves in superfluids gener-
ated by constant velocity heavy obstacles [9] or density
defects [14–16], the dynamics of the density cone we ob-
serve is modified by the entanglement between the im-
purity and host atoms; this entanglement is included in
the theoretical treatment of the system via the Lee-Low-
Pines transformation and results in additional interaction
between Bogoliubov excitations (see [17] for details). We
therefore call this density modulation a polaron shock
wave.

The finite momentum quantum transition we observe
draws parallels to the classical Cherenkov e↵ect, in that
the impurity injected into a medium above a medium-
dependent critical velocity saturates to a finite universal
speed at late times while generating a cone of excitations
in the medium.

Results.—-We investigate an impurity immersed in a
three-dimensional BEC where the total momentum of
the system, P, is conserved. The system is spherically
symmetric, and P = |P| represents the magnitude of
the total momentum. We treat the BEC using stan-
dard Bogoliubov theory. The phonon excitations of the
bath have a dispersion that is quadratic at large mo-
menta, !k ' |k|2 /(2mB), and linear at low momenta,
!k ' c |k|. Here, c =

p
gBBn0/mB is the BEC’s speed of

sound, mB is the boson mass, gBB is the boson-boson in-
teraction strength, and n0 is the condensate density. The
interaction between the impurity and BEC is parameter-
ized by the impurity-boson scattering length aIB, which
we express in units of the condensate healing length
⇠ = (2mBgBBn0)�1/2. We use an interaction Hamilto-
nian that keeps terms that are relevant for the strong
coupling regime. The Hamiltonian model and variational
wavefunction used to derive equations of motion are the
same as in Ref. [18], and in this work we tackle the nu-
merical challenge of solving the equations of motion with
enough resolution to accurately capture the physics of
the system. The methods are further discussed in [17].
In this work, we examine the case of negative impurity-
BEC scattering lengths. The dynamics of impurities with
positive impurity-BEC scattering lengths can be a↵ected
by the formation of multi-particle bound states [18], and
requires a separate analysis.

We now elaborate how various observables both in the

FMGS and at long times after a dynamical quench show
signs of the transition as the total system momentum, P ,
is increased. The second derivative of the FMGS energy
is discontinuous at a critical momentum, Pcrit, which is
depicted by the solid black line in Fig. 1(a). We find that
the FMGS energy has the functional form

E (P ) =

(
f(P ), P < Pcrit

cP, P > Pcrit
(1)

and for small and intermediate interactions,

f(P ) =
P 2

2m⇤ , Pcrit = m⇤c. (2)

where m⇤ = @2E/@P 2|P=0 is the e↵ective mass of the
polaron. The black dashed line in Fig. 1(a) depicts Pcrit

from Eq. (2), and we see that it matches the solid line
for weak and intermediate interactions.

The polaron’s group velocity, vpol = @E/@P , is equal
to the average velocity of the impurity in the FMGS,
vgsimp = h gs|P̂imp| gsi /mI , by the Hellmann-Feynman

theorem [19]. Here, | gsi is the FMGS and P̂imp is the
impurity momentum operator. These velocities transi-
tion from an interaction-dependent subsonic value to the
speed of sound when Pcrit is crossed, as illustrated in
Fig. 2(a).

The impurity’s momentum distribution function,
nPimp , also exhibits a signature of the transition; its co-
herent, �-function part, with a weight given by the quasi-
particle residue Z = |h0| gsi|2, vanishes when Pcrit is
crossed, as shown in Fig. 2(b). Here, |0i is the plane-
wave state corresponding to a non-interacting impurity
immersed in a BEC. The shape of the residual, incoher-
ent part of the momentum distribution function becomes
sharply peaked at the critical momentum before broad-
ening out again [17].

The finite momentum transition also manifests in the
dynamics of the system after the impurity is quenched
from a non-interacting state to an interacting state. The
orthogonality catastrophe defined by the vanishing Z
gives a natural motivation to examine the Loschmidt

echo, S(t) = ei
P2

2mI
t h0| (t)i, which characterizes the

dynamical transition and can be experimentally mea-
sured using Ramsey interferometry on the impurity
atom [20, 21]. Here, | (t)i is the wavefunction of the
interacting system at time t. Based on the equivalence of
the long time limit of the Loschmidt echo, |S(t1)|, and Z,
shown analytically in Ref. [22], we examine the behavior
of S(t) for various initial momenta in the quench pro-
tocol and observe a dynamical transition; S(t) remains
finite for small initial system momenta, but has a power
law decay S (t) ⇠ t�� at long times for large initial mo-
menta, as illustrated in Fig. 3. The power-law behavior
is reminiscent of the dynamical response in systems fea-
turing orthogonality catastrophe, discussed for example
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Observables
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Dynamical and FMGS 
transitions coincide

Impurity ends up  
at speed of  sound  

in Cherenkov regime



Distributions (FMGS)
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Distributions (Quench)

10�5

10�4

10�3

10�2

10�1

�10 �8 �6 �4 �2 0
a�1

IB /⇠�1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
T
ot

al
M

om
en

tu
m

P
/(

m
I
c)

Subsonic

Z > 0

Cherenkov

Z = 0

�50

0

50

x
/⇠

�50 0 50

z/⇠

�50

0

50

x
/⇠



weak interaction, subsonic

strong interaction, supersonic (below transition)

weak interaction, supersonic

strong interaction, supersonic (above transition)



Different mass ratios
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Prospectives

• FMGS critical momentum at strong interactions 

➡ No longer 
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• Discrepancy in dynamical critical momentum
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the BEC’s speed of sound.
Below Pcrit, the polaron state overlaps with the free

impurity and the impurity travels at an average velocity
slower than the BEC’s speed of sound, with this velocity
depending on the momentum of the system. Above Pcrit,
the polaron state is orthogonal to the free impurity and
the impurity travels at the speed of sound with the rest
of the system’s momentum carried by long wavelength
Bogoliubov excitations. In the injection experiment in-
volving such a fast impurity, we find a shock wave and
wake in the density of the host liquid, with this modu-
lation traveling along with the impurity. In comparison
to previously studied shock waves in superfluids gener-
ated by constant velocity heavy obstacles [9] or density
defects [14–16], the dynamics of the density cone we ob-
serve is modified by the entanglement between the im-
purity and host atoms; this entanglement is included in
the theoretical treatment of the system via the Lee-Low-
Pines transformation and results in additional interaction
between Bogoliubov excitations (see [17] for details). We
therefore call this density modulation a polaron shock
wave.

The finite momentum quantum transition we observe
draws parallels to the classical Cherenkov e↵ect, in that
the impurity injected into a medium above a medium-
dependent critical velocity saturates to a finite universal
speed at late times while generating a cone of excitations
in the medium.

Results.—-We investigate an impurity immersed in a
three-dimensional BEC where the total momentum of
the system, P, is conserved. The system is spherically
symmetric, and P = |P| represents the magnitude of
the total momentum. We treat the BEC using stan-
dard Bogoliubov theory. The phonon excitations of the
bath have a dispersion that is quadratic at large mo-
menta, !k ' |k|2 /(2mB), and linear at low momenta,
!k ' c |k|. Here, c =

p
gBBn0/mB is the BEC’s speed of

sound, mB is the boson mass, gBB is the boson-boson in-
teraction strength, and n0 is the condensate density. The
interaction between the impurity and BEC is parameter-
ized by the impurity-boson scattering length aIB, which
we express in units of the condensate healing length
⇠ = (2mBgBBn0)�1/2. We use an interaction Hamilto-
nian that keeps terms that are relevant for the strong
coupling regime. The Hamiltonian model and variational
wavefunction used to derive equations of motion are the
same as in Ref. [18], and in this work we tackle the nu-
merical challenge of solving the equations of motion with
enough resolution to accurately capture the physics of
the system. The methods are further discussed in [17].
In this work, we examine the case of negative impurity-
BEC scattering lengths. The dynamics of impurities with
positive impurity-BEC scattering lengths can be a↵ected
by the formation of multi-particle bound states [18], and
requires a separate analysis.

We now elaborate how various observables both in the

FMGS and at long times after a dynamical quench show
signs of the transition as the total system momentum, P ,
is increased. The second derivative of the FMGS energy
is discontinuous at a critical momentum, Pcrit, which is
depicted by the solid black line in Fig. 1(a). We find that
the FMGS energy has the functional form

E (P ) =

(
f(P ), P < Pcrit

cP, P > Pcrit
(1)

and for small and intermediate interactions,

f(P ) =
P 2

2m⇤ , Pcrit = m⇤c. (2)

where m⇤ = @2E/@P 2|P=0 is the e↵ective mass of the
polaron. The black dashed line in Fig. 1(a) depicts Pcrit

from Eq. (2), and we see that it matches the solid line
for weak and intermediate interactions.

The polaron’s group velocity, vpol = @E/@P , is equal
to the average velocity of the impurity in the FMGS,
vgsimp = h gs|P̂imp| gsi /mI , by the Hellmann-Feynman

theorem [19]. Here, | gsi is the FMGS and P̂imp is the
impurity momentum operator. These velocities transi-
tion from an interaction-dependent subsonic value to the
speed of sound when Pcrit is crossed, as illustrated in
Fig. 2(a).

The impurity’s momentum distribution function,
nPimp , also exhibits a signature of the transition; its co-
herent, �-function part, with a weight given by the quasi-
particle residue Z = |h0| gsi|2, vanishes when Pcrit is
crossed, as shown in Fig. 2(b). Here, |0i is the plane-
wave state corresponding to a non-interacting impurity
immersed in a BEC. The shape of the residual, incoher-
ent part of the momentum distribution function becomes
sharply peaked at the critical momentum before broad-
ening out again [17].

The finite momentum transition also manifests in the
dynamics of the system after the impurity is quenched
from a non-interacting state to an interacting state. The
orthogonality catastrophe defined by the vanishing Z
gives a natural motivation to examine the Loschmidt

echo, S(t) = ei
P2

2mI
t h0| (t)i, which characterizes the

dynamical transition and can be experimentally mea-
sured using Ramsey interferometry on the impurity
atom [20, 21]. Here, | (t)i is the wavefunction of the
interacting system at time t. Based on the equivalence of
the long time limit of the Loschmidt echo, |S(t1)|, and Z,
shown analytically in Ref. [22], we examine the behavior
of S(t) for various initial momenta in the quench pro-
tocol and observe a dynamical transition; S(t) remains
finite for small initial system momenta, but has a power
law decay S (t) ⇠ t�� at long times for large initial mo-
menta, as illustrated in Fig. 3. The power-law behavior
is reminiscent of the dynamical response in systems fea-
turing orthogonality catastrophe, discussed for example

Transition in gases with other dimensions/statistics? 

➡No transition in 1D Fermi gas Gamayun (2018) - PRL
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